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Abstract. An uncertainty cascade model applied to stream
flow forecasting seeks to evaluate the different sources of un-
certainty of the complex rainfall-runoff process. The current
trend focuses on the combination of Meteorological Ensem-
ble Prediction Systems (MEPS) and hydrological model(s).
However, the number of members of such a HEPS may
rapidly increase to a level that may not be operationally sus-
tainable. This paper evaluates the generalization ability of a
simplification scheme of a 800-member HEPS formed by the
combination of 16 lumped rainfall-runoff models with the 50
perturbed members from the European Centre for Medium-
range Weather Forecasts (ECMWF) EPS. Tests are made at
two levels. At the local level, the transferability of the 9th
day hydrological member selection for the other 8 forecast
horizons exhibits an 82 % success rate. The other evalua-
tion is made at the regional or cluster level, the transferabil-
ity from one catchment to another from within a cluster of
watersheds also leads to a good performance (85 % success
rate), especially for forecast time horizons above 3 days and
when the basins that formed the cluster presented themselves
a good performance on an individual basis. Diversity, defined
as hydrological model complementarity addressing different
aspects of a forecast, was identified as the critical factor for
proper selection applications.
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1 Introduction

The competency of probabilistic forecast to encompass the
many sources of uncertainty in Hydrological Ensemble Pre-
diction Systems (HEPS) has already been demonstrated
(Roulin, 2007; Rousset et al., 2007; Velázquez et al., 2011).
Yet the simultaneous consideration of the uncertainty asso-
ciated with both the meteorological inputs and the structural
and parametric configuration of the hydrological models can
lead to systems consisting of too many members to be com-
putationally and operationally implementable.

Nonetheless, reliability as a crucial feature in ensemble
forecasting may be achieved through the uncertainty cascade
model as proposed byPappenberger et al.(2005). This ap-
proach states that the output uncertainty of a hydrological
model is affected by several components: uncertainty from
the meteorological data used to drive the model, initializa-
tion uncertainty (i.e. the initial state of the model), and the
model uncertainty (from parameter identification to model
conceptualization).

Combining information derived from the many Meteoro-
logical Ensemble Prevision Systems (MEPS) is an avenue
that has been shown to improve early flood warning systems
(He et al., 2009) – the THORPEX Interactive Grand Global
Ensemble (TIGGE) (Bougeault et al., 2010) favours this new
opportunity. Moreover, if the parametric uncertainty of hy-
drological models is assessed under the principle of equifi-
nality (Beven and Binley, 1992) and if the structural uncer-
tainty is tackled through a multi-model approach, the number
of scenarios in the uncertainty cascade model may rapidly
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turn out to be quite large. Simplification of such a HEPS thus
becomes a mandatory step from an operational standpoint.

In such a context, the hydrological and meteorological
community has focused their efforts on many lines of simpli-
fication. For instance,Pappenberger et al.(2005) evaluated
10-day ahead rainfall forecasts, consisting of one determin-
istic, one control, and 50 ensemble forecasts, into a rainfall-
runoff model (LisFlood) for which parameter uncertainty
was represented by six different parameter sets identified
through a Generalized Likelihood Uncertainty Estimation
(GLUE) analysis and functional hydrograph classification.
Raftery et al.(2005) proposed the Bayesian Model Aver-
age methodology (BMA) as a means for the statistical post-
processing of the forecast ensembles derived from numeri-
cal weather prediction models. The BMA predictive prob-
ability density function (PDF) is a weighted average of the
PDFs centred on the bias-corrected forecasts from a set of
different models. The weights assigned to each model re-
flect that model’s contribution to the forecasting skill over
a training period (Vrugt et al., 2006). In line with that,Vrugt
et al.(2008) proposed evaluating BMA weights with the Dif-
feRential Evolution Adaptive Metropolis (DREAM) Markov
Chain Monte Carlo (MCMC) algorithm.

Other studies identified the meteorological forecasts as
the most uncertain component of the cascade model (Todini,
2004; Pappenberger et al., 2005; Jaun et al., 2008), trigger-
ing interest in novel member selection techniques. For ex-
ample,Marsigli et al.(2001); Molteni et al.(2001) andJaun
et al. (2008) select MEPS members based on lagging en-
sembles, and derived representative members through hier-
archical clustering over the domain of interest.Ebert et al.
(2007) analysed the relation between the atmospheric circu-
lation patterns and extreme discharges to select representa-
tive members of MEPS. Finally,Xuan et al.(2009) establish,
in a deterministic way (“best match” approach), the location
of the forecast that is the most similar to the rainfall pattern
of the catchment.

In the companion paper,Brochero et al.(2011) described
in depth the hydrological member selection methodology
adopted here: a Backward Greedy Selection combined with
Cross Validation, hereafter BGS-CV, to retain the uncer-
tainty properties of a 800-member HEPS derived from the
fifty members of the European Center for Medium-range
Weather Forecasts (ECWMF) propagated through sixteen
simple lumped hydrological models.

Another aspect of particular interest in the evaluation of
probabilistic forecast, and therefore in hydrological member
selection, is the identification of a pertinent criteria set. In
conventional forecasting, i.e. when confronting an observa-
tion against a single prediction, it is now generally accepted
that the calibration of hydrological models should be ap-
proached as a multi-objective problem (Gupta et al., 1998,
1999; Yapo et al., 1998; Wagener et al., 2001; Confesor and
Whittaker, 2007). Probabilistic forecasting is not different
in that regard. In fact, the complexities of confronting an

observation against an ensemble of predictions calls for a va-
riety of criteria, here called scores, that specifically focus on
one or more characteristics of the probabilistic sets. So, to
assess these properties, several statistical measures should
be considered concurrently (Wilks, 2005; Cloke and Pappen-
berger, 2009). Few studies have experimented hydrological
member selection from a multi-score point of view.

