Bartosz ZióŁko*, Jakub GaŁka*, Mariusz ZióŁko*

POLISH PHONEME STATISTICS OBTAINED ON LARGE SET OF WRITTEN TEXTS

The phonetical statistics were collected from several Polish corpora. The paper is a summary of the data which are phoneme n-grams and some phenomena in the statistics. Triphone statistics apply context-dependent speech units which have an important role in speech recognition systems and were never calculated for a large set of Polish written texts. The standard phonetic alphabet for Polish, SAMPA, and methods of providing phonetic transcriptions are described.

Keywords: NLP, triphone statistics, speech processing, Polish

STATYSTYKI POLSKICH FONEMÓW UZYSKANE Z DUŻYCH ZBIORÓW TEKSTÓW

W niniejszej pracy zaprezentowano opis statystyk głosek języka polskiego zebranych z dużej liczby tekstów. Triady głosek pełnia istotną rolę w rozpoznawaniu mowy. Omówione obserwacje dotyczace zebranych statystyk i przedstawiono listy najpopularniejszych elementów.

Słowa kluczowe: przetwarzanie jezyka naturalnego, statystyki głosek, przetwarzanie mowy

1. Introduction

The authors uses the Cyfronet, high performance computers to process linguistic data in aim to construct the Polish language models. The results will be applied to a large vocabulary continuous speech recognition system (LVCSR). Natural language processing (NLP) faces problems of data sparsity very often. The quality of language models is strongly dependant on the amount of text corpora available during the training. This is why, there is a trade-off of quality and time spent on calculations. The high performance computers facilitate obtaining the linguistic rules from the huge amount of texts.

Statistical linguistics at the word and sentence level were under considerations for several languages [1, 2]. However, similar research on phonemes is rare [3, 4, 5]. The frequency of phonetic units appearance is an important topic itself for every

[^0]language. It can also be used in several speech processing applications, for example modelling in LVCSR or coding and compression. Models of triphones which are not present in a training corpus of a speech recogniser can be prepared using phonetic decision trees [6]. The list of possible triphones has to be provided for a particular language along with phonemes' categorisation. The triphone statistics can also be used to generate hypotheses used in recognition of out-of-dictionary words including names and addresses.

We have already presented some similar statistics [7], which were collected from around 10000000 words of mainly spoken language. Data collected from a few much larger corpora: Rzeczpospolita corpus (containing articles from a well known in Poland, everyday newspaper of quality and type like Times or Guardian), literature corpus and Internet encyclopedia corpus are presented in this work combined statistical. The presented statistics are the biggest and most representative statistics of phonemes for Polish. They were collected from over 250000000 words.

2. Description of a problem solution

The problem is to find triphone statistics for Polish language. Our first attempt to this task was already published [7]. The task was conducted on a corpus containing Parliament transcriptions mainly (around 50 megabytes of text). It was repeated on Mars, a Cyfronet computer cluster, for data of around 2 gigabytes.

Context-dependent modelling can significantly improve speech recognition quality. Each phoneme varies slightly depending on its context, namely neighbouring phonemes due to a natural phenomena of coarticulation. It means that there are no clear boundaries between phonemes and they overlap each other. It results in interference of acoustical properties. Speech recognisers based on triphone models rather than phoneme ones are much more complex but give better results [9]. Let us present examples of different ways of transcribing word above. Phoneme model is ax b ah v while the triphone one is ${ }^{*}-a x+b a x-b+a h b-a h+v a h-v+^{*}$. In case a specific triphone is not present, it can be replaced by a phonetically similar triphone (phonemes of the same phonetic group interfere in similar way with their neighbours) using phonetic decision trees [6] or diphones (applying only left or right context) [10].

3. Methods, software and hardware

Sophisticated rules and methods are necessary to obtain the phonetic information from an orthographic text-data. Simplifications could cause errors [11]. Transcription of text into phonetic data was applied first by PolPhone [8]. The extended SAMPA phonetic alphabet was applied with 39 symbols (plus space) and pronunciation rules for cities Poznań and Kraków. We used our own digit symbols corresponding to SAMPA symbols, instead of typical ones, to distinguish phonemes easier while analysing received phonetic transcriptions.

