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Abstract

Model averaging has been shown to be a useful method for incorporating model un-
certainty in quantitative risk estimation. In certain circumstances this technique is com-
putationally complex, requiring sophisticated software to carry out the computation. We
introduce software that implements model averaging for risk assessment based upon di-
chotomous dose-response data. This software, which we call Model Averaging for Di-
chotomous Response Benchmark Dose (MADr-BMD), fits the quantal response models,
which are also used in the US Environmental Protection Agency benchmark dose software
suite, and generates a model-averaged dose response model to generate benchmark dose
and benchmark dose lower bound estimates. The software fulfills a need for risk assessors,
allowing them to go beyond one single model in their risk assessments based on quantal
data by focusing on a set of models that describes the experimental data.

Keywords: bootstrapping, information criteria, model uncertainty.

1. Introduction

Risk assessors are frequently concerned in finding an exposure level which is associated with
some specified level of excess risk from exposure to a hazardous agent. This level of exposure is
often estimated using the benchmark dose method (BMD, Crump 1984). Here a point estimate
of the dose, the BMD, or a lower limit on this endpoint (i.e., 100(1 − α)% lower confidence
limit), the benchmark dose lower bound (BMDL), is typically reported. The benchmark dose
estimate is dependent on the parametric model used to fit the dose-response data, with the
BMDL often being more sensitive to modeling assumptions than the BMD. Further, as one
model is frequently selected to estimate the BMD, while other plausible models are ignored,
model uncertainty is part of any risk assessment. This problem is well noted in the literature,
and is often problematic when two or more models that describe the data similarly produce
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widely varying estimates of the benchmark dose. A technique which allows one to estimate the
BMD from more than one model that has been put forth in recent years, has been Bayesian
model averaging (Raftery 1995), and its related frequentist analogue model averaging (MA)
(Buckland, Burnham, and Augustin 1997).

Model averaging, for risk assessment, was first proposed by Kang, Kodell, and Chen (2000)
for continuous microbial dose-response data, and further considered by Bailer, Noble, and
Wheeler (2005a) for dichotomous dose-response data. These papers suggested a model av-
eraged benchmark dose (MA-BMD) formed by taking a weighted average of model specific
BMDs. The corresponding 100(1 − α)% lower bounds are also derived in this manner. This
method was extensively studied through computer simulation experiment by Wheeler and
Bailer (2009) and this averaging procedure was frequently found to calculate a lower limit
that failed to have the nominal coverage probability on the true BMD value. This failure to
effectively characterize the lower limit on the BMD estimate was most evident in cases when
the exposed agent was highly hazardous, e.g. a steep dose-response relationship, which lead
to questions about the broader applicability of MA in risk assessment. Subsequently Wheeler
and Bailer (2007) modified the above procedure to a more computationally intensive method-
ology. They found this modified MA procedure, which averaged individual dose-response
curves instead of the individual BMDs, more effectively described both the dose-response
curve as well as the given benchmark dose often yielding estimated BMDs with minimal bias
and lower bound estimates that achieved coverage at the nominally specified 100(1 − α)%
level.

Although this work was promising, the computational complexity of the method makes the
general use of such a method difficult to all but the most computationally sophisticated
risk assessors. Consequently, this paper introduces a software program that implements the
“average-model” MA procedure of Wheeler and Bailer (2007) for dichotomous risk assess-
ment and is freely available to the risk analysis community. The paper proceeds by briefly
describing this form of model averaging in the context of risk assessment applied to dichoto-
mous dose-response data, and in the process the software is described. It then highlights the
model averaging for dichotomous response benchmark dose (MADr-BMD) software against
features and performance of the popular US EPA benchmark dose software package (BMDS
US Environmental Protection Agency 2001).

