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Abstract. Water management authorities need detailed information about each component of the hydrolog-
ical balance. This document presents a method to estimate the evapotranspiration rate, initialized in order to
obtain the reference crop evapotranspiration rate (ET0). By using an Optimal Interpolation (OI) scheme, the
hourly observations of several meteorological variables, measured by a high-resolution local meteorological
network, are interpolated over a regular grid. The analysed meteorological fields, containing detailed meteoro-
logical information, enter a model for turbulent heat fluxes estimation based on Monin-Obukhov surface layer
similarity theory. The obtainedET0 fields are then post-processed and disseminated to the users.

1 Introduction

Lombardia’s public environmental agency (ARPA Lombar-
dia) has undertaken a number of projects aimed at improving
knownledge of the water budget in order to support public
authorities involved in water management. This document
presents a procedure to estimateET0, defined byAllen et al.
(1998) as the evapotranspiration rate for the hypothetical ref-
erence crop (short grass with an ample supply of water).

ET0 is a climatic parameter computed using meteorolog-
ical data only, without considering crop characteristics and
soil factors.

The procedure’s outputs areET0 hourly fields (unit
mm h−1). The estimated evapotranspiration rate can be ag-
gregated in time and space. Finally, theET0 estimates are
published in a hydrological bulletin, which is disseminated
to the users.

The source of meteorological information is ARPA Lom-
bardia’s high-resolution meteorological network. The mete-
orological variables used are hourly averaged values of tem-
perature, relative humidity, wind components, solar global
radiation and hourly cumulated precipitation values. The
observing system is composed of about three hundred au-
tomated weather stations. The stations spatial distribution
presents strong inhomogeneities, moreover the sensor equip-
ment vary from station to station. As an example, Fig.1
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shows the spatial distribution of thermometers and pyra-
nometers.

The spatial domain of interest consists of the part of
Po plain inside Lombardia’s administrative boundaries (see
fields in Figs.4 and5). Elevations range from 10 m (in the
south-eastern part) to less than 300 m (in the northern part).
However, all the information available is used in theET0 es-
timation procedure in order to reduce border effects.

Observations from the meteorological network are inter-
polated over a regular grid with 1.5 km of resolution. For
all variables except solar radiation, a statistical interpolation
scheme is applied. At present, the interpolation of the hourly
averaged solar global radiation is performed with a simple in-
verse distance weighting method, Fig.4 shows an example.
An effort is made to prevent observations affected by gross
errors from entering the interpolation procedure.

It is worthwhile remarking that the grid spatial resolution
accounts for orographic details, but the interpolated fields
can correctly reproduce phenomena resolved by the spatial
resolution of the observational network, i.e. tenths of kilo-
meters.

Once obtained the meteorological fields, a model for tur-
bulent heat fluxes estimation is applied at each grid point.
The model setup is such that the obtained latent heat flux co-
incides with the energetic content associated toET0.

In this document, Sect.2 describes the statistical interpo-
lation scheme, Sect.3 presents the procedure for turbulent
fluxes estimation and Sect.4 describes how the procedure is
adapted to estimateET0.
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Figure 1. Orography and station locations in the Lombardia do-
main. Triangles: thermometers. Circles: pyranometers. The bold
black line is the administrative boundary. The inset shows the geo-
graphical location of Lombardia, longitude 8.5 to 11.5◦ E, latitude
44.6 to 45.7◦ N

2 Statistical interpolation

The statistical interpolation scheme is an implementation of
the Optimal Interpolation (OI;Gandin, 1963). OI produces
the best (in the sense of minimum analysis error variance),
linear, unbiased estimate of the atmospheric field. The sta-
tistical interpolation scheme is applied to hourly averaged
values of temperature, relative humidity, wind and to hourly
cumulated precipitation values. OI filters out the unresolved
spatial scales. OI schemes often use a model-derived first
guess, but the implementation reported here uses a back-
ground field built by observations detrending, thus the pre-
sented OI implementations are model-independent. Figure2
shows temperature and relative humidity fields.

The description of the OI implementation for temperature
and relative humidity can be found inUboldi et al. (2008)
while in Lussana et al.(2009) the application to other vari-
ables is discussed and several test cases are reported. At
present, with respect to that work, here the OI implemen-
tation for precipitation uses raingauges measurements only,
without the integration of radar-derived precipitation esti-

Figure 2. 28 July 2006, 18:00 UTC+1. Top: temperature (◦C).
Bottom: relative humidity (%).

mates. The background field is set to zero everywhere and
the OI parameters maintain the analysis field as close as pos-
sible to the observations: an example is shown in Fig.3. The
precipitation analysis plays an important role in theET0 es-
timation procedure, but only as a trigger: where the analyzed
field of precipitation has a value greater than 1 mm h−1 the
ET0 value is not computed. In the future, the integration
of raingauges with radar-derived precipitation estimates will
allow a better definition of the portion of the domain not in-
terested by precipitation.
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Figure 3. 28 July 2006, 18:00 UTC+1. Precipitation rate (mm h−1).
The observed values are reported at station locations.