Table 1
Phonemes in Polish (SAMPA [8])

SAMPA	example	transcr.	occurr.	\%	\% [5]
\#		\#	283296436	15.256	4.7
a	pat	pat	151160947	8.141	9.7
e	test	test	146364208	7.882	10.6
o	pot	pot	141975325	7.646	8.0
t	test	test	68851605	3.708	4.8
r	ryk	rIk	68797073	3.705	3.2
n	nasz	naS	68056439	3.665	4.0
1	PIT	pit	67212728	3.620	3.4
j	jak	jak	61265911	3.299	4.4
I	typ	tIp	58930672	3.174	3.8
v	wilk	vilk	58247951	3.137	2.9
s	syk	sIk	54359454	2.927	2.8
u	puk	puk	51503621	2.774	2.8
p	pik	pik	51228649	2.759	3.0
m	mysz	mIS	48760010	2.626	3.2
k	kit	kit	44892420	2.418	2.5
d	dym	dIm	44406412	2.391	2.1
1	luk	luk	40189121	2.164	1.9
n'	koń	kon'	34092610	1.84	2.4
z	zbir	zbir	30924282	1.665	1.5
w	łyk	wIk	30194178	1.626	1.8
f	fan	fan	25308167	1.363	1.3
g	gen	gen	24910462	1.341	1.3
t^s	cyk	t^sIk	24789080	1.335	1.2
b	bit	bit	24212663	1.304	1.5
x	hymn	xImn	21407209	1.153	1.0
S	szyk	SIk	20756164	1.118	1.9
s'	świt	s'vit	17220321	0.927	1.6
Z	żyto	ZIto	16409930	0.884	1.3
$t^{\wedge} \mathrm{S}$	czyn	t^{\wedge} SIn	15429711	0.831	1.2
t^s'	ćma	t^s'ma	11945381	0.643	1.2
w~	ciȩ̧ża	ts'ow~Za	10814216	0.582	0.6
c	kiedy	cjedy	10581296	0.570	0.7
$\mathrm{d}^{\wedge} \mathrm{z}$ '	dźwig	d^z'vik	9995596	0.538	0.7
N	pȩk	peNk	4880260	0.262	0.1
$\mathrm{d}^{\wedge} \mathrm{z}$	dzwoń	d`zvon’	4212857	0.227	0.2
J	giełda	Jjewda	3680888	0.198	0.1
z'	źle	z'le	3390372	0.183	0.2
j~	wiȩ́z	vjej~s'	1527778	0.082	0.1
$\mathrm{d}^{\wedge} \mathrm{Z}$	dżem	$\mathrm{d}^{\wedge} \mathrm{Zem}$	693838	0.037	0.1

Stream editor (SED) was applied to change original phoneme transcriptions into digits with the following script:

$\mathrm{s} / \# \# / \# / \mathrm{g}$	$\mathrm{s} / \mathrm{w} \sim / 2 / \mathrm{g}$	$\mathrm{s} / \mathrm{d}^{\wedge} \mathrm{z} / 6 / \mathrm{g}$
$\mathrm{s} / \mathrm{t}^{\wedge} \mathrm{s}^{\prime} / 8 / \mathrm{g}$	$\mathrm{s} / \mathrm{s}^{\prime} / 5 / \mathrm{g}$	$\mathrm{s} / \mathrm{t}^{\wedge} \mathrm{S} / 0 / \mathrm{g}$
$\mathrm{s} / \mathrm{d}^{\wedge} \mathrm{z}^{\prime} / \mathrm{X} / \mathrm{g}$	$\mathrm{s} / \mathrm{z}^{\prime} / 4 / \mathrm{g}$	$\mathrm{s} / \mathrm{d}^{\wedge} \mathrm{Z} / 9 / \mathrm{g}$
$\mathrm{s} / \mathrm{j} \sim / 1 / \mathrm{g}$	$\mathrm{s} / \mathrm{t}^{\wedge} \mathrm{s} / 7 / \mathrm{g}$	$\mathrm{s} / \mathrm{n}^{\prime} / 3 / \mathrm{g}$.

Statistics can now be simply collected by counting the number of occurrences of each phoneme, phoneme pair, and phoneme triple in an analysed text, where each phoneme is just a symbol (single letter or a digit). Matlab was used to analyse the phonetic transcription of the text corpora. The calculations were conducted on Mars in Cyfronet, Krakow. We analysed more than 2 gigabytes of data. Text data for Polish are still being collected and will be included in the statistics in the future.

Mars is a cluster for calculations with following specification: IBM Blade Center HS21 - 112 Intel Dual-core processors, 8 GB RAM/core, 5 TB disk storage and 1192 Gflops. It operates using Red Hat Linux. Mars uses Portable Batch System (PBS) to queue tasks and split calculation power to optimise times for all users. A user have to declare expected time of every task. In example, a short time is up to 24 hours of calculations and a long one is up to 300 hours. Tasks can be submitted by simple commands with scripts and the cluster starts particular tasks when calculation resources are available. One process needs around 100 hours to analyse 45 megabytes text file.

