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Summary: Hard-strength training induces strength increasing and muscle damage, 
especially after eccentric contractions. Eccentric contractions also lead to muscle 
adaptation. Symptoms of damage after repeated bout of the same or similar 
eccentrically biased exercises are markedly reduced. The mechanism of this repeated 
bout effect is unknown. Since electromyographic (EMG) power spectra scale to lower 
frequencies, the adaptation is related to neural adaptation of the central nervous 
system (CNS) presuming activation of slow-non-fatigable motor units or 
synchronization of motor unit firing. However, the repeated bout effect is also 
observed under repeated stimulation, i.e. without participation of the CNS. The aim of 
this study was to compare the possible effects of changes in intracellular action 
potential shape and in synchronization of motor units firing on EMG power spectra. 
To estimate possible degree of the effects of central and peripheral changes, 
interferent EMG was simulated under different intracellular action potential shapes 
and different degrees of synchronization of motor unit firing. It was shown that the 
effect of changes in intracellular action potential shape and muscle fibre propagation 
velocity (i.e. peripheral factors) on spectral characteristics of EMG signals could be 
stronger than the effect of synchronization of firing of different motor units (i.e. 
central factors). 
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1. INTRODUCTION 
 
It has been well established that a single bout of unfamiliar, 
predominantly eccentric exercise caused symptoms of muscle 
damage such as strength loss, pain and tenderness [1-5]. However, 
eccentric contractions result also in protective adaptation expressed 
in markedly reduced symptoms of damage after repeated bout of the 
same or similar eccentrically biased exercises [4-9]. It has been 
shown that the repeated bout effect can last up to 6 months [10]. The 
mechanism of this repeated bout effect is unknown. 
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Some authors attributed the protective effect to neural adaptation 
[2, 4, 11, 12]. It is hypothesised that an increase in motor unit (MU) 
activation decreases the mechanical stress per active fibre in the 
second bout compared with the first one. Changes in motor unit 
activation between repeated bouts have been examined in humans 
using surface EMG [3, 9, 12]. It is considered [4] that theoretically 
an increase in the amplitude of the surface EMG signal relative to 
torque production in repeated bout would indicate a redistribution of 
contractile stresses among a greater number of fibres.  Such an 
increase in the amplitude characteristics of surface EMG signal was 
evident with eccentric strength training [13-15]. However, no change 
[3, 12] or even decrease [9] has been found in the amplitude 
characteristics of surface EMG between repeated eccentric bouts. 
Thus, the hypothesis on participation of greater number of fibres in 
repeated bout experiments was challenged. 
 
Then, another possible aspect of neural adaptation was also 
considered, namely, recruitment of more slow-twitch MUs or/and 
greater motor unit synchronization [4, 9, 11, 12]. They could explain 
scaling of power spectra of surface electromyographic (EMG) 
signals to lower frequencies during the repeated bout [9, 12, 16].  
 
The repeated bout effect, however, has been observed also with 
electrically stimulated eccentric contractions [5, 17, 18], i.e. without 
participation of the CNS. On the other hand, electrical stimulation 
creates conditions for predominant activation of fast-fatigable motor 
units. In addition, it has been found that the contraction intensity 
must be close to maximum in the initial bout in order to induce a 
protective effect when the repeated bout involves high intensity 
contractions [19]. When the contraction intensity is close to the 
maximum in the initial bout, the exercises produce changes in 
metabolites and ionic concentrations in muscle that could start some 
adaptive processes in muscle fibres. On the other hand, these 
changes in metabolites and ionic concentrations can affect the 
intracellular action potential (IAP) shape including the increasing in 
depolarizing after-potential and reduction in muscle fibre 
propagation velocity (MFPV). It is not clear whether the decrease in 
the frequency content of the EMG signal in the repeated bout is due 
to recruitment of large number of slow-twitch motor units and/or 
increased motor unit synchronization [4, 8, 20] or due to lengthening 
of IAP profile. 
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Thus, the question arises whether it is possible to have an adaptation 
at the muscle, i.e. peripheral, level. The aim of the study was to 
compare the possible effects of changes in IAP profile and in 
synchronization of different MU firing on power spectra of EMG 
signals. 
 
2. METHODS 
 
The simulations of interferent EMG signals under changes in motor 
unit synchronization, and in IAP shape (Fig. 1) and MFPV (4m/s or 
3.05m/s) typical for normal and fatigued muscles were described 
elsewhere [21]. 