Figure 4. 28 July 2006, 18:00 UTC+1. Solar global radiation
(W m−2).

3 Turbulent fluxes estimation

This Section presents a procedure to determine the surface
moisture flux, using single-level meteorological data only.
The moisture flux is intended as representative of an area
rather than of a single roughness element. Due to the three-
dimensional nature of turbulent vortices, the assumption of

Figure 5. 28 July 2006. Daily cumulatedET0 field (mm day−1) for
the spatial domain of interest.

horizontal representativeness also imposes a constraint on the
height above the ground where fluxes must be evaluated.

In fact, from the general Atmospheric Boundary Layer
(ABL) theory, the Surface Layer (SL) (about 10% of the
ABL vertical extension) can be divided in Roughness Sub-
Layer (RSL) and Inertial Sub-Layer (ISL) (Garratt, 1994).
The RSL – the lower portion of the SL – contains the canopy
layer. On the one hand, turbulence in the RSL is influ-
enced by individual roughness elements and the turbulence-
related variables exhibit strong gradients in the vertical di-
rection. On the other hand, turbulence in the ISL is influ-
enced by the integrated effect of many roughness elements,
thus the turbulence-related variables are representative of a
larger area and the values of the turbulent fluxes are assumed
to be constant with height. Most of Lombardia’s automatic
stations are located within the ISL (in practice, only urban
stations lie within the RSL). The meteorological fields enter-
ing the procedure presented in the current session refer then
to the ISL.

Based on the outlined structure of the SL, the evapotran-
spiration rate is defined as the net rate of passage of water
vapor across a horizontal reference plane inside the ISL.

Turbulence is the most efficient mechanism to exchange
momentum, energy and mass inside the ABL. In the frame-
work of turbulence theory it is more convenient to deal with
the energetic content associated to the moisture flux: the tur-
bulent latent heat fluxHe (W m−2). The evaporation rateE
(mm h−1) can be obtained by using:

E ∝
He

λρw
(1)
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whereλ is the latent heat of evaporation andρw is the density
of water.

The main assumptions taken for this work are summarized
in the following.

In order to make turbulence more tractable, without loos-
ing its main features, it is customary to assume that, locally,
the ergodic condition applies (horizontal homogeneity and
stationarity for the averaged values of the meteorological
variables). Furthermore, it is assumed that the wind vanish
at the aerodynamic roughness lengthz0 – the bottom RSL
boundary – as prescribed by the no-slip condition. Espe-
cially in case of tall canopies, also the zero-plane displace-
ment heightd must be introduced. Finally, the presence of
ice and liquid water is not considered, then phase transitions
are not taken into account.

The two turbulent heat fluxes, latent,He, and sensible,H0,
are related to the meteorological variables using the so-called
scaling parameters:

H0 = −ρcpu∗T∗ (2)

He = −ρλu∗q∗ (3)

Whereρ is the air density,cp is the specific heat at con-
stant pressure;u∗, T∗ andq∗ are the scaling parameters for
momentum, temperature and specific humidity, respectively.
These last three parameters are (vertically) constant through
all the ISL.

In analogy withZdunkowski and Bott(2003), the Monin-
Obukhov Similarity Theory (MOST) for the SL allows com-
puting the scaling parameters through the iterative procedure:

u =
u(n)
∗

k

[
ln

z− d
z0
− ΨM

(
z− d

L(n−1)
∗

)
+ ΨM

(
z0

L(n−1)
∗

)]
(4)

T − T0 =
T(n)
∗

k

[
ln

z− d
z0
− ΨH

(
z− d

L(n−1)
∗

)
+ ΨH

(
z0

L(n−1)
∗

)]
(5)

q− q0 =
q(n)
∗

k

[
ln

z− d
z0
− ΨH

(
z− d

L(n−1)
∗

)
+ ΨH

(
z0

L(n−1)
∗

)]
(6)

L(n−1)
∗ =

T
gk

(
u2
∗

T∗

)(n−1)

, L(0)
∗ = ∞ (7)

Here u, T and q are the wind velocity, temperature and
specific humidity, referred to the height above the groundz
(in the ISL);k is the von Karman constant;L∗ is the Monin-
Obukhov length scale;n is the iteration index. The itera-
tion stops when a prescribed accuracy for theL∗ estimate is
reached. The functionsΨ are the characteristic functions for
momentum (M) and heat (H) (Beljaars and Holtslag, 1991).
The unknown temperature and specific humidityT0 andq0

are formally assigned toz0, but they must be intended as two
parameters characterizing the whole RSL.

In order to evaluate Eqs. (4)–(7), T0 and q0 are needed.
To obtain their values, a number of approximations must be

made. The most relevant is the hypothesis of proportional-
ity between ISL’s turbulent fluxes and the difference between
RSL and ISL values for the correspondent meteorological
variables:

H0 = ρcp
T0 − T

rH
(8)

He = ρλ
qs (T0) − q

rV
(9)

The resistancesrH andrV have the physical units of s m−1.
Both Eqs. (8) and (9) implicitly assume steady conditions.
Equation (9) takes into account the evaporation originating
from saturated surfaces in the RSL; the specific humidity dif-
ference in Eq. (9) can be rewritten as a linearized function of
temperature:

qs (T0) − q = ∆ (T0 − T) + δq (10)

Where∆≡∂qs/∂T is evaluated at a reference temperature
betweenT0 andT. Moreover,δq≡qs (T) − q.