3.1. Grapheme to phoneme transcription

Two main approaches are used for the automatic transcription of texts into phonemic forms. The classical approach is based on phonetic grammatical rules specified by human [12] or machine learning process [13]. The second solution utilises graphemicphonetic dictionaries. Both methods were used in PolPhone to cover typical and exceptional transcriptions. Polish phonetic transcription rules are relatively easy to formalise because of their regularity.

The necessity of investigating large text corpus pointed to the use of the Polish phonetic transcription system PolPhone [14, 8]. In this system, strings of Polish characters are converted into their phonetic SAMPA representations. Extended SAMPA (Table 1) is used, to deal with nuances of Polish phonetic system. The transcription process is performed by a table-based system, which implements the rules of transcription. Matrix $T \in S^{m \times n}$ is a transcription table, where S is a set of strings and the cells meet the requirements listed precisely in [8]. The first element $t_{1,1}$ of each table contains currently processed character of the input string. For every character (or character substring) one table is defined. The first column of each table $\left\{t_{i, 1}\right\}_{i=1}^{m}$ contains all possible character strings that could precede currently transcribed character. The first row $\left\{t_{1, j}\right\}_{j=1}^{n}$ contains all possible character strings that can proceed a currently transcribed character. All possible phonetic transcription results are stored in the remaining cells $\left\{t_{i, j}\right\}_{i=2, j=2}^{m, n}$. A particular element $t_{i, j}$ is chosen as a transcription result, if $t_{i, 1}$ matches the substring preceding $t_{1,1}$ and $t_{1, j}$ matches the substring
proceeding $t_{1,1}$. This basic scheme is extended to cover overlapping phonetic contexts. If more then one result is possible, then longer context is chosen for transcription, which increases its accuracy. Exceptions are handled by additional tables in the similar manner.

Specific transcription rules were designed by a human expert in an iterative process of testing and updating rules. Text corpora used in design process consisted of various sample texts (newspaper articles) and a few thousand words and phrases including special cases and exceptions.

3.2. Corpora used

Several newspaper articles in Polish were used as input data in our experiment. They are from Rzeczpospolita newspaper from years 1993-2002. They cover mainly political and economic issues, so they contain quite many names and places including foreign ones, what may influence the results slightly. In example, q appeared once, even though it does not exist in Polish. In total, 879 megabytes of text, which corresponds to around 110000000 words, were included in the process.

Several hundreds of thousands of Internet articles in Polish made another corpus. They are all from a high quality website, where all content is reviewed and controlled by moderators. They are of encyclopedia type, so they also contain many names including foreign ones. In total, 754 megabytes (around 94000000 words) were included in the process.

The third corpus consists of several literature books in Polish. Some of them are translations from other languages, so they also contain foreign words. The corpus includes 490 megabytes (around 61000000 words) of text.

4. Results

The total number of around 1856900000 phonemes were analysed. They are grouped into 40 categories (including space). Actually, one more, namely q, was detected, which appeared in a foreign name. Since q is not a part of the Polish alphabet, it was not included in the phoneme distribution presented in Table 1. Space (noted as \#) frequency was 15.26%. An average number of phonemes in words is 6.6 including one space. Exactly 1271 different diphones (Fig. 1 and Table 2) for 1560 possible combinations were found, which constitutes 81%.

21961 different triphones (see Table 3) were detected. Combinations like ***, where * is any phoneme and \# is a space were removed. These triples should not be considered as triphones because the first and the second ${ }^{*}$ are in two different words. The list of the most common triphones is presented in Table 3. Assuming 40 different phonemes (including space) and subtracting mentioned *** combinations, there are 62479 possible triples. We found 21961 different triphones. It leads to a conclusion that around 35% of possible triples were detected as triphones, the very most of them at least 10 times.

Fig. 1. Frequency of diphones in Polish (each phoneme separately)

