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Abstract  

The impact effects in gear mesh represent specific phenomena in the dynamic investigation of highspeed 
light transmission systems with kinematic couplings. They are caused of greater dynamic than static-elastic de-
formations in meshing gear profiles. In term of internal dynamics they are influenced among others by time hete-
ronomous stiffness functions in gear mesh and resonance tuning of stiffness level. The damping in gear mesh 
and in gear system is concerned significantly in the amplitude progress, greatness and phase shift of relative mo-
tion towards stiffness function alternatively towards its modify form in gear mesh. In consequence of these and 
another actions rise above resonance characteristics certain singular locations with jump amplitude course. 
© 2007 University of West Bohemia. All rights reserved.   
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1. Introduction  

The problems of internal dynamics of transmissive systems with kinematic couplings – 
gear wheels – both systems with direct and split power flow is the necessary component of the 
analysis of external dynamics of these mechanical systems.  

The signification of the above mentioned is greater by problems of non-linear time heter-
onomous i.e. parametric systems with great range still both theoretically and experimentally 
unresolved – unknown parameters which significantly influence their dynamic properties. In 
given systems they are especially the frictional forces in gear mesh of elastic supported 
wheels and the damping forces in gear mesh both in the phase of mesh and in the phase of 
impact effects when dynamic deformations are greater than static-elastic these.  

For the motion equations composition of mathematical physical model of planetary sys-
tems, alternatively their special cases with kinematic couplings – gears has been applied La-
grange´s method. The solution of that way created motion equations of mechanic discrete sys-
tem in the form of weakly and strongly nonlinear parametric ordinary differential equations of 
second order was carried out by means of 

1) analytical: transformation of boundary differential problem onto equivalent system 
of integrodifferential equations with solving kernel in form of Green´s resolvents 
and E.Schmidt´s method of kernel splitting [2], 

2) numerical: on the simulation model of system in MATLAB/Simulink [7]. 

For the dynamic analysis phenomena in such mathematical-physical models of planetary 
for example pseudoplanetary systems – reducers the motion can be described by systems of 
deterministic weakly a strongly non-linear parametric equations in the form [1] 
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Here v means generally the m-dimensional vector of displacement of system vibration, 
)(vw K K-th power of vector v , which is defined by expression ))()(()( 1 vwvwDvw −= KK .
))(( vwD denotes the diagonal matrix, whose elements at the main diagonal are comprised by 

elements of vector vvw ≡)( . Furthermore M is the matrix of mass and inertia forces, K1

and K
1K are the matrix of linear and non-linear damping forces, C1 and  CK are the matrix 

of linear and non-linear reversible forces and )(τF is the vector of non-potential external ex-
citation with components nn ba , and with the phase angle ϕ . H is the Heaviside´s function, 
which allows to describe the motions – contact bounces – due to strongly non-analytical non-
linearities, for example due to technological tooth backlash )(τs *. Corresponding linear and 
non-linear coefficients of damping are denoted by iδβ , iDD, linear parametric stiffness func-
tion by the symbols  nnn VUY ,,  and non-linear parametric functions, so-called parametric non-
linearities, by the symbol nI . ε and κ are the coefficients of mesh duration and amplitude 
modulation of stiffness function  C1 . Derivative by non-dimensional time τ are denoted by 
dashes,  tcωτ = , cω … mesh frequency, t … time. 

The contribution reassumes onto hitherto published works [3],[4],[5] and goes out from 
the solution of special case of improved discrete mathematical-physical model of kinematic 
pairs of teeth wheels from one branch of pseudoplanetary systems, s. Fig.1, which represents 
system with six degrees of freedom, and deals especially with refinement of damping forces 
and their properties namely both in the phase on normal mesh and in the phase of contact 
bounce and their influence on the resonance characteristics of  given systems. 