Referring toMonteith(1981), the resistancerH in Eq. (8)
is estimated by the aerodynamic resistance,rH'ra, governing
the diffusion of energy and masses between RSL and ISL.rV

in Eq. (9) is estimated asrV'ra+rs, where the surface resis-
tancers is introduced to account for the evaporation and tran-
spiration processes in the RSL. In this work the “big-leaf”
model is used: the canopy is treated as a plane located at the
lower boundary of the RSL and the latent heat flux is deter-
mined by the evaporation of liquid water from the “big-leaf”.
With these assumptions, Eq. (9) is replaced by:

He = ρλ
δq0

rs
(11)

whereδq0≡qs (T0) − q0.
A further relation between the turbulent heat fluxes can be

obtained from the overall surface energy balance. By means
of the prognostic equation for entalphy applied to the earth
surface, the energy balance can be written as (Zdunkowski
and Bott, 2003):

Rn −G = H0 + He (12)

WhereRn is the net radiation andG is the heat flux stored
in the soil. The left-hand side defines the available energy.
Equation (12) is strictly valid for atmosphere-surface inter-
face in case of bare soil. Nevertheless, Eq. (12) is intended
as the energy balance equation at the canopy top because the
horizontal flux of energy due to advection and the rate of en-
ergy storage per unit area in the canopy layer are neglected.
Therefore, the turbulent heat fluxes in Eq. (12) are assumed
to be fluxes in the ISL and are interpreted as surface fluxes.

The net radiation is estimated using the Net All-wave Ra-
diation Parameterization model (NARP;Offerle et al., 2003)
while forG the expressionG=βRn is used (β=0.1 for daytime
andβ=0.5 nighttime).
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By making use of Eqs. (8)–(12), the turbulent heat fluxes
are computed as (deRooy and Holtslag, 1999):

He =
∆

∆ + γ
(Rn −G) +

ρcp

(∆ + γ) ra
(δq− δq0) (13)

H0 =
γ

∆ + γ
(Rn −G) −

ρcp

(∆ + γ) ra
(δq− δq0) (14)

Whereγ=cp/λ is the psychrometric constant. Equations (13)
and (14) are used to overcome the problem of eliminating
T0 andq0 inside the iterative procedure of Eqs. (4)–(7). The
iterative procedure is then rewritten as:

u =
u(n)
∗

k
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γ
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a

(
δq− δq(n)

0

)
(18)

T(n)
∗ = −

H(n)
0

ρcpu(n)
∗

(19)

L(n−1)
∗ =

T
gk

(
u2
∗

T∗

)(n−1)

, L(0)
∗ = ∞ (20)

For the iterative procedure, the three parametersz0, d andrs

need to be specified. Moreover, the albedo of the surface is
required by the NARP model.

4 ET0 estimation

The general method presented in Sect.3 allows estimating
the turbulent heat fluxes from single-level meteorological
data. In order to obtainET0, the parameters in the proce-
dure must be properly initialized. InAllen et al. (1998) the
reference crop is defined as grass with heighth = 0.12m and
albedo equals to 0.23. Furthermore, the relation for the sur-
face roughness parameters are indicated asz0=0.123h and
d=2/3h. With respect to thers value, in a review of the FAO
method for hourly periodAllen et al. (2006) suggest using
rs=50 s m−1 during daytime andrs=200 s m−1 during night-
time. TheET0 value is not computed for grid points where
the hourly precipitation rate is greater than 1mm h−1 because
in case of rain the assumptions made in Sect.3 are not justi-
fied. Figure5 shows a field of daily cumulatedET0, obtained
by summing up the hourlyET0 estimates.

5 Conclusions

The presented procedure forET0 estimation relies on the
availability of interpolated meteorological fields and com-
bines these fields with a model for turbulent fluxes estimation
near the ground, properly initialized.

The amount of information that contribute to the produc-
tion of a ET0 hourly field is remarkable, in consideration of
the domain extension. In fact, about one thousand of mete-
orological observations are used every hour. The quality of
the input meteorological fields is of crucial importance. The
OI implementations for the meteorological variables provide
reliable and detailed meteorological fields. However, the es-
timate of solar global radiation over the domain must be im-
proved.

The outputs of the turbulent fluxes estimation model must
be compared with experimental data. Nevertheless, prelimi-
nary qualitative evaluations are very encouraging.

In principle, the turbulent fluxes estimation procedure
could be set up to obtain the real evapotranspiration rate for
the actual crop. This would imply a more complex treatment
of both the available geographical information and the veg-
etation behaviour, as a consequence several complementary
parameters would need to be tuned. It would be thus possi-
ble to compare hourly estimates with the evapotranspiration
estimates obtained using, for example, the approach ofAllen
et al. (2006), then possibly obtain some insights about crop
coefficient values.
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