Fig. 2. Space of triphones in Polish

Table 2
Most common Polish diphones

diphone	no. of occurr.	$\%$	diphone	no. of occurr.	$\%$	
e\#	43557832	2.346	on	12854255	0.692	
a\#	38690469	2.084	\#k	12529124	0.675	
\#p	31014275	1.671	ta	12449178	0.671	
je	28499593	1.535	\#n	12316393	0.663	
i\#	24271474	1.307	va	11413878	0.615	
o\#	23552591	1.269	ko	11168294	0.602	
\#v	20678007	1.114	\#i	10515253	0.566	
y\#	19018563	1.024	aw	10514514	0.566	
na	18384584	0.990	u\#	10379234	0.559	
\#s	17321614	0.933	\#f	10265162	0.553	
po	16870118	0.909	\#b	10167482	0.548	
\#z	16619556	0.895	\#r	10137129	0.546	
ov	16206857	0.873	ja	10097444	0.544	
st	15895694	0.856	ar	9818127	0.529	
n'e	14851771	0.800	x\#	9811211	0.528	
\#o	14104742	0.760	do	9779666	0.527	
\#t	13910147	0.749	er	9724692	0.524	
ra	13713928	0.739	te	9618998	0.518	
\#m	13657073	0.736	\#j	9398210	0.506	
ro	13597891	0.732	v\#	9251288	0.498	
\#d	13103398	0.706	\#a	9143021	0.492	
m\#	12968346	0.698	to	9043529	0.487	

Young [9], estimates that in English, 60-70\% of possible triples exist as triphones. However, in his estimation there is no space between words, what changes the distribution a lot. Some triphones may not occur inside words but may occur at combinations of an end of one word and the beginning of another. We started to calculate such statistics without an empty space as the next step of our research. It is also expected that there are different numbers of triphones for different languages. Some values are similar to statistics given by Jassem a few decades ago and reprinted in [5]. We applied computer clusters so our statistics were calculated for much more data and they are more represantative.

Fig. 1 shows some symmetry but the probability of diphone $\alpha \beta$ is usually different than probability of $\beta \alpha$. The mentioned quasi symmetry results from the fact that high values of α probability and (or) β probability often gives high probability of products $\alpha \beta$ and $\beta \alpha$ as well. Similar effects can be observed for triphones. Data presented in this paper illustrate the well-known fact that probabilities of triphones (see Table 3) cannot be calculated from the diphone probabilities (see Table 2). The conditional probabilities between diphones have to be known.

Table 3
Most common Polish triphones

triphone	no. of occurr.	\%	triphone	no. of occurr.	\%
\#po	12531515	0.675	wa\#	3262204	0.176
\#na	9587483	0.516	do\#	3210532	0.173
n'e\#	9178080	0.494	\#ma	3209675	0.173
na\#	8588806	0.463	jon	3082879	0.166
ow~\#	6778259	0.365	e\#z	3054967	0.165
\#do	6751495	0.364	a\#v	3028787	0.163
\#za	6429379	0.346	\#z\#	2928164	0.158
ej\#	6390911	0.344	ka\#	2871230	0.155
je\#	6388032	0.344	\#sp	2818515	0.152
\#pS	6173458	0.333	ont^s	2754934	0.148
go\#	5990895	0.323	e\#s	2737210	0.147
\#i\#	5945409	0.320	i\#p	2725414	0.147
ego	5742711	0.309	o\#p	2719121	0.146
ova	5560749	0.300	\#Ze	2701194	0.145
vje	5433154	0.293	\#ja	2670034	0.144
\#v\#	5317078	0.286	ta\#	2618595	0.141
\#je	5311716	0.286	ent	2612166	0.141
\#n'e	5292103	0.285	\#to	2567269	0.138
sta	4983295	0.268	to\#	2557630	0.138
\#s'e	4861117	0.262	pro	2548979	0.137
yx\#	4858960	0.262	pra	2539424	0.137
\#vy	4763697	0.257	\#pa	2503153	0.135
s'e\#	4746280	0.256	\#re	2502443	0.135
pSe	4728565	0.255	ost	2490304	0.134
e\#p	4727840	0.255	\#ty	2452830	0.132
\#f $\#$	4660745	0.251	t^se\#	2436864	0.131
em\#	4514478	0.243	\#mj	2397741	0.129
\#pr	4428341	0.239	ku\#	2383231	0.128
\#ko	4216459	0.227	e\#m	2379510	0.128
$\mathrm{a} \# \mathrm{p}$	4155732	0.224	ja\#	2353638	0.127
ci\#	3965693	0.214	e\#o	2343622	0.126
ne\#	3958262	0.213	a\#s	2336272	0.126
cje	3916595	0.211	\#vj	2329962	0.125
n'a\#	3888279	0.209	\#mo	2320091	0.125
\#ro	3785754	0.204	nyx	2299719	0.124
mje	3760340	0.203	os't^s'	2295365	0.124
\#st	3745320	0.202	ovy	2284782	0.123
aw\#	3596680	0.194	sci	2282887	0.123
ny\#	3580425	0.193	ove	2262277	0.122
\#te	3449304	0.186	li\#	2255403	0.121
e\#v	3313798	0.178	ovj	2251294	0.121
Ze\#	3309352	0.178	mi\#	2243432	0.121
ym\#	3300273	0.178	uv\#	2236507	0.120

