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Four aspects of effective glass melting have been defined – namely the fast kinetics of partial melting phenomena, a con-
sideration of the melting phenomena ordering, high utilisation of the melting space, and effective utilisation of the supplied 
energy. The relations were defined for the specific melting performance and specific energy consumption of the glass melting 
process which involve the four mentioned aspects of the process and indicate the potentials of effective melting. The quantity 
“space utilisation” has been treated in more detail as an aspect not considered in practice till this time. The space utilisation 
was quantitatively defined and its values have been determined for the industrial melting facility by mathematical modelling. 
The definitions of the specific melting performance and specific energy consumption have been used for assessment of the 
potential impact of a controlled melt flow and high space utilisation on the melting process efficiency on the industrial scale. 
The results have shown that even the partial control of the melt flow, leading to the partial increase of the space utilisation, 
may considerably increase the melting performance, whereas a decrease of the specific energy consumption was determined 
to be between 10 - 15 %.

INTRODUCTION

 Phenomena of glass melting either cooperate to-
wards homogeneous glass (inhomogeneity dissolution, 
fining, melt convection in melting space) or lower its 
quality (bubble nucleation, foaming). Different aspects 
of the process play a less or more important role here. 
The mutual effect and ordering of the glass melting 
phenomena, as well as the present significance of the 
melting aspects require the analysis and evaluation in 
the framework of the entire glass melting process. This 
paper will endeavour to provide that description.

THEORETICAL

The principal aspects, phenomena
and quantities of glass melting

 The effective glass melting process needs to be eva- 
luated with the assistance of its basic aspects and phe-
nomena. The basic aspects may be considered to be [1]:
- rapid kinetics of the single melting phenomena,
- consideration of phenomena mutual ordering,
- effective utilisation of the melting space,
- effective utilisation of the supplied energy. 

 The basic homogenization phenomena of the mel-
ting process are considered to be:
- the batch conversion (heat, mass transfer and chemical 

reactions),
- the removal of solid and liquid inhomogeneities (mass 

transfer),
- the bubble nucleation and removal (mass transfer and 

separation).
 The industrial process is characterized by the tech- 
nological quantities which provide evidence about pro-
cess efficiency. The specific energy consumption, specific 
melting performance and final glass quality are the most 
interesting issues of glass technology. The incorporation 
of the four process aspects into the mentioned quantities 
is therefore desirable. Such an incorporation can easily 
illustrate where the potentials are for an effective melting 
process.
 The position of individual phenomena and their 
ordering in the industrial melting process is schematically 
presented in Figure 1. Four regions represent the stages 
of the melting process, the batch conversion interface 
designates the boundary between the batch and melt, 
the phenomena interface shows the end of the melting 
part of the facility and the high temperature interface 
designates the start of the forming process. The first CO2 
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bubble nucleation and first foaming occur already in the 
batch region and the principal melting phenomena such 
as dissolution and removal of primary bubbles start here, 
as well. The particle dissolution, bubble removal and 
foaming should be terminated at the end of the principal 
phenomena region whereas the dissolution of chemical 
inhomogeneities is accomplished only at the end of the 
high temperature region. The glass defects that arise 
owing to different interactions remain up to the facility 
output; nevertheless, neither this issue nor chemical 
homogenization is within the scope of this work. 
Phenomena linking in the region of the principal melting 
phenomena, i.e. the serial ordering (sequencing) of bubble 
nucleation with the dissolution of inhomogeneities or 
foaming with bubble removal, is crucial. The phenomena 
ordering should be taken into account when estimating 
the duration, energy consumption and performance of 
the melting process.
 The definition of the specific melting performance 
and specific energy consumption of an industrial melting 
space
 If the process is generally implemented in m serial 
melting spaces and the performances of controlling 
phenomena in single spaces are balanced, the specific 
melting performance - expressed by the j-th phenomenon 
(or by the sum of phenomena in the series) controlling 
the process in the i-th space - is defined by:

(1)

where uij is the space utilisation of the j-th phenomenon 
(or sum of phenomena), controlling the process in the 
i-th melting space. The space utilisation quantitatively 
expresses a mapping of the course of the given homo-
genization phenomenon at a given melt flow character. 