2. Materials and methods

2.1. Modeling dichotomous dose-response data

In the context of risk assessment the term “dichotomous response data” is used to describe
a two level response denoting the presence or absence of a potentially unwanted outcome
(e.g., tumor response, death). Frequently, the probability of adverse response is modeled
by some set of covariates. For experimental data, a single covariate corresponding to the
dose administered is often considered. Dichotomous dose-response modeling describes the
probability of the adverse outcome given a specific dose administered to subjects under study.
In this context, parametric models are used to link a dose to the observed dichotomous
response under the assumption that the observed data are binomially distributed with a
probability of response related to the dose.
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Many models exist that can be used in this situation. The MADr-BMD software package
estimates a variety of models that are commonly used in risk assessment to fit dichotomous
dose response data. The following list describes the dose-response models, as well as the
default parameter bounds that are used, in the software package.

logistic: π1(d) =
1

1 + exp[−(α+ β × d)]
(1)

log-logistic: π2(d) = γ +
(1− γ)

1 + exp[−(α+ β × d)]
0 ≤ γ ≤ 1
β ≥ 0.5

(2)

gamma: π3(d) = γ +
1− γ

Γ(α)

∫ βd

0
tα−1e−tdt

0 ≤ γ ≤ 1
α ≥ 1, β ≥ 0.5

(3)

multistage: π4(d) = γ + (1− γ)(1− exp(−θ1d− θ2d
2 . . .))

0 ≤ γ ≤ 1
θ1 ≥ 0, θ2 ≥ 0, . . .

(4)

probit: π5(d) = Φ(α+ βd) (5)
log-probit: π6(d) = γ + (1− γ)Φ(α+ βln(d)) 0 ≤ γ ≤ 1, β ≥ 0 (6)

quantal-linear: π7(d) = γ + (1− γ)(1− exp(−βd)) 0 ≤ γ ≤ 1, β ≥ 0 (7)
quantal-quadratic: π8(d) = γ + (1− γ)(1− exp(−βd2)) 0 ≤ γ ≤ 1, β ≥ 0 (8)

Weibull: π9(d) = γ + (1− γ)(1− exp(−βdα))
0 ≤ γ ≤ 1
β ≥ 0.5

(9)

Here π(d) represents the probability of adverse response given the dose d, Φ(x) is the cu-
mulative distribution function of a standard normal random variable at x, and πi(d) = γ
when d = 0 for the log-logistic (2) and the log-probit (6) models. The bounds stated for the
above models allow for model families having a wide range of curvature that includes both
sub-linear and supra-linear behavior. These constraints also represent a wider range of cur-
vature than available, by default, in the US EPA software. In particular the Weibull, gamma,
log-probit, and log-logistic models allow a wider degree of curvature, when fitting dichoto-
mous response data. The increased curvature is added, based upon the results of Wheeler
and Bailer (2009). Here they suggest that the low-dose linear behavior is better estimated,
using model averaging, given this wide range of curvature.

2.2. Model averaging

Model averaging (MA) is a statistical technique that combines estimates from different dose-
response models. This is accomplished through a weighted average of the dose-response
functions considered in the analysis, where the weights reflect the relation of the fitted function
to the observed experimental data. For instance, a model’s posterior probability can be used
as a weight, and in this case this is a form of model averaging known as Bayesian model
averaging (here the posterior probability represents the probability that a given model is the
true model given the observed data). The weights are used to combine the models considered
into one central model form.
Given the individual model weights the “averaged-model,” is defined as π̂ma(d) =

∑K
i=1wi ·

π̂i(d), where π̂i(·) represents a dose-response function evaluated at the MLE, and wi represents
the weight of the ith model. Conceptually the function π̂ma(d) can be thought of as a smoothed
dose-response, which includes information from all models considered in the analysis.
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The model weights, used in the above computation, can be estimated using a variety of
methods. The MADr-BMD software program is designed to accommodate weights formed
using the AIC (Akaike 1978), the BIC (Schwartz 1978), and the KIC (Cavanaugh 1999)
information criterion. These criteria are defined as −2 log(L) +K, and −2 log(L) represents
the maximum value of the −2 log likelihood for a particular model, K = 2P for the AIC,
K = P log(n) for the BIC, and K = 3P for the KIC, here n represents the total sample
size (i.e., the number of observations not the number of dose groups), and P represents the
number of parameters in the model. These criteria were used in MA for risk assessment by
Kang et al. (2000), Bailer et al. (2005a) Bailer, Wheeler, Dankovick, Noble, and Bena (2005b),
and Moon, Kim, Chen, and Kodell (2005). Given one of these criteria the weights are formed
using the following formula:

wj =
exp(−0.5 · ICj)∑K
i=1 exp(−0.5 · ICj)

.