 
Fig. 1 Shape of IAP for normal (solid line) and fatigue (dotted line) 

conditions. Only the first 5 ms of the signal durations are shown. 
 
The muscle was assumed to have a circular area (20 mm diameter). 
It comprised 125 MUs grouped in 4 MU types – slow-twitch 
resistant to fatigue, fast-twitch resistant to fatigue, fast-twitch 
intermediate, and fast-twitch fatigable. MU territories also had 
circular shapes. MUs were spread randomly with uniform 
distribution within the muscular area. Adjacent MU territories 
overlapped. Muscle fibres were distributed uniformly within each 
MU territory. The mean length of the muscle fibres was 123 mm 
with longer semi-length of 63 mm, i.e. end-plates positions were 
asymmetrical with respect to fibre-ends, like in human m. biceps 
brachii. Ends of the fibres were scattered normally within 18 mm 
range. The overall width of the end-plate region was 30 mm. For 
each individual MU, the end-plate region width was set to 10 mm. 
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Maximal desynchronization (due to different length of nerve 
terminals and synaptic delays) for all the fibres was set to 750 µs. A 
point monopolar recording electrode was located above the longer 
semi-length, 30 mm away from the middle of the end-plate region. 
The electrode distance from the muscle axis was 0 or 15 mm for 
intramuscular and surface EMG detection, respectively. The volume 
conductor was anisotropic (Kan=5). Median frequencies of intra-
muscular and surface EMG signals were calculated for 7 “subjects” 
that were simulated through 7 random sets of parameters defining the 
muscle. 
 
3. RESULTS AND DISCUSSION 
 
The synchronization in MU activation leads to reduction of the 
median frequencies (Figs. 2 and 3). The relative effect of synchron-
ization is greater for intramuscular EMG detection (Y=0mm), 
especially under IAP shape and MFPV typical for fatigue conditions 
(Fig. 3). However, EMG signals change their frequency content 
considerably also as a result of the changes in IAP shape and MFPV 
typical for fatigue conditions. The surface EMG median frequency 
decreased to 60%, while that for intramuscular EMG to 32% of the 
values obtained for normal IAP shape and MFPV.  

 
Fig. 2 Relative changes in median frequency (Fmed) with increasing 

synchronization (PSI) of different MU firing for normal IAP. 
Different marks are for intramuscular (square, Y=0mm) and surface 

(circle, Y=15mm) EMG detection. 
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Fig. 3 Relative changes in median frequency (Fmed) with increasing 

synchronization (PSI) of different MU firing for IAP typical for 
fatigued muscle. Different marks are for intramuscular (square, 

Y=0mm) and surface (circle, Y=15mm) EMG detection. 
 
An increase in the duration of MU potentials could explain the 
differences.  MUP becomes wider with an increase in mean distance 
between the active fibres and electrode (Y=0 mm and Y=15 mm) 
and with changes in IAP shape (Fig. 1) and MFPV typical for fatigue 
conditions. Under surface detection mainly used in sport and fitness 
studies, the relative effect of changes in IAP shape and MFPV can be 
stronger (~40%) than the effect of possible synchronization in MU 
firing (less than 25%, see Figs. 2 and 3, Y=15mm). Thus, the 
decrease in the frequency content of EMG signal during the repeated 
bout [9, 12, 16] could also be due to peripheral adaptation in muscle 
fibres. 
 
Skeletal muscle fibres exhibit remarkable adaptive capabilities in 
response to altered activity. Whereas endurance training leads to 
minor changes in skeletal muscle mass, strength training induces 
marked hypertrophy of exercising muscles. During high-intensity 
contractions, there is an increase of resting Ca2+ concentration in 
active muscle fibres [22-28]. This means that the amount of Ca2+ 

released from sarcoplasmic reticulum (SR) and influx of Ca2+ in 
muscle fibres is greater than Ca2+-uptake by the SR [29-31]. Increase 
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of resting Ca2+ concentration is larger in fast-glycolytic fibres [30-
32]. 
 
On the other hand, the increased resting Ca2+ concentration leads to 
changes in IAP shape and MFPV [33,34]. The result of the present 
study shows that these changes could explain the decrease in the 
frequency content of the surface EMG signal in the repeated bout. 
 
4. CONCLUSION 
 
The effect of changes in IAP shape and MFPV can overcome that of 
synchronization of motor unit firing. 
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