Further, j is the index of the controlling phenomenon
in the i-th melting space, τHRefij is the reference homoge-
nization time of the j-th independent phenomenon in the 
i-th melting space, and the phenomenon may start either 
in the i-th or in one of previous melting spaces.  
 So, the specific melting performance involves three 
out of four melting aspects: the kinetics is represented 
either by the value of τHRefij in equation (1) or by the sum 
of serial phenomena when the value of τHRefij in equation 
(1) is replaced by Σn

j =1 τHRefij. The ordering aspect is con-
tained in the choice of the controlling phenomenon, in 
the reference homogenisation time τHRefij, or in the fact
of the use of Σn

j =1 τHRefij. The glass quality as a technologi-
cal value is automatically included in values of τHRefij

because the reference times designate the full accomplish-
ment of the phenomenon. The space utilisation aspect is 
given by the value of uij.
 The specific energy consumption of a complex pro-
cess space is defined in summary form as:

(2)

where HH
M  i is the overall heat bound with chemical 

reactions in the batch and with heating of both the batch 
and glass in the i-th space. It involves both the theoretical 
heat and the heat of the departing combustion gases 
provided that process combustion is applied. m is the 
number of melting spaces, HL

M i  is the overall heat bound 
with the maintenance of a constant temperature in the 
i-th melting space. It involves both heat losses through 
boundaries and the heat carried out by combustion gases 
if the combustion process is applied.
 The overall heat bound with heating, HH

M i  in a current 
one-space melting facility (i = 1) is predominantly con-
centrated in the batch conversion region and in the 

� =           uij (kg/m3)
ρ
τHRefij

HM = ∑ (HMi + HMi) (J/kg)H L
m

i=1

0

Figure 1.  The ordering of melting phenomena in the industrial melting space: I – the region of batch conversion, II – the region 
of principal melting phenomena, III – region of temperature and chemical stabilization, IV – the region of melt processing 
(── phenomenon starts in the batch conversion region I, ---- phenomenon starts inside of the region II, → the potential linking 
of phenomena or phenomena completion).
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melting part of the facility. However, in the potentially 
considered advanced facilities composed of several 
spaces with a specialized melting function, the value of 
HH

M i  can reach a non-zero value in any partial space where 
the glass is heated. 

The specific energy consumption
in the industrial melting furnace

 For the purpose of the incorporation of melting 
aspects into the equation for the specific energy con-
sumption, the overall specific energy consumption of 
the current industrial facility (i = 1, j = 2 - 3) was 
hypothetically classified into two quantities defined by 
equation (2), i.e. into the energy needed for the batch 
reactions, the heating of the batch, as well as glass, and 
into the energy needed to maintain melting temperatures. 
This hypothetical classification is significant when de-
fining and judging the factors determining the energy 
savings of glass melting. Whereas the specific energy 
needed for reactions and heating, HH

M i , is practically in-
dependent from the melting performance, the speci-
fic energy consumed for maintaining the correct tem-
peratures, HL

M i , decreases with increasing performance. 
Both types of energies can be separated by an energy 
analysis of the melting facility.
 The typical glass melting furnace is a one-space 
facility with several regions; the time intervals of the 
sand dissolution and bubble removal overlap with the 
batch conversion (see Figure 1). The interfacial boun-
dary melt-batch forms a performance constraint for 
the batch conversion (only the formed melt crosses 
the boundary). The batch conversion is thus in a series 
with the phenomena taking place in the melt and the 
slower phenomenon in the serial ordering controls 
the entire melting process. The phenomena in the melt 
are both parallel (sand dissolution and primary bubble 
removal) and in a series (liquid inhomeogeneity and 
sand particle dissolution with the removal of nucleated 
bubbles). The exit from the melting space forms a 
performance constraint for the phenomena in the melt 
(all the phenomena should be terminated before or at 
least at the exit). The slower phenomenon in the parallel 
ordering controls the process performance in the melt. 
The definition of the specific energy consumption should 
follow the presented phenomena ordering.
 When deriving a more general formula for the 
specific energy consumption, the relation valid for the 
all-electric melting space [37-42] can be applied as the 
starting point:

(3)

where HT
M   is the specific theoretical heat, ḢLI is the over-

all heat flux through boundaries, ρ is the glass density,
V is the space volume, and τ‾  BC is the average batch con-
version time.