,

which was used by both Raftery (1995) and Buckland et al. (1997). It is important to note
that three weighting criterion options are available to the MADr-BMD program, even though
six options can be specified. These extra three options represent a modification to the AIC,
BIC and KIC; we call these the AICB, BICB and the KICB respectively, and they are based
upon the number of non-bounded parameters in the model. It is often the case that some of
the models parameters are estimated at their lower, or upper, bounds, and in this case the
effective number of parameters in the model is reduced. Although it can be argued that there
is still the original number of parameters in the model, the effective number of parameters
may be a better estimate than the total number of parameters. Though the effective number
of parameter method is the default behavior of the US EPA BMDS software it is not clear
which construction is more correct. Consequently the MADr-BMD software provides both
estimates for exploration and further research; however, all results presented below are formed
using the full number of parameters originally specified in the model. Thus we recommend
using this approach, and leave the other three options for further research.

2.3. Benchmark dose estimation

Given the model-averaged dose-response curve π̂ma(d), the benchmark dose (BMD) is defined
as the dose that increases the risk above the background rate by some predefined level. Excess
risk, for dichotomous data, is represented by the probability of adverse response above the
background response rate. The value, which represents a specified increase in the probabil-
ity of response, is known as the benchmark response (BMR), and uniquely determines the
benchmark dose; the BMD is defined as the dose d that satisfies the equation:

BMR =
π̂ma(d)− π̂ma(0)

1− π̂ma(0)
,

where the BMR is typically set at values of 1%, 5% and 10%. The above formulation is
known as the extra risk specification of the BMD, and can be thought of as the dose that
increases the probability of response, or risk, above background by the BMR, given that the
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event would not occurred in the absence of exposure. An alternative specification, also known
as the added risk, is the dose d that satisfies the equation:

BMR = π̂ma(d)− π̂ma(0),

which represents the absolute increase in risk, relative to no-exposure. The software package
MADr-BMD can estimate either risk type of the BMD specified above.

Although the MA-BMD value can be readily estimated using the above formula, no such closed
form formula exists in calculating the model averaged benchmark dose lower bound (MA-
BMDL). Consequently the MADr-BMD calculates this value using a parametric bootstrap
(Efron and Tibshirani 1993). Here parametric bootstrap resamples are taken for π̂ma(d), and
the calculated 100(1 − α)% lower bound is obtained using the bias corrected and adjusted
confidence limits (BCa). The parametric bootstrap assumes that the response, at each dose
d, is distributed binomially having success probability π̂ma(d) given n trials specified by
the original experiment (note that it is possible, though rare, for π̂ma(d) to be equal to
zero, specifically at the background dose, in this case the bootstrap proceeds by generating
zero positive responses for the dose d) . The acceleration constant, which is required when
computing the BCa, is estimated through the jackknife procedure also described by Efron
and Tibshirani (1993).

MADr-BMD computes these estimates (i.e., the MA-BMD and its corresponding MA-BMDL)
automatically. It also assumes a monotonic increasing dose-response, and in cases where shal-
low or no dose-response is evident the software can produce BMD estimates that are greater
than the maximum dose administered. Further, in cases of flat or negative dose-response
the software will produce an arbitrarily large BMD estimate of 108. As these estimates are
often far outside of the doses administered care should be taken on the risk assessor’s part on
interpreting the output when very shallow dose-response data are observed.