The relative motion as the measure of dynamic loading in the gear mesh, i.e. in the course 
of mesh line, can be described for the generally elastic supported system with bearing motions 
{ }2,32,3 ; zy of the gear pairs 3,2 by respecting so-called run-out of pitch circles, which are 
modelled by eccentricities 2,3e , in the form [1] 

)(f)sin(esineyyRR)(y ,
bb τϕϕϕϕτ 21

2233232233 +−∆−+−++= , (2) 

where  )(f, τ21 is the deflect function, or the deviation of the cog side form from the ideal in-
volute, ∆ is the phase angle of angular displacement between eccentricities 2,3e and 23,bR
are radii of basic circles. This relative motion represents the measure of dynamic load in gear 
mesh because the dynamic force can be characterized by relation )()(1 ττ yCFdyn = .

The analytical form of the resulting stiffness function of spur gearing in mesh can be ex-
pressed by Fourier´s series in form [1], 
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* Explain in more detail of the tooth backlash as a function ),,,,e,e,y,y,s(f)(s k τϕϕτ ∆= 232323 , where ks is the 
constant technological backlash, s. [1],[7]. 
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Fig. 1. The substitutive mathematical – physical model of kinematic pair of gears (b) of pseudoplanetary system 
with double satellites – (a), the technological teeth backlash and the values of Heaviside´s functions H 
in the areas of gear mesh with clearances (c). 

 
where the mean stiffness is defined by 

 [ ].)32(1
2

)1(max
max −+

−
+= ε

κ
κ

CCCs (4) 

The symbol 1
maxmin

−= CCκ represent the amplitude modulation of resulting stiffness function 
in gear mesh, maxmin ,CC are maximal and minimal values of stiffness in gear mesh and ε is 
coefficient of mesh duration, which indicates how many teeth pairs is at any one time in mesh 
at mesh line. In extreme cases, for example 1=ε , is during the mesh time at mesh line only 
one teeth pair, in the case 2=ε are two pairs of teeth whole time in mesh. In these cases 
verges the parametric system i.e. in the stiffness with time heteronomous system on the sys-
tem with constant coefficients. This fact markedly affects the dynamics of system and is con-
nected with the size of amplitude of relative motion in gear mesh. That is influenced by time 
duration of mesh on that which potential stiffness level of appropriate reversible force. In the 
stiffness of teeth is respected in the next application only the stiffness of the separate cogs and 
their fixation into a solid half-space, discs are considered absolutely solid. 

c) 

Tooth backlash 
s(t) Normal mesh 

Inverse mesh Inverse mesh 

Normal mesh 
Tooth backlash 

s(t) 
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The next factor which influences qualitatively and quantitatively the course of y(t) is the 
friction in gear mesh or frictional forces in the motion rolling – sliding of kinematic pair – 
gearing. They induce the variance of originally considered constant preload 

.konst)M(MM ====−−−−−−−−==== 23 on Tv MMM ∆±±±±==== , where TM∆ is the additional moment from 
friction forces.  

The friction forces in the gear mesh constitute the separate chapter in the frame of tri-
bological process of lubrication. Theory of the EHD lubrication in gear mesh of the  finite  
width at the line contact under the rolling and sliding contact is on the present-day one of 
more developed areas. The gear profiles of kinematic pairs pursue complicated motion rolling 
- sliding namely sliding resulting as from the gear mesh geometry so from the relative mo-
tions of elastic bearings, i.e. motions caused as by the elasticity of bearings so by the wheel 
run-out. Purely rolling motion in gear mesh occurs only in the pitch point on the mesh line by 
absolutely solid bearing of wheels. In this contribution is applied for qualitative complying 
with friction force )t(FT as the zero approximation only very estimative theory of Cou-
lomb´s friction  
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where fT is the coefficient of dry friction, )t(γ is the function with values 0.5;1;0;-1;-0.5 
with regard to momentaneous position of gear mesh at mesh line of gearing, that correspond-
ing  with the resulting stiffness function and with the sense of action of friction force (s. [7], 
p.17) and  0

32 ee +δ is the Kronecker´s symbol. 