 The value of HT
M  in equation (3) represents the 

total energy for batch conversion and heating, HH
M ,

from equation (2) when no flue gases are present. 
Similarly, the second term in equation (3), bringing the 
heat losses through boundaries, represents the total heat 
for maintaining the temperature in the space, HL

M  , from 
equation (2) when flue gases are absent. Now let us 
consider the space heated by both fuel combustion and 
Joule heat. For the sake of simplicity, the heat lost in 
electrode coolers will be neglected. If the batch and glass 
are heated by combustion gases, only a part of the heat is 
absorbed in the heated material owing to thermodynamic 
and kinetic constraints. The remaining heat content of 
the flue gases is transported out of the space. 
 The constant α can be introduced expressing the 
ratio between the heat absorbed by the batch and melt, 
and the heat transported away by flue gases. Thus, the 
value of α is the average efficiency of the heat utilisation. 
The lower α is, the lower the fraction of absorbed heat 
and the worse the heating efficiency. Consequently, 
each amount of energy H supplied by combusted fuel 
into the batch and melt should be accompanied by the 
amount of heat ((1 – α)/α)H transported by flue gases 
from the space. The total need for energy supplied by 
the combusted fuel is then H + ((1 – α)/α)H. If the value 
of HT

M   then serves as the reference heat H, the energy 
balance of the HH

M   provides:

(4)

where ε is the fraction of total heat supplied as Joule heat.
 If HBP

M    is the low temperature energy supplied to the 
batch by flue gases, equation (4) after rearrangement is:

(5)

 When evaluating the value of the energy needed for 
maintaining the temperatures, HL

M  , the second term on 
the right side of equation (3), here designated as HLI

M   , will 
be taken as the reference heat. HLI

M    are the heat losses 
through boundaries with the exception of heat carried out 
by flue gases. The total heat consumption for maintaining 
the temperatures is then given by:

(6)

 The heat carried out by flue gases is now given by 
the second term on the right side of equation (6). If the 
Joule heat is applied together with the combustion heat, 
the heat balance HL

M   provides analogically with equations 
(4) and (5):

(7)
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 As the value of H0
M   is given by the sum of HH

M   and
HL

M  , after a substitution for HLI
M   from equation (3), we 

have:

(8)

 Equation (8) is transformed at ε = 0 for the melting 
space heated only by combustion: 

(9)

 On the contrary, if the space is heated only by the 
Joule heat, ε and α = 1, HBP

M   = 0 and thus equation (3) 
emerges. In addition, if the batch conversion kinetics 
is fast or either sand dissolution or bubble removal 
phenomenon starts early in the batch conversion stage, 
τ‾  BC + τHRef /uH → τHRef /uH [2]:

(10)

 The diagram in Figure 2 shows how the individual 
items of the specific energy consumption are distributed 
in the glass melting furnace and its environment. The 
single terms according to heat balance in equation (9) 
are present. Both principal heats according to equation 

(2) and represented by H0
M  , branch into terms with the 

incorporated value of HT
M   and terms containing the refe-

rence time, τHRef, as well as the space utilisation, uH. The 
terms with incorporated HT

M   relate to the energy needed 
for reactions and heating. They can be beneficially 
affected only by increasing the value of α. The terms 
with τHRef and uH represent the energy needed to maintain 
the temperatures and decrease with increasing melting 
performance. The total energy carried out by flue gases 
(the terms containing coefficient α) branches out into 
the heat definitively lost from the system, energy used 
for gasses preheating, HGP

M  , and energy used for batch
preheating,  HBP

M   . Both  HBP
M    and  HGP

M     are fixed values. 
If batch preheating is applied, the absorbed high tem-
perature heat given by the value of HT

M   is reduced by the 
recycled low temperature energy, i.e. by the term HBP

M   .
 The four aspects of glass melting are thus involved 
in the equation for the specific energy consumption and 
can be read from equations (8, 9).
- τ‾ BC and τHRef represent the kinetics of the batch con-

version and kinetics of the phenomena in the melt 
(sand dissolution or bubble removal).

- The sum in the parentheses of the second term, τ‾ BC + 
τHRef/uH, demonstrates the serial ordering of batch con-
version and phenomena in the melt, the choice of τHRef 
designates the controlling phenomenon in the melt. 
The performance constraint of the batch-melt interface 
can be thus expressed by the value of τ‾  BC.