2.4. Implementation details

Estimation of the MA-BMD and the corresponding MA-BMDL is computationally inten-
sive requiring large amounts of CPU time. Consequently, the MADr-BMD software is writ-
ten in C++ and compiled into machine readable code as a stand-alone command line pro-
gram that is executable under the Microsoft Windows operating system’s shell command
prompt. The program itself utilizes many routines that are under public license or in the
public domain. The maximum likelihood estimation is done using the Fortran subroutine
dmngb (Dennis, Gay, and Welsch 1981), which is available at http://www.netlib.org/. This
routine is the same routine used within the US EPA’s benchmark dose software. Further
the C++ function, which calls dmngb routine in the benchmark dose software, is borrowed
from the source code of the US EPA’s software, and is available at the US EPA’s web
site (http://www.epa.gov/ncea/bmds/). The GNU scientific library GSL Galassi, Davies,
Theiler, Gough, Booth, and Rossi (2005), was used for all other numerical routines (e.g., the
matrix algebra and numerical integration routines were GSL algorithms) except those involved
in differentiation. In this case, a finite difference algorithm (Press, Teukolsky, and Flannery
1992), which was borrowed with slight modifications from the EPA’s benchmark dose software
(US Environmental Protection Agency 2001), was used. The finite difference algorithm was
tested by applying it to a range of functions. These test functions included Gaussian, probit
and Weibull dose-response functions with known parameters, i.e. functions whose derivatives

http://www.netlib.org/
http://www.epa.gov/ncea/bmds/
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were known. In all cases the numerical derivative produced by the algorithm agreed with a
high degree of precision, e.g. an absolute difference < 10−6, to the known derivatives. The
algorithm was further tested within the context of maximum likelihood estimation. Here 2000
randomly simulated data sets were generated and models (1)–(9) were fit using the finite dif-
ference algorithm and compared to the US EPA’s BMDS suite. In most cases the likelihood
evaluated at the solution to the maximized likelihood estimating equations was identical to
that based on the BMDS software, and differences, when they occurred, were small with the
test algorithm and the BMDS software outperforming the other approximately 50% of the
time.

3. Software specifications

The MADr-BMD program is invoked through the command line argument madrbmd, taking
its input through a user specified text file. Given no input arguments (i.e., typing madrbmd
at the command prompt) it assumes an input file named input.txt is located in the present
working directory. Alternative input files can be specified as an additional command line
argument that names file. For example, invoking the program with the command madrbmd
ethychlor.txt would prompt the program to take its input from the file ethychlor.txt.

250 1e-8 1e-8
0 0 1 1 1 1 1 1 1
101
2 1 0.1
0.95 5000 0
2
4
0 50 0
22.5 50 3
45.0 50 10
90.0 50 29

The structure of the input file is relatively straightforward and is outlined above, where the
meaning of each line completely described in Table 1. The file specifies which models, out of
the models (1)–(9), to include in the analysis, as well as the MA weighting criterion (i.e., AIC,
BIC, KIC etc.), and the specifics on the benchmark dose calculation. Individual analyses can
be specified by only including one model in the specification. In these cases, the benchmark
dose, and the corresponding lower bound, represents estimates based upon the single model
and the lower bound based on the bootstrap. Here the choice of the weighting criterion is
irrelevant to the calculation, as the single model will always receive 100% of the weight.

MADr-BMD, by default, outputs all calculations to the command prompt; however, output
can be saved to a file using redirection at the command prompt. For example the command
madrbmd ethychlor.txt > output.txt would take data from the file ethychlor.txt and
output the data to the file output.txt. The output can then be viewed using any text editor.
Partial output from the MADr-BMD program is shown below.
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Model Fit Statistics
--------------------------------------------------------------------------
Model Weight -2log(L) AIC BIC
--------------------------------------------------------------------------
Multistage 0.157 140.77 146.77 156.66
Logistic 0.094 143.79 147.79 154.38
Probit 0.164 142.68 146.68 153.28
Weibull 0.157 140.77 146.77 156.67
Log-Probit 0.129 141.16 147.16 157.06
Log-Logistic 0.148 140.89 146.89 156.79
Gamma 0.151 140.85 146.85 156.74
--------------------------------------------------------------------------

------------------------------------------
'Average-Model' Benchmark Dose Estimate
------------------------------------------
Nominally Specified Confidence Level:0.950
Weighting Criterion: AIC
BMD Calculation: Added Risk
BMR: 0.100000
BMD: 31.553854847521
BMDL(BCa):19.104950496818
BMDL(Percentile):23.954508771702
Acceleration: -0.038029
Bootstrap Resamples: 5000
Random Seed: 101
------------------------------------------

------------------------------------------
'Average-Model' Goodness of Fit Test
------------------------------------------
Test Statistic : 0.237900
Bootstrap P-Value: 0.780800
------------------------------------------