2. To the patterns of damping in gear mesh of one branch of pseudoplanetary gearing 
system 

The analysis of dynamic features of solved special case of general non-linear parametric, 
i.e. time heteronomous, system with kinematic couplings – spur gears is in this contribution 
aimed to the investigation of reasons of forms of resonance characteristics of given mathe-
matical-physical model both by 

a) the conservative system in gear mesh* and 
b) non-conservative system. 
By reason that in such complicated parts of transmissive systems are still unknown neither 

approximate data about damping properties or about damping patterns both in gear mesh and 
also in the connection with fixation into gear rim and discs including hubs like unit, will be 
this damping simulated by means of different functional relation both in the area of gear ma-
terial at normal or inverse mesh incl. corresponding parts of gear rim and discs, and the influ-
ence of viscous damping in the area of technological gear backlash, i.e. the influence of oils in 
the phase of teeth profile contact loss. The lightening holes in discs of wheels also markedly 

 
* Under definition „conservative system“ will we here suppose the system which is depicted in Fig.1 and descri-
bed by the system of motion equations (1) without terms contained in eq. (2) which describe the linear and non-
linear damping forces. The friction force in gear mesh presents certain internal exciting component of system. In 
the contribution it is described by eq. (5) and creates also certain dissipation of energy in frame of definiton of 
conservative system. Despite of we keep it in the contribution because induces changes – alternations of sense of 
friction which are given not only by means of gear mesh geometry at the passing of mesh by the pitch point on 
the mesh line,but also by every change of relative motions of wheels with elastic bearings, accordingly as certain 
exciting motion source in system. 
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influence the damping, similarly the viscous damping of lubricant mediums is dependent on 
their temperature etc.  

In this study will be the influence of damping or the damping forces in system of motion 
equations (1) of given model of mechanic system represented – modelled by the terms in form 

 .,K))((sgn)()H,D,D()H,,(
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Combinations of damping in gear mesh conser-
vative 
system 
in gear 
mesh 

linear 
damping 
in gear 
mesh - L 

quadratic 
damping 
in gear 
mesh - Kv

cubic 
damping 
in gear 
mesh - Ku

L + Kv L + Ku L + Kv + 
Ku 

 
Kv + Ku 

k1 0 ×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××
k2 0 ×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××
k3 0 ×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××
k1m 0  ×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××
k 2m 0     ×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××
k3m 0        ×××× ×××× ×××× ×××× ×××× ×××× ×××× ××××
Symbol 
of mar-
ked so-
lution in 
figures 

� � � � � � � � � � � � � � � � � � � � � �

Variation a b c d e f g h

Note:  k1,2,3 … material damping in gear mesh; k1m,2m,3m …  viscous damping of lubricant mediums in the teeth 
backlash (without  contemplation of temperature influence;1 – linear, 2 – quadratic, 3 – cubic 

Tab. 1. Combinations of damping in gear mesh. 

The several proposed functions of linear and non-linear damping in gear mesh, eq. (6), for 
which have been solved the resonance and bifurcation parametric characteristics of given con-
servative and non-conservative homogeneous system  ( 0====),H,,b,a( nn τϕF , s. eq. (6)) with 
time variable stiffness C(t), eq. (3), in gear mesh are presented in Tab.1 and denoted by letter 
a … h, several combinations material or viscous damping in these variations subsequently 
with symbols � … for conservative system, � , �, � … for combination of  that which vari-
ation. 

All the resonance bifurcation characteristics have been solved for ;,;, 587905691 == κε
[kg]101233];[Nmm104 3-15 −== .,m.C redmax . The values of linear material damping 1k and 

linear viscous damping in tooth backlash mk1 are considered in all next given examples of so-
lution identical, i.e. s][Nmm95,3 -1

11 == mkk , which corresponds to proportional damping 
062.0== mββ .