HM = ε(HM – HM  ) + ε           τBC +           +            (HM – HM  ) +           τBC +
T BP T BP

α
1 – ε0

uH

τHRef
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ḢLI

ρV
ḢLI
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Figure 2.  The diagram showing how the single items of the specific energy consumption are distributed in the gas fired glass 
melting furnace and its environment. The small rectangles represent the burner inlets. H0

M  is the specific energy consumption, HT
M    

is the theoretical energy consumption, HBP
M    is the energy to preheat batch and HGP

M    is the energy to preheat gases.
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- uH represents the space utilisation for the controlling 
phenomenon in the melt, the sand dissolution, uD, or 
bubble removal, uF .

- α and ḢLI represent the average energetic efficiency 
of batch with glass heating and overall energy flux 
through space boundaries. Both can be understood as 
measures of energy utilisation. 

 The melting potentials resulting from the principal 
melting phenomena and melting aspects may be derived 
from the definition of  in equations (8, 9). The following 
possibilities may arise:
 Batch conversion is the controlling phenomenon:
- the increase in α reflects more effective heat absorp-

tion by the batch and melt. The batch compaction is 
increasing the material heat conductivity, the increase 
of the radiation absorptivity of the batch and melt, 
as well as melt convection decreasing the level tem-
perature represents some of potential beneficial steps.

- decrease in τ‾ BC reflects the enhanced batch conversion 
kinetics. The targeted raw material choice with its 
granulometry, batch compacting and preheating, and 
the prescribed thermodynamically and kinetically 
advantageous time-temperature regimes appear to be 
the areas for potential improvements.

 Phenomena in the melt are controlling by:
- enhanced sand dissolution and bubble separation ki-

netics,
- improved space utilisation for phenomena (not applied 

yet).

 Whereas the enhanced kinetics of phenomena was 
continuously followed by both glass researchers and 
technologists [3-19] and was applied with the aid of 
mathematical modelling to the industrial glass melting 
spaces [20-33], the improvement of space utilisation in 
order to make the glass melting more effective has not yet 

been systematically studied. Nevertheless, the specific 
performance of the melting space is directly proportional 
(equation (1)) and the heat lost by boundaries is inversely 
related (equations (8, 9)) to the space utilisation for the 
given phenomenon. It is therefore worth investigating 
utilisation.
 All the fundamental processes in the melt become 
parallel: 
- if the reacting batch can be mixed with the hot melt and 

no batch blanket were to form on the glass level or the 
batch conversion is realized out of the melt level, the 
melting performance bottleneck on the phase boundary 
between batch blanket and melt would be abolished. 
However, no technical solution is available up to now.

Space utilization as a quantity intensifying 
the phenomena in the melt – sand 
dissolution and bubble removal

 Space utilisation is a quantity which compares the 
duration of the given melting phenomenon in a quiescent 
melt, τHRef, with the necessary mean residence time of the 
melt in a continuous space, τG [2, 34–41]:

(11)

where V is the space volume and V·   is the volume flow 
rate of the melt through the space.
 The values of uH may also be expressed with the aid 
of a dead space, virtual dead space and a virtual height. 
These quantities relate to the given character of melt 
flow and express the potential of the given flow patterns 
to accomplish the given phenomenon inside of the space 
effectively [36-42]. The application of uD and uF (space 
utilisation for sand dissolution, uD, and for bubble re-
moval, uF) in a simple melting space (melting channel) 
showed that high utilisation values can be achieved in 

uH =         , τG =     , uH ∈ 〈0; 1〉τG

τHRef
V·
V

Figure 3.  The schematic picture of the helical flow developing when applying the transversal temperature gradient in a horizontal 
channel with originally longitudinal circulations.

 a) mostly dead space b) partially dead space c) no dead space
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spaces with uniform flow where the uD = uF = 1 for 
plug flow and uD = 0.455, uF = 0.667 for the flow of 
isothermal melt [43], as well as in spaces with a helical 
flow. The modelling studies had shown that uD = uF =
= 0.6 - 0.8 in optimal cases [40-41].
 The helical flow seems to be more stable than the 
uniform flow and therefore preferentially applicable. 
Figure 3 shows how the longitudinal circulations in 
a horizontal channel turn gradually owing to the simul-
taneously applied transversal temperature gradient 
and modify to transversal circulations, consequently, 
the original longitudinal flow character changes to the 
helical one. Under the conditions of only longitudinal 
circulations, only a small part of the channel volume 
forming the periphery of the longitudinal circulation body 
is available for through-flowing melt. The velocity of the 
through-flowing melt is consequently high and only a 
small part of the volume is usable for accomplishing the 
melting phenomena. When the transversal temperature 
gradient is applied and its value is gradually increased, 
the longitudinal circulations turn to transversal ones 
and the internal melt shells are opened for the through-
flowing melt. The fraction of the space usable for the 
melting processes increases and this leads to an increase 
of the space utilization and consequently, to an increase 
of the melting performance and decrease of heat losses. 
Thus, the helical flow in the melting space can be set 
up by a proper temperature distribution in the melting 
space. The value of the space utilisation strongly depends 
on the ratio between the transversal and longitudinal 
temperature gradient [38, 41]. It is important that high 
values of the space utilisation for both sand dissolution 
and bubble removal can be obtained at comparable 
temperature conditions and character of glass flow. It 
provides the condition for the simultaneous operation 
of both phenomena in a common melting space under a 
unified melt flow character.