The output itself describes fit statistics of each model, along with the computed MA bench-
mark dose output. The model weights formed based upon the user specified weighting crite-
rion, as well as the −2 log likelihood the BIC and AIC (computed using the full number of
parameters) are shown in the initial output table created by the program. The subsequent
output describes the calculation of the MA-BMD, its corresponding lower bound, as well as
information that corresponds to its calculation. Specifically the term labeled “acceleration”
represents the estimated acceleration constant used in the BCa calculation, and the random
seed number is the value passed to the random number generator when computing the boot-
strap resamples. Both values are both provided for transparency in the calculation. Specifying
this value allows the researcher to replicate the results sin the future. Not surprisingly, if the
same random number seed is not used, these values may change slightly each time the pro-
gram is executed. Finally the goodness of fit statistic, i.e.

∑ (0−E)2

E , is estimated with and
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250 1e-8 1e-8
Maximum number of iterations, rel. convergence,
general convergence

0 0 1 1 1 1 1 1 1
MA specification: 1 = included, 0 = not-included
Model order: (Quantal-linear, Quantal-quadratic, Multistage
Logistic, Probit, Weibull, Log-probit, Log-logistic, Gamma)

101
Random Seed (specifying 0 implies current clock time will be
used)

2 1 0.1
Averaging criterion (1 = BIC, 2 = AIC, 3 = KIC,
4 = BICB, 5 = AICB, 6 = KICB),
Risk type (1 = added risk, 2 = extra risk), BMR

0.95 5000 0
Type I error rate, Number of bootstrap resamples, output
bootstrap resamples (0 = no, 1 = yes)

2 Degree of multistage polynomial.
4 Number of data lines
0.0 50 0 Data specification:
22.5 50 3 dose, number of experimental units, number of observed
· · · responses

Table 1: Description of each line of input when specifying the model average (MA) dose
response analysis in the MADr-BMD program. It is important to note that the degree of the
multistage polynomial must be specified regardless of its inclusion in the model averaging.
Further no error checking is done on this value, and thus one can specify a polynomial that
has more parameters than there are data, which may cause unpredictable results.

corresponding significance level estimated from the bootstrap resamples assuming the func-
tion π̂ma(d) generated data. The program produces further output, not reported here, which
includes model-specific parameter estimates as well as the individual bootstrap resamples.

4. Software comparison

4.1. Software features

Table 2 compares the basic feature set of the US EPA BMDS and the MADr-BMD software
programs for fitting dichotomous dose-response data, and highlights the similarities, and
differences between the two programs. Both packages rely on the same optimizer, and thus
produce nearly identical results in most situations. In the situations when the two methods
do not give identical parameter estimates, a difference in initial estimates along with the
existence of local maxima, within the likelihood of the given model being fit, is usually the
cause. A small simulation study by Wheeler and Bailer (2007) showed that there was no clear
advantage between either the BMDS software and the MADr-BMD optimization strategy. In
most all cases, the software converged to the same value, and when the two failed to achieve
the same results, the larger likelihood value was found approximately half the time in the US
EPA’s software, and half the time in the MADr-BMD package.

Table 2 also highlights the fact that the MADr-BMD package can be used to fit individual
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MADr-BMD US EPA BMDS

Dichotomous models fit Models (1)–(9) Models (1)–(9)

Parameter bounds*

Gamma: 0 ≤ γ ≤ 1, Gamma: 0 ≤ γ ≤ 1,
α ≥ 0.5, β ≥ 0 α ≥ 1, β ≥ 0

Weibull: 0 ≤ γ ≤ 1, Weibull: 0 ≤ γ ≤ 1,
α ≥ 0.5, β ≥ 0 α ≥ 1, β ≥ 0

Log-probit: 0 ≤ γ ≤ 1, Log-probit: 0 ≤ γ ≤ 1,
β ≥ 0 β ≥ 1

Log-logistic: 0 ≤ γ ≤ 1, Log-logistic: 0 ≤ γ ≤ 1,
β ≥ 0.5 β ≥ 1

BMDL construction Parametric bootstrap** Profile likelihood
Maximization algorithm dmngb dmngb, donlp2

