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Abstract
Photographic identification of individual organisms can be possible from natural body markings. Data from 
photo-ID can be used to estimate important ecological and conservation metrics such as population sizes, 
home ranges or territories. However, poor quality photographs or less well-studied individuals can result in a 
non-unique ID, potentially confounding several similar looking individuals. Here we present a Bayesian 
approach that uses known data about previous sightings of individuals at specific sites as priors to help assess 
the problems of obtaining a non-unique ID. Using a simulation of individuals with different confidence of 
correct ID we evaluate the accuracy of Bayesian modified (posterior) probabilities. However, in most cases, 
the accuracy of identification decreases. Although this technique is unsuccessful, it does demonstrate the 
importance of computer simulations in testing such hypotheses in ecology.     
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1 Introduction 
The identification of individual organisms from natural characteristics, such as spots, stripes or other markings, 
can be key to the collection of data while minimising disturbance to the animals (Speed et al., 2007). Such data 
can be used for estimating population sizes (through modified Capture-Mark-Recapture methods), estimating 
the territory or home range of individuals or general work on behaviour (Bradbury et al., 2001; Stevick et al., 
2001). Since identification can be time consuming, it can often be best achieved through photographs of the 
animals, to minimise disturbance of handling time (Reisser et al., 2008; Lloyd et al., 2010). Photographic ID of 
individuals has been shown to be successful for numerous species from both marine and terrestrial ecosystems 
(e.g. Cetaceans–Würsig and Jefferson, 1990; Manta rays– Kitchen-Wheeler, 2010; Turtles–Reisser et al., 2008; 
Zebras–Peterson, 1972; Leopards–Kelly, 2001). Furthermore, photographs can be taken by individuals other 
than trained scientists, and with increasing sophistication of digital cameras and smart phones, photographs 
can include date, time and position information in the EXIF information, making them a valuable ecological 
data point (Aanerson et al., 2009; Kirkhope et al., 2010; Stafford et al., 2010).  

One problem of photographic ID is that identification can be difficult if there are a large number of similar 
looking individuals, or if the photograph is of poor quality or from the wrong angle (Culter and Swann, 1999). 
It may be possible, from some photographs, to only be able to identify the individual to a member of a group 
of three or four visually similar individuals (Lloyd et al., 2010). With some computer aided identification 
programmes, a percentage match may be obtained (for example, being 82% sure of the photograph being a 
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particular individual, but still 18% sure it is one of another group of three visually similar individuals – such 
probabilities are generates by some computer based matching techniques e.g. Hillman et al., 2008).  

Incorporating other data, such as site fidelity of an individual, may help increase the probability of 
identification. Intuitively, if an individual is often seen at a specific site, and a non-conclusive ID is taken at 
that site, it is more likely to be the commonly seen individual than another individual. As such, incorporating 
knowledge of previous sightings of an individual should improve the accuracy of the ID results. 

In this study we present a method of modifying probability from a photo-ID based on Bayes’ theorem, 
which accounts for the locations of previous sightings and incorporates this as prior knowledge. We predict 
that use of prior knowledge will increase the probability of a correct identification for an individual with a high 
level of site fidelity, but decrease the probability of a false identification for a ‘transient’ or migrant individual, 
not normally associated with a particular site. 

2 Methods 
2.1 Computer simulation 
A computer simulation was developed in Java, based on the collection of photographs at a series of possible 
dive sites. Within a 400×200 pixel grid a total of 10 dive sites (4×4 pixels) were randomly positioned, initially 
so >50 pixels separated each site (non-clumped sites), and then, in a second group of simulations, from 5 
randomly selected sites as above and 5 sites clumped with a 50×50 pixel area (clumped sites), were simulated. 
In the second simulation, the five clumped sites were analysed both as separate sites, and as a grouped, single 
site (grouped sites). A series of 10 virtual animals (for example manta rays, whale sharks or terrestrial animals 
such as cheetahs, but herein referred to as fish) were simulated within this environment as single pixels. Each 
fish moved from one pixel to a neighbouring pixel at each of the simulation’s time steps. Which neighbouring 
pixel (including diagonals) it moved to depended on its current bearing and a modification to this bearing – the 
modification being a random number from a normal distribution and mean of zero as per Stafford et al. (2007). 
By altering the standard deviation of this distribution, or by including a 180º turn after a certain number of 
time steps (Table 1), different levels of site fidelity could be created.  