 However, the optimal temperature distribution can-
not be perfectly set up in real glass melting furnaces 
owing to the heat transfer constraints. Particularly the 
batch blanket on the glass level forces low temperatures 
under batch and supports the longitudinal circulations. 
The question arises therefore of which values of space 
utilisation can be acquired in present melting spaces with 
the batch blanket and classical longitudinal type of glass 
circulations.
 In order to clarify this question, an end port re-
generative furnace was mathematically modelled [1], 
showing a nominal pull rate of 240 t/day, (2.37 t/ 
/(day·m2)), and an average temperature in the melting 
part of 1387oC. The space utilisation for both sand 
dissolution and bubble removal was calculated up to the 
barrier (designated in Figure 4) using the mathematical 
model and laboratory data of sand dissolution and bubble 
removal valid for float glass [43]. Figure 4a, b presents 
the critical and close-to critical trajectories of bubbles 
and sand particles in the XY projections. The parameters 
of the critical bubble and sand particle were used for the 
calculation of the space utilisation.
 The values of some quantities necessary to calculate 
the space utilisation were: τG = (the mean residence time) 

81944 s, τ‾   (the average residence time of the melt) =
= 34 160 s, τ‾  D (the average sand dissolution time) = 6009 s,
τF (the removal time of the critical bubble) = 5525 s, 
τFRef (the reference removal time of the critical bubble) = 
4149 s, τ‾  /τmin = 5.48. The space utilisation of the bubble 
removal provided the value of uF = 0.051 and the space 
utilisation value for the sand dissolution, uD = 0.073.
 Compared with the values of space utilisation for 
the isothermal flow or with the optimized (helical) 
flow in the model channel, the space utilisation of the 
industrial furnace appears to be very low. The great 
difference between the industrial and mentioned model 
spaces reveals a chance to attain a considerable increase 

Figure 4.  The XY projections of the critical trajectories of bubbles (a) and sand particles (b) in the regenerative end-port furnace, 
obtained by mathematical modelling.

a) b)
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of melting performance and decrease of heat losses in the 
industrial spaces where the condition of the helical flow 
would be fulfilled only partially. The industrial melting 
space without a batch blanket was therefore modelled, 
being 6.57 m long, 2.0 m wide and having a glass 
layer of 1 m to obtain the reference states at different 
characters of the melt flow. The average temperature 
1425oC in the space was maintained by the electrodes. 
In the reference case, the longitudinal melt circulations 
were set up by the transversal row of electrodes whereas 
the central longitudinal row of electrodes was used to set 
up the helical character of melt flow. The second case is 
presented in Figure 5 [43]. The following values were 
attained for both border cases:
- The reference case with the classical character of the 

melt flow provided a space utilisation: uD = 0.041, 
wall losses HLI

M   = 924 kJ/kg, a melting performance
P = 44.0 t/day and a specific melting performance
π = 2.8 t/(day·m2)).

- The case with a helical-like melt flow provided a space 
utilisation uD = 0.595, wall losses HLI

M   = 50 kJ/kg,
a melting P = 880 t/day and a specific melting per-
formance π = 55.8 t/(day·m2)).