Numeric algorithms GSL 1.7 CDFlib, BLAS, LAPACK

Primary interface
Command prompt- Windows shell program/

text input file command prompt
Batch processing Available Available
Model averaging Available Not available

Table 2: The table compares the available features of the MADr-BMD and US EPA bench-
mark dose software programs. * Only models that have different default parameter bounds
are described. Further the BMDS bounds are the default bounds and can be modified by the
user. ** BMDLs for individual models can be constructed by choosing a single model (i.e.,
the model of interest) in the model average.

models. This is done, as described previously, by simply including the desired model in the
model specification line of the input file, while excluding all other models. If this is done the
estimated BMD will be based upon the maximum likelihood, of the desired model, while the
100(1 − α)% BMDL will be estimated through parametric bootstrap. This is an important
difference from the method used by the US EPA’s software; in that they use the method of
profile likelihoods to compute the lower bound. BCa and profile methods yield BMDLs with
similar coverage properties; however, the value of these estimated lower limits may differ,
with the difference more pronounced with small sample sizes. Finally, we note that only the
MADr-BMD package can calculate MA-BMD estimates.

4.2. Data example

Consider the National Toxicology Program study where male F344/N rats were exposed to
2,4-hexadienal via gavage (National Toxicology Program 2001). For this study four groups of
50 rats were exposed to one dose of 2,4-hexadienal for two years. The observed proportion
of rats exhibiting squamous cell papilloma of the fore stomach was 0/50, 3/50, 10/50, and
29/50, which corresponded to hexadienal doses of 0, 22.5, 45, and 90 mg/kg/day.

Table 3 describes the estimated BMDs computed from models (1)–(9) for a BMR of 1% and
10%, using the added risk BMD specification, where the estimates were computed using both
the US EPA’s BMD software and the MADr-BMD package. A model average using the AIC
as a weighting criterion and all the models except the quantal-linear (7) and quantal-quadratic
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10% BMR 1% BMR
MADr-BMD BMDS MADr-BMD BMDS

BMD BMDL BMD BMDL BMD BMDL BMD BMDL
Quantal 15.5 12.1 15.5 12.1 1.5 1.2 1.5 1.2

linear
Quantal 31.1 27.3 31.1 27.5 9.6 8.4 9.6 8.5

quadratic
Multistage 30.1 22.6 30.1 20.1 8.1 2.2 8.1 2.3
Logistic 39.0 32.3 39.0 32.7 8.2 5.4 8.2 5.5
Probit 36.4 29.9 36.4 30.4 8.1 5.0 8.1 5.1
Weibull 30.2 20.1 30.2 20.2 8.9 3.4 8.9 3.8
Log-probit 29.9 21.2 29.9 22.3 13.5 7.0 13.5 7.8
Log-logistic 30.4 21.2 30.4 21.9 10.7 4.6 10.7 5.1
Gamma 30.1 19.8 30.1 21.3 10.7 3.6 10.7 4.4
Model 31.6 19.1 N/A N/A 9.7 3.5 N/A N/A

averaging

Table 3: Benchmark dose comparisons for squamous cell papillomas in rats exposed to 2,4-
hexadienal.(16) Data were analyzed using both the MADr-BMD program and the US EPA
BMDS software, with benchmark responses of 1% and 10%. The added risk BMD formulation
was used for all calculations. Finally for the model averaging data were analyzed with the
software package MADr-BMD, using the AIC as weights and with the BCa lower bound
confidence interval reported (see Table 2 for the models and the weights used in the model
average).

(8) models is also reported. For both packages, the estimated BMD for models (1)–(9) are
nearly identical. The MADr-BMD BMDL estimates tend to be slightly less than the BMDL
values estimated using the corresponding profile likelihood counterparts calculated using the
US EPA software. These differences are most noticeable in the Weibull, gamma, log-probit,
and log-logistic. Here supra-linear fits are allowed, which frequently produce BMDL much
smaller than the estimated BMD, and results in MADr-BMD BMDL estimates that are
frequently smaller than the US EPA BMDS by an order of magnitude, though this behavior
is not observed in this example.