Fig. 3. Phoneme occurrences distribution

Besides the frequency of triphone occurrence, we are also interested in distributions of their frequencies. This is presented in logarithmic scale in Fig. 3. We received another distribution than in the previous experiment [7] because larger number of words were analysed. We have found around 500 triphones which occurred once and around 300 which occurred two or three times. Then every occurrence up to 10 happened for 100 to 150 triphones. It supports a hypothesis that one can reach a situation, when new triphones do not appear and a distribution of occurrences is changing as a result of more data being analysed. Some threshold can be set and the rarliest triphones can be removed as errors caused by unusual Polish word combinations, acronyms, slang and other variations of dictionary words, onomatopoeic words, foreign words, errors in phonisation and typographical errors in the text corpus.

Entropy:

$$
\begin{equation*}
H=-\sum_{i=1}^{40} p(i) \log _{2} p(i) \tag{1}
\end{equation*}
$$

where $p(i)$ is a probability of a particular phoneme, is used as a measure of the disorder of a linguistic system. It describes how many bits in average are needed to describe phonemes. According to Jassem in [5] entropy for Polish is 4.7506 bits/phoneme. From our calculations entropy for phonemes is 4.6335 , for diphones 8.3782 and 11.5801 for triphones.

5. Conclusions

250000000 words from different corpora: newspaper articles, Internet and literature were analysed. Statistics of Polish phonemes, diphones and triphones were created. They are not fully complete, but the corpora were large enough, that they can be successfully applied in NLP applications and speech processing. The collected statistics are the biggest for Polish of this type of linguistic computational knowledge. Polish is
one of most common Slavic languages. It has several different phonemes than English and the statistics of phonemes are also different.

Acknowledgements

This work was supported by MNISW OR00001905.

References

[1] Agirre E., Ansa O., Martínez D., Hovy E.: Enriching wordnet concepts with topic signatures, Procceedings of the SIGLEX Workshop on WordNet and Other Lexical Resources: Applications, Extensions and Customizations, 2001
[2] Bellegarda J. R.: Large vocabulary speech recognition with multispan statistical language models, IEEE Transactions on Speech and Audio Processing, vol. 8, no. 1, pp. 76-84, 2000
[3] Denes P. B.: Statistics of spoken English, The Journal of the Acoustical Society of America, vol. 34, pp. 1978-1979, 1962
[4] Yannakoudakis E. J., Hutton P. J.: An assessment of n-phoneme statistics in phoneme guessing algorithms which aim to incorporate phonotactic constraints, Speech Communication, vol. 11, pp. 581-602, 1992
[5] Basztura C.: Rozmawiać z komputerem, (Eng. To speak with computers). Format, 1992
[6] Young S., Evermann G., Gales M., Hain T., Kershaw D., Moore G., Odell J., Ollason D., Povey D., Valtchev V., Woodland P.: HTK Book. UK: Cambridge University Engineering Department, 2005
[7] Ziółko B., Gałka J., Manandhar S., Wilson R., Ziółko M.: Triphone statistics for polish language, Proceedings of 3rd Language and Technology Conference, 2007
[8] Demenko G., Wypych M., Baranowska E.: Implementation of grapheme-tophoneme rules and extended SAMPA alphabet in Polish text-to-speech synthesis, Speech and Language Technology, PTFon, Poznań, vol. 7, no. 17, 2003
[9] Young S.: Large vocabulary continuous speech recognition: a review, IEEE Signal Processing Magazine, vol. 13(5), pp. 45-57, 1996
[10] Rabiner L., Juang B. H.: Fundamentals of speech recognition. New Jersey: PTR Prentice-Hall, Inc., 1993
[11] Ostaszewska D., Tambor J.: Fonetyka i fonologia wspólczesnego jezyka Polskiego (eng. Phonetics and phonology of modern Polish language). PWN, 2000
[12] Steffen-Batóg M., Nowakowski P.: An algorithm for phonetic transcription of ortographic texts in Polish, Studia Phonetica Posnaniensia, vol. 3, 1993
[13] Daelemans W., Bosch, van den, A.: Language-independent data-oriented grapheme-to-phoneme conversion, Progress in Speech Synthesis, New York: Springer-Verlag, 1997
[14] Jassem K.: A phonemic transcription and syllable division rule engine, Onomastica-Copernicus Research Colloquium, Edinburgh, 1996

[^0]: * Department of Electronics, AGH University of Science and Technology Krakow, Poland,
 \{bziolko,jgalka,ziolko\}@agh.edu.pl