 The results show a drastic increase of the space 
utilization and a corresponding increase of the melting 
performance, as well as a decrease of heat losses, when 
setting up a helical-like character of the melt flow in the 
mentioned space without a batch blanket. The hypothetical 
values of the specific heat losses and space utilisations 
were then calculated for cases lying between the maximal 
and minimal (reference) melting performances under the 
assumption that the corresponding batch conversion was 
previously feasible. The similar temperature distribution 
at the same average temperature in the melt was 
anticipated and consequently, the constant values of heat 
flux through boundaries, ḢLI, and reference melting time 
were applied. The sand dissolution was considered the 
controlling phenomenon [43]. Equations that hold true 
for the heat losses and space utilization as functions of 
the melting performance P have then the simple forms: 

(12)

(13)

 Both dependences are obvious from Figure 6. The 
entire presented dependence has been calculated using the 
case with the helical-like flow which showed a maximal 
value of melting performance of 880 t/day. Nevertheless, 
the value of the specific heat losses obtained in the 
reference case at P = 44.1 t/day was also plotted on the 
graph to check the usability of Equations (12, 13). As 
Figure 6 shows, the value fits well with the dependence 
for helical flow and provides evidence of the very weak 
dependence of ḢLI and τ‾ D on the character of the melt flow. 
The results show that a decisive decrease of heat losses is 
attained already at a relatively small increase of melting 
performance values from the reference value 44.1 t/day 
which arises also from equation (12); the partial control 
of the melt flow therefore seems to be efficient. 
 The value of the specific theoretical heat, HT

M    = 2635 
kJ/kg was then applied to calculate the specific energy 
consumption H0

M   as a function of melting performances 
in the interval lying between the reference case and the 
case characterized by the helical-like flow. The values 
of the specific heat losses come from Figure 6. Equation 
(9) was used where ((1 – α)/α)[ḢLI/ρV(τ‾  BC + τHRef/uH)] = 
0 (heat losses by walls were covered by the electrical 
heating) and τ‾  BC + τHRef/uH = τ‾  D/uD:

(14)

 The different values of a were applied for the 
calculation. The results of H0

M   calculations as a function 
of the melting performance are presented in Figures 7 
and 8. The conversion of the batch into glass is again 
assumed. The percentage of energy saved owing to the 
increase of melting performance is also plotted. The va- 
lues provide the impact of the controlled melt flow on 
the energy consumption and energy savings in the region 
between the two modelled cases. The maximal energy 
savings of up to about 25 % and the minimal value 

Figure 5.  The model melting space with the central 
longitudinal row of electrodes and with the critical and close-to 
critical trajectories of sand particles obtained by mathematical 
modelling [43]. The sand dissolution was the controlling 
phenomenon in the melt.

Figure 6.  The dependence of the specific heat losses and the 
space utilisation on the melting performance of the model 
space according to the results of mathematical modelling and 
equations (12-13).
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of H0
M   below 3000 kJ/kg are attained in the case of only 

electrical heating in Figure 7. The batch conversion by 
combustion heat α = 0.5 (50 % of supplied heat absorbed 
by the batch and 50 % by the melt) shows the maximal 
energy savings below 15 % and the relevant relatively 
high value of H0

M   around 5500 kJ/kg in the same figure. 
Figure 8 shows the impact of a on both followed 
quantities at α = 0.55 and 0.60. However, the character 
of glass flow cannot influence substantially the value of 
α because the main impact on a is hidden in the batch 
properties and batch conversion rate, as well as in the 
efficiency of the combustion processes. In agreement 
with Figure 7, the decisive decrease of the specific energy 
consumption (and increase of energy savings) is obvious 
at a relatively small increase of the melting performance 
from the reference state, i.e. at only a partial transition of 
the glass flow character to the helical one.

Phenomena sequence and space
utilisation – exploitation
of process improvements

 The consideration of the phenomena ordering si-
multaneously with phenomena improvements leads to a 
more effective melting process. The serial ordering of the 
batch conversion with phenomena in the melt (particle 
dissolution or bubble removal) is the most significant 
phenomena sequence of industrial glass melting. In 
practice, the improvement of either batch conversion or 
phenomena in the melt can be attained and the increase 
of the pull rate is needed to exploit the improvement. 
However, the rate of both phenomena in series must be 
adequately increased in order to maintain a balance of 
the sequenced phenomena. The relevant procedure is 
schematically presented in Figure 9.
 The initial state represents the balanced original state 
in which the batch conversion process is characterized 
by the standard covering of the glass level by the batch 
blanket and the controlling phenomenon in the melt is 
terminated at the output (critical state). When increasing 
the rate of the batch conversion (left side of the figure), 
the covering by the batch is reduced but the intensity 
of the phenomena in the melt remains unchanged. In 
the second step, the phenomena in the melt should be 
adequately accelerated or their space utilisation should 
be increased and the melting performance (pull rate) is 
increased to attain the original degree of glass covered 
by the batch as well as a new the critical state in the melt. 
The right side of Figure 8 shows the case in which the 
rate of the phenomena in the melt is initially accelerated 
or the space utilization is increased. A melting reserve 
arises in the melt. Subsequently, the conversion of the 
batch should be enhanced and the melting performance 
can be increased up to the point of reaching the critical 
state. According to current knowledge, the increase of 
the melting capacity of the melt region by higher space 
utilization is the promise now but augmenting the batch 
conversion rate or space capacity becomes the important 
task at hand.