If the fish moved into a ‘dive site’ then there was a 50% chance of a photograph of the fish being taken, and 
an ID being made on that photograph – based on not every sighting being successfully photographed, as is the 
case with any photo-ID project. The ID was made with a confidence range set as an adjustable parameter (in 
this case ID probability was defined as a random number from a normal distribution with mean=0.9, 0.7 or 0.5 
and S.D.=0.2, with limits between 0 and 1). Each fish was in a group of other ‘visually similar’ fish, with 
which it could be easily visually confused (Table 1). Therefore if a random number (uniform, between 0 and 1) 
was higher than the assigned ID probability, the fish identified was given to a different randomly determined 
fish from the visually similar grouping (essentially a mis-identification). Note, behavioural groupings and 
visual grouping were not identical (Table 1).  

As such, the simulation outputted an identification for an individual (based on the above process), with a 
probability of identification (p which varied between 0 and 1). Also, probability of similar individuals in the 
group was calculated as per equation (1): 

r = (1-p) / (n-1),         (1) 
 
where n is the number of individuals in the visually similar group. r was equal for all of the remaining 
members of the visually similar group. 

50



Computational Ecology and Software, 2011, 1(1):49-54 

IAEES                                                                                                                                                                      www.iaees.org

Details of the dive site and time of sighting were also given, as was the true identity of the fish. Simulations 
were run for a total of 48,000 time steps, giving around 100 sightings per replicate run. For clumped and 
grouped sites (see above) the predefined ID confidence range was of mean 0.7 (S.D.=0.2). Non-clumped sites 
were tested with all three ID probabilities (mean=0.9, 0.7 and 0.5, S.D.=0.2 in all cases).  

Table 1 Simulation parameters and behavioural and visual groupings of different of simulated fish.  
Note, groupings for site fidelity and visual similarity are not identical.

Fish Tortuosity (S.D.) Time until 180º 
rotation (simulation 

time steps) 

Relative site fidelity 
(1= low, 4 = high) 

Other members of 
Visual Similar 

Group 
1 90 - 1 2,3,4 
2 90 - 1 1,3,4 
3 270 - 3 1,2,4 
4 270 - 3 1,2,3 
5 270 - 3 6,7 
6 90 30 4 5,7 
7 90 30 4 5,6 
8 90 30 4 9 
9 90 60 2 8 

10 90 60 2 - 

2.2 Bayesian modification 
Bayesian analysis was conducted using an R script file (R Core Development Team, 2007). Whenever an 
individual was recorded at a given site, details of the site it was seen at were taken. For a first sighting, the 
probability of identification of a given fish at a given site was recorded as the probability p (as defined in the 
section above). Over time, therefore, a database was built up of probabilities of given fish at given sites. For 
subsequent sightings of a given fish at a given site, the posterior probability of correct identification was 
modified using the Bayesian equation (equation (2)): 

Ppost=p.Qf1,s /(p.Qf1,s +�r.Qfx,s),   (2) 

where p and r are as per equation 1, and Qf1,s and Qfx,s were the priors of fish 1 at site s, and fish x (where x
runs from 2 to n) at site s respectively.  

Equally, the probability of seeing the other fish in the visually similar grouping was also modified 
accordingly using the same equation, and subsequently Ppost became Qf1,s. The process was repeated with each 
sighting and processed in the order in which the sightings occurred.  

Details of the overall percentage increase in correct identifications, and the overall decrease in mis-
identification was calculated for each of the cases listed above (different probability of identification rates, and 
different spatial distributions and groupings of sites). 