4.3. Coverage comparison

We also consider the differences of model averaging using MADr-BMD compared to fitting
the true model using the US EPAs benchmark dose software. For this comparison the true
dose-response model is assumed to be known; though this is something that is seldom, if ever,
the case in practice. The comparison is instructive as it shows that model averaging can
frequently estimate the 100(1 − α)% lower bound of the BMD at a rate which is similar to
that which would be obtained using the true dose-response model.

The coverage data for the true model fits, using the US EPA software, was obtained from the
study of Wheeler and Bailer (2009), where the MA-BMDL coverage was obtained from the
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subsequent study of Wheeler and Bailer (2007). These studies were preformed using iden-
tical simulation conditions. In these studies, dichotomous dose-response experiments with 4
dose groups and 50 experimental units per dose group were simulated 2000 times and the
BMD/BMDL was recorded. In these simulations, models (1)–(9) were used as the true un-
derlying dose-response forms, and for each model six unique parametric forms were used given
the underlying model, and the observed coverage (i.e., P(BMDL ≤ BMD true)) was reported
for the BMDL estimated from the true model, as well as the observed coverage from two
different “average-model” MA-BMDLs families of models. The first model space, from which
the MA was constructed, consisted of three flexible models which included the 2-stage mul-
tistage (4), the log-probit (6), and the weibull (9). The second model space consisted of
seven models adding the quantal linear (7), the quantal quadratic (8), the probit (5), and the
logistic (1) models to the three model space. Finally, we note that even though the MADr-
BMD software program can calculate BCa MA-BMDL estimates, the lower bound estimates
described were calculated using the percentiles of the bootstrap distribution due to the in-
creased computational demand required for the BCa estimate and the size of the simulation.
For a comprehensive review of the simulation design, as well as other implementation details,
the reader is referred to the aforementioned manuscripts (Wheeler and Bailer 2009, 2007).

Table 4 compares the observed coverage of the BMDL, with a BMR of 10%, when the true
model is fit as compared to using model averaging BMDL calculation. Further, the nominally
specified coverage rate was 95% for all calculations. With the exception of the quantal linear
case, model averaging using the MADr-BMD software performed similarly in terms of ob-
served coverage when calculating the BMDL. In some cases, the log-probit case in particular,
MA’s performance was superior to knowing and fitting the true model. Potential causes for
this observed behavior warrant further investigation.

5. Conclusions

The software package MADr-BMD gives risk assessors increased flexibility when estimating
risk from dichotomous dose-response data. By combining estimates from multiple models,
MA gives researchers and regulators alike a method that accounts for statistical variability
as well as model uncertainty. This method has been shown by Wheeler and Bailer (2007) to
yield point estimates with minimal bias and confidence limits with nominal coverage prop-
erties, while producing estimates that are superior to picking one single model. This is true
even if this model describes the data “better” than the other models used. Further, as shown
above, in most cases model averaging performs similarly, in terms of observed coverage, to
actually knowing the true model. The MADr-BMD software package thus fills a need within
quantitative risk assessment community. By allowing researchers to estimate risk, and corre-
sponding benchmark doses readily, researchers will be less encumbered by difficult questions
pertaining to which single model should be used, and instead will be able to focus, on the far
more manageable question “what curvature is plausible, given the current state of knowledge
on the hazard, and what models should be fit prior to averaging?”

With this said, it is important to note that the MADr-BMD software package does not con-
stitute a “magic-bullet” when estimating risk from dichotomous dose-response data. Many
questions should be addressed with further research, and care should be taken when using
values estimated from the software package. For example, research questions about the best
model space to use, as well as diagnostic methods for the appropriateness of the BCa cal-



12 Model Averaging Software for Dichotomous Dose Response Risk Estimation

.