By reason that non-conservative system tends for all the given damping variation to stable 
vibration again during the fifth revolution of gear wheels, all the resonance bifurcation char-
acteristics are shown in next figures for this revolution. This is related to conservative system 
which solution is unstable in whole range of revolutions. The exciting sources of vibration are 
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here considered parametric i.e. with time variable potential stiffness function C(t) in gear 
mesh and the function of friction force FT(t).

In relation to the limiting extent of the contribution we present in next only some proper-
ties of bifurcation resonance characteristics of system with variant damping from Tab.1. 

 

Fig. 2. Bifurcation resonance characteristics of the system with the linear variant damping  (�), 01 =≡ mm kk and  
(�), 00 11 >= mk;k in the area of frequency tuning 2160 .;.s ∈ν in the phases of normal gear mesh, impact 
effects and inverse mesh. 

Two bifurcation resonance characteristics of system from Fig.1 are illustrated in Fig.2. 
The first characteristics (Fig.2a) presents the conservative system (�) with damping coeffi-
cients 01 =≡ mm kk in the range of  mean tuning 2160 .;.s ∈ν of resulting stiffness C(t) in 
gear mesh, s. eq. (1), the second (Fig.2b) one presents non-conservative system with variant 
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damping (�), i.e. with damping coefficients 00 1 >= mm k;k . The system is damped in this case 
only in the phase of teeth profile contact loss, in the phase of normal mesh i.e. 0>)t(y is this 
system conservative. In the Fig.2 are color coded the area of normal gear mesh for 0≥)t(y ,
the area of the phase of teeth profile contact loss ( K)t(s),t(s)t(y < the tooth backlash) and 

the area of inverse mesh ( )t(s)t(y > ).  
 

In the Fig.2a is plotted the bifurcation characteristics of conservative system 
(�), 01 =≡ mm kk . That is about the mean tuning value 660.s ≈ν ordered, with sν increasing, 
characteristics, in the interval ( )9080 .;.s ∈ν hardly grows to infinitude and in the interval 

2190 .;.s ∈ν again decreases to the finite amplitude with chaotic character. The reason of the 
jump phenomena is caused by the resonance tuning at the corresponding stiffness level of the 
function C(t), alternatively C(t)(H1+H2), in the given case at the minimal stiffness level 

minC . In the vicinity of the jump 660.s ≈ν i.e. 78060.min =ν against 59850.max =ν , next then 
in the interval ( )9080 .;.s ∈ν is the solved system in the vicinity 850.s ≈ν at the stiffness level 

minC directly in the resonance 1=minν . For the relative motion 0<)t(y converts the resulting 
stiffness function C(t)  into the modify stiffness function C(t)(H1+H2) (H1,H2 … Heaviside´s 
function), where the phase shift of amplitude  y(t) towards the stiffness levels minC or maxC of 
the function C(t)(H1+H2) influences the time course interval of the amplitude size of the rela-
tive motion y(t). 

Fig. 3. Phase portraits });t(y);t('y{ sν
of the conservative system  
(�), 01 =≡ mm kk in the area of 
frequency tuning 2160 .;.s ∈ν in 
the phases of normal gear mesh, 
impact effects and inverse mesh. 
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The similar situation is also in the case of the bifurcation resonance characteristics of non-
conservative system with the linear variant damping (�), 00 11 >= mk;k , s. Fig.2b, where the 
energy dissipation i.e. the damping mk1 by the teeth contact loss in the gap influences the 
characteristics form. Qualitatively this case differs from the previous one, s. Fig.2a, primarily 
in this that the bifurcation resonance characteristics courses have more stable continuous 
character in the whole pursued interval 2160 .;.s ∈ν , particularly in the interval  