3 Results 
In a minority of cases, Bayesian modification of ID probabilities did increase, allowing a transparent process 
to increase ‘certainty’ of sighting ID, based on knowledge of the behaviour and biology of the organisms 
(Table 2). However, while it may be predicted that such an increase would be found for species with high site 
fidelities, this was not the case. In fact, there was no clear reason why increases in probability for correctly 
identified individuals, nor decreases in probability for wrongly identified individuals occurred. In fact, in most 
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cases, modification of probabilities was reversed from what was expected. Correctly identified individuals had 
lower probability after Bayesian modification and incorrectly identified individuals had higher probability 
(Table 2).  

Table 2 Percentage changes between initial probability of ID and modified Bayesian probability of ID. Data is given for different 
initial levels of probability of recognition, both for all fish, and split between behavioural groups of fish given in Table 1.
Different dispersal and categorisation of sites is also given as defined in Methods. Negative numbers indicate a change in 
probability in the ‘wrong’ direction, for example, a reduction in the probability of identification for the correct fish, or an
increase in probability of identification for a mis-identified fish. 

ID
probability 

Grouping of 
Sites

Behavioural 
Grouping (fish 

numbers) 

% increase in probability 
of correctly identified 

individuals 

% decrease in probability 
of wrongly identified 

individuals 
0.9 Random All -1.7 8.1
0.7 Random All -2.3 -4.9
0.5 Random All 11.1 -17.0
0.7 Clumped All -3.4 -8.3
0.7 Grouped All 2.7 -8.1
0.9 Random 1,2 -3.0 4.0
0.9 Random 3,4,5 -7.1 3.5
0.9 Random 6,7,8 1.6 26.8 
0.9 Random 9,10 -0.7 0.6
0.7 Random 1,2 0.9 -0.7
0.7 Random 3,4,5 -7.2 -36.8
0.7 Random 6,7,8 -4.0 -10.0
0.7 Random 9,10 5.1 25.0 
0.5 Random 1,2 -9.1 -37.8
0.5 Random 3,4,5 6.2 3.7
0.5 Random 6,7,8 3.6 4.6
0.5 Random 9,10 36.0 39.6 
0.7 Clumped 1,2 -2.4 5.5
0.7 Clumped 3,4,5 -4.4 12.0 
0.7 Clumped 6,7,8 -6.0 -2.1
0.7 Clumped 9,10 1.5 -46.2
0.7 Grouped 1,2 1.2 1.2
0.7 Grouped 3,4,5 -0.4 0.8
0.7 Grouped 6,7,8 6.2 0.8
0.7 Grouped 9,10 6.0 -41.8

4 Discussion 
Bayesian statistics has increased in popularity, especially in the ecological sciences, in recent years (Link and 
Barker, 2010). The reasons for such an increase in popularity are clear – ecology frequently obtains data from 
different, but related sources, for example, on the same species, but in different locations, or on several closely 
related species. As such, the use of existing knowledge as priors can be very useful – potentially reducing the 
number of samples needed to be taken to ensure a suitably powerful statistical analysis. However, arguments 
against Bayesian approaches tend to be centred on the selection of prior values, and their often arbitrary nature 
(Wilson, 2010). The use of biologically relevant data, such as used here, should result in more meaningful 
priors. Essentially, here, two sets of data are being combined, one relating to biological knowledge of 
individuals (based on previous sightings), and the second being related to new sightings. However, from the 
simulation results, it is clear that this approach has not worked in this instance.  
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In the current case, the Bayesian approach would essentially mimic human intuition. Seeing an individual in 
the same place on countless occasions would result in a likely increase in the likelihood of identifying an 
individual, of which you were unsure of, as being the commonly seen individual. However, counter intuitively, 
this appears not to be the case, especially when similar looking transient species – or initial mis-identification 
of individuals can occur.  

These results are important, even if describing a process that does not work. Given the intuitive nature of 
such a technique, it would be logical to apply such a process in field studies. However, it is only through the 
process of computer simulations that the ‘real’ individual was known for each sighting, and therefore the 
accuracy of the Bayesian modification can be calculated. While statistical approaches to improve precision of 
citizen science reporting, or improve identification rates of photograph ID are important (Stafford et al., 2010), 
it is often only through computer-based simulation that evaluation of such techniques involving uncertain data 
can be conducted.      
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