T
rue

7-m
odel

3-m
odel

T
rue

7-m
odel

3-m
odel

T
rue

7-m
odel

3-m
odel

M
A

M
A

M
A

M
A

M
A

M
A

C
ondition

1

Quantal

linear

0.96
0.83

0.90

Log-probit

0.92
0.91

0.94

Gamma

0.93
0.95

0.96
C

ondition
2

0.94
0.78

0.90
0.90

0.93
0.95

0.92
0.94

0.95
C

ondition
3

0.95
0.83

0.91
0.90

0.94
0.96

0.95
0.91

0.94
C

ondition
4

0.98
0.88

0.95
0.95

0.97
0.99

0.97
0.97

0.99
C

ondition
5

0.95
0.81

0.93
0.88

0.99
0.98

0.94
0.98

0.97
C

ondition
6

0.95
0.80

0.91
0.89

0.99
0.98

0.94
0.94

0.94
C

ondition
1

Quantal

quadratic
0.96

0.94
0.96

Probit

0.96
0.95

0.97

Logit

0.93
0.97

0.98
C

ondition
2

0.95
0.96

0.96
0.94

0.98
0.96

0.92
0.99

0.98
C

ondition
3

0.94
0.98

0.96
0.93

0.98
0.95

0.93
0.99

0.96
C

ondition
4

0.97
0.98

0.99
1.00

0.96
0.99

0.97
0.96

0.98
C

ondition
5

0.95
1.00

1.00
0.95

0.98
0.96

0.92
0.99

0.97
C

ondition
6

0.95
0.99

0.96
0.93

0.98
0.95

0.93
0.98

0.94
C

ondition
1

Weibull

0.93
0.94

0.95

Multistage

0.97
0.94

0.96

Log-logit

0.94
0.93

0.95
C

ondition
2

0.93
0.94

0.95
0.98

0.94
0.94

0.93
0.93

0.94
C

ondition
3

0.94
0.89

0.92
0.94

0.86
0.91

0.95
0.93

0.95
C

ondition
4

0.98
0.98

0.99
1

0.98
0.99

0.98
0.97

0.99
C

ondition
5

0.94
0.98

0.97
0.98

0.97
0.96

0.95
0.98

0.97
C

ondition
6

0.94
0.92

0.93
0.95

0.88
0.91

0.94
0.96

0.95

T
able

4:
C

om
parison

of
observed

coverage
(i.e.,

P
(B

M
D

L
≤

B
M

D
tru

e )
)

betw
een

tw
o

different
m

odel
averaging(M

A
)

m
odel

spaces
and

the
benchm

ark
dose

low
er

bound
(B

M
D

L
)

form
ed

from
fitting

the
true

m
odel

to
the

data.
T

he
above

data
com

pares
sim

ulation
results

from
the

tw
o

studies
ofW

heeler
and

B
ailer

(2009,2007).
H

ere
the

true
m

odels
w

ere
fit

using
the

U
S

E
PA

B
M

D
S

softw
are,and

the
m

odelaveraging
w

as
conducted

using
a

m
odified

version
of

the
M

A
D

r-B
M

D
package

w
ith

the
A

IC
used

as
a

w
eighting

criterion.
Further

the
M

A
-B

M
D

L
w

as
com

puted
using

percentile
based

confidence
intervals.



Journal of Statistical Software 13

culation in apparent shallow dose-response curves, are still open. Further, by incorporating
uncertainty, the software does not immediately give one the license to estimate BMDs based
upon an “averaged-model” that constitute low dose extrapolations beyond the range of the
data. This was best illustrated in Wheeler and Bailer (2007) In their study, the model space
directly influenced the ability of the “averaged-model” to recover the BMD and BMDL, for
the logistic and probit conditions. Here the 3-model average covered the true BMD at the
nominal 95% level when the BMR was set to 10%, but failed to cover the true BMD when the
BMR was set at 1%. However the 7-model average condition covered, at the nominal level, in
both situations. This was primarily because the fact that the true model was included in the
7-model condition, which stabilized the lower bound estimate. Finally, the current implemen-
tation assumes an underlying binomial response distribution. Extensions to over dispersed
responses could be considered, and it is hoped that the software may provide a template for
this extension.

Finally note that the development of this software does not remove the need for expert
judgment on the part of the researcher when conducting an analysis using the MADr-BMD
software. The researcher should carefully choose the model space, where mechanistic model
knowledge should be used if available, and should approach low-dose extrapolations with
considerable care when using model averaging. The software advances risk assessors ability
to address model uncertainty, but should not be used as a substitute for scientific reasoning.
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