1180 .;.s ∈ν . The bifurcation disappearance in the vicinity 80.s ≈ν as well as the bifurcation 
 

issue in the vicinity 11.s ≈ν is influenced above all by the teeth contact loss i.e. by 
0<)t(y by the transition of function C(t)  onto the modify stiffness function C(t)(H1+H2) 

with three stiffness levels minC , maxC , C(t)  = 0. The damping and the teeth bounces with ef-
fect of the phase shift y(t) towards C(t) alternatively C(t)(H1+H2) change the time conditions 
for the amplitude progress y(t). The growth of the amplitude y(t) is influenced by the increas-
ing values minν alternatively maxν . The resonance amplitude decreases and till in the vicinity 

01.max ≈ν the bifurcation effects come up again. The stationary - steady state of the motion 
y(t) thus converts in consequence of the changes of the modify stiffness function 
C(t)(H1+H2) into the heterodyne motion. The illustration of these facts have be seen  from 
the phase portraits of the conservative system (Fig.3) and non-conservative one (Fig.4). The 
more detailed analysis of these phenomena is given in [6]. 

Fig. 4. Phase portraits });t(y);t('y{ sν
of the non-conservative system wi-
th the linear variant damping  
(�), 00 11 >= mk;k in the area of 
frequency tuning 2160 .;.s ∈ν in 
the phases of normal gear mesh 
and impact effects. 
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In conclusion of this paper we pointed at the phenomenon which is not caused by sources 
for the bifurcation issues, which are analysed in Fig.2. In Fig.5a it deals with “DETAIL X” 
with “bifurcation character”, which appears in the system with the variant damping 
(�), 00 11 >> mk;k . As is from Fig.5b evident, this fact is caused by the turning of points of 
discreteness A,B at the gear mesh skipping from one stiffness function level C(t) in the area 
of normal mesh on the other, [6]. These loops disappear in the vicinity 60.s ≈ν with the in-
creasing frequency tuning and only melt into the discreteness location A,B. The singular 
resonance amplitude jump location in the vicinity 8150.max ≈ν and the next progress of the 
resonance characteristics is evident from the phase portrait in Fig.5c. 
 

Fig. 5. Bifurcation resonance characteristics  and phase portraits });t(y);t('y{ sν of the non-conservative sys-

tem with the linear variant damping  (�), 00 11 >> mk;k in the area of frequency tuning 0160 .;.s ∈ν in 
the phases of normal gear mesh and impact effects in mesh. 

3.  Conclusion 

The mentioned exemplifications of damping influence bring out some partial results of 
analysis of the internal dynamics of strongly non-linear parametric systems which are excited 
purely parametrical i.e. by only mentioned modify resulting stiffness function )21)(( HHtC +
in the gear mesh. 

In conclusion can yet note, that the problems of analysis of parametric vibration in the sys-
tems with kinematic coupling – gear pairs is functional dependence of many parameters 
above all 
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- the size of tooth backlash )(ts , which is time variable for example in consequence of elas-
tic supporting of wheels and possible run-out of pitch circles meshing wheels, 

- the value of the coefficient of mesh duration ε which determines at which stiffness level 
(potential level) maxC or minC and in what time interval run the solution of relative motion 
in gear mesh, 

- the value of the amplitude modulation 1
maxmin

−= CCκ ,
- the resonance tuning of stiffness level at which the solution of relative motion just run, i.e. 

the relation between the exciting mesh frequency cω and eigenfrequencies 
1

minmax,
2

minmax,
−=Ω redmC ,

- the form of modify resulting stiffness function ),,( κεtHCCM ≡ in gear mesh in the 
framework of vibration of system with impact effects in mesh, where H is Heaviside’s 
function, 

- the phase shift of relative motion )(ty towards stiffness function ),,( κεtC alternatively 
towards its modify form ),,( κεtHCCM ≡ caused by linear and non-linear damping effects 
both the material in gear mesh and temperature dependent viscosity of lubricant in the area 
of tooth backlash. 
Detailed analysis of influence of parametric vibrations and influence of system parameters 

on the quality and quantity of amplitude of relative motion )(ty will be the theme of next re-
search, which is yet not finished. The closing results and principles will be published in next 
works. 
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