Potentials resulting from phenomena 
ordering and space utilisation

Increase in the melting capacity
of serial phenomena

in the classical melting space 
 The modelling results indicate that energy savings 
caused by an optimized melt flow may reach around 
10 - 15 %. However, the melting performance indicates 
even multiple increases under equivalent conditions. 
The small or medium sized melting furnaces could 
then replace the large ones. As is apparent from the text 
above, some problems arise; however, when setting up 
a controlled melt flow in the batch region characterized 

Figure 7.  The specific energy consumption, H0
M  , according to 

equations (10) and (14) and the percentage of saved energy as a 
function of the melting performance. The values of heat losses 
come from Figure 6. The average temperature is 1425°C, the 
float type of glass is used. (----- 50 % of supplied heat absorbed 
by the batch and glass, α = 0.5, (equation (14)); ─── the 
electrical heating only, α = 0, equation (10)). 

Figure 8.  The specific energy consumption, H0
M  , according to 

equation (14) and the percentage of saved energy as a func-
tion of the melting performance, the heat losses come from 
Figure 6. The average temperature is 1425°C, the float type 
of glass is used (─── 60 % of absorbed heat in the batch, 
α = 0.60; ----- 55 % of absorbed heat in the batch, α = 0.55).
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by the fixed temperature distribution, a simultaneous 
increase of the batch conversion capacity is needed as 
an integral part of the intensification procedure. 

Batch conversion as a phenomenon
parallel with bubble removal

and sand dissolution
 The capacity of batch conversion is restricted by 
the melt transfer from the batch blanket to the melt bath. 
The rapid transfer of the just forming glass or even the 
in-mixing of partially converted batch in the melt bath 
is desirable which makes the batch conversion partially 
or entirely parallel with the sand dissolution and bubble 
removal. The controlling function of batch conversion 
would thus be restricted or abolished and the only 
controlling phenomenon will be either sand dissolution 
or bubble removal. Unfortunately, there are no reliable 
tests of direct batch in-mixing available.

The batch conversion accomplishment 
in a separate pre-melting space

 It is easier to set up an efficient helical flow and 
to achieve high values of space utilisation in a special 
melting space without a batch blanket. Consequently, 
a new space for rapid batch conversion has to be 

incorporated into the melting facility but its precise 
function is not determined yet. It should be also taken 
into account that the new space will increase the total 
heat losses through boundaries. 

CONCLUSION

	 Four aspects of the melting process were proposed 
and included in the equations for the specific energy 
consumption and melting performance of a continuous 
glass melting space. The proposed aspects are the 
kinetics of partial melting phenomena, the utilization of 
the melting space and the supplied energy, and the mutual 
ordering of principal melting phenomena, namely batch 
conversion, particle dissolution and bubble removal. 
Among the present prospective factors of effective 
glass melting, space utilization appears significant. The 
increase of the space utilization through melt flow control 
improves the efficiency of the processes in the melt and 
allows a decrease of heat losses, as well as a substantial 
increase of melting performance even under conditions 
of partial control of the melt flow. However, the serial 
ordering of batch conversion and phenomena in the melt 
requires an adequate increase of the batch conversion 

Figure 9.  The schematic demonstration of the necessary procedure leading to a more effective melting process in the glass melting 
space. Left side: the batch conversion is primarily enhanced. Right side: the bubble removal as a controlling phenomenon in the 
melt is primarily enhanced. Curves in the rectangles: the schematic critical trajectories of sand particles or bubbles. V̇ - the volume 
melting performance of the space.
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capacity of the space. The high degree of melt flow 
control and new principles of batch conversion process 
thus become the crucial factors for further development. 
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