Vrugt et al.(2006) posed the BMA inverse problem in a
multi-objective framework, examining the Pareto set of so-
lutions between the Continuous Ranked Probability Score
(CRPS), the Mean Absolute Error (MAE), and the Ignorance
Score with the AMALGAM method (Vrugt and Robinson,
2007). In continuity with that, the companion paper shows
that a combined criterion which groups various characteris-
tics of the probabilistic forecast is adequate to guide the se-
lection of hydrological members with BGS-CV method. At
this point, it is important to note that the BGS-CV method of-
fers the possibility of combining results from different stud-
ies, which is highlighted as one of the aspects related to the
improvement of HEPS (Cloke and Pappenberger, 2009).

In this paper we evaluate the generalization of a simplifi-
cation scheme of the complex 800-member HEPS presented
in Sect.2. A brief description of the selection of hydrologi-
cal members is given in Sect.3. The generalization method-
ology, with local and regional orientation, is explained in
Sect.4. Thus, we test the hydrological members’ selection
obtained in sixteen catchments for the 9-day lead time, for
the other 8 lead times. Additionally we evaluate the abil-
ity to extrapolate the selections to neighbouring catchments.
Finally we present the integration of results from different
catchments within a regional framework. Results and discus-
sion are gathered in Sect.5, while conclusions and a guide-
line for future work are given in Sect.6.

2 HEPS configuration and catchment locations

As already mentioned, the 800-member HEPS at hand
is the propagation of 50 perturbed members from the
ECMWF EPS, that are a priori assumed to be equally likely
(Gouweleeuw et al., 2005), through sixteen lumped hydro-
logical models. Details of the HEPS conformation can be
found inBrochero et al.(2011).

This HEPS was implemented over 28 French catch-
ments, representing a large range of hydro-climatic condi-
tions (Fig.1), and evaluated over a 17-month period. The
main characteristics of these catchments are summarized in
Table1. Henceforth each basin in Table1 will be identified
only with the first three characters.

It is important to note that this study focuses on evaluat-
ing the probabilistic hydrological forecasting from a cooper-
ative point of view seeking diversity in the final hydrologi-
cal members’ selection, i.e. that each member acts as a com-
plement to the others. This clarification is relevant in order
to avoid misinterpretation of competitiveness in the different

Hydrol. Earth Syst. Sci., 15, 3327–3341, 2011 www.hydrol-earth-syst-sci.net/15/3327/2011/



D. Brochero et al.: Simplifying a hydrological ensemble prediction system, Part 2 3329

Table 1. Main characteristics of the studied basins (mean annual values) based on a 36 year length of the series (1970–2006).

Catchment Area P ET Q Catchment Area P ET Q
codes (km2) (mm) (mm) (mm) codes (km2) (mm) (mm) (mm)

A6921010 2780 3.04 1.79 1.18 M0680610 7380 2.04 1.93 0.56
A7930610 9387 2.78 1.80 1.21 O3401010 2170 3.19 1.80 1.90
A9221010 1760 2.49 1.83 0.91 Q2593310 2500 2.52 2.24 0.75
B2130010 2290 2.57 1.80 0.87 U2542010 4970 3.63 1.75 1.88
B3150020 3904 2.58 1.80 1.09 A7010610 6830 2.99 1.78 1.46
H2482010 2982 2.31 1.89 0.84 H6221010 2940 2.50 1.83 0.92
H3621010 3900 1.98 1.95 0.45 M3600910 3910 2.31 1.88 0.80
H5321010 8818 2.41 1.85 0.93 K1341810 2277 2.65 1.89 1.02
J8502310 2465 2.36 1.89 0.81 M1531610 7920 1.85 1.95 0.36
K1773010 1465 2.65 1.94 1.07 P7001510 1863 2.88 2.08 1.19
K7312610 1712 2.13 2.01 0.68 P7261510 3752 2.65 2.14 0.87
M0421510 1890 2.04 1.89 0.62 U2722010 7290 3.63 1.79 2.07

P: precipitation, ET: potential evapotranspiration, Q: flow. For the distinction of the basins used in training and testing, the latter are highlighted in bold.
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Fig. 1. Location of the catchments grouped by clusters. Some of
them have been used in the BGS-CV process, while the others have
been used for extrapolation. The colours identify the five regions
evaluated in this paper.

conceptualizations of the sixteen hydrological models used.
It should be clear that the comparison would not be fair be-
cause some models such as the GR4J were specifically de-
vised for the catchment scale, whereas others have suffered a
series of substantial changes bringing them to a lumped state.

3 Hydrological members’ selection

The hydrological members’ selection is described in detail in
the companion paper (Brochero et al., 2011). It is executed
basically in three steps:

Step 1: Resampling with a variation of the k-fold cross-
validation. Because the series are short-length (500 forecast-
observation pairs), a rigorous application of the selection re-
quires evaluating different types of events in the training, val-
idation, and test sets. Thus, the process of selecting data fol-
lows ak-fold cross-validation technique.

Step 2: Backward greedy selection. Optimization for
a preselected number of hydrological members (nmim) re-
lies on the Combined Criterion (CC), which brings together
the Continuous Ranked Probability Score (CRPS), the IGNo-
rance Score (IGNS), the Mean Squared Error (MSE) evalu-
ated in the Reliability Diagram (RD), theδ ratio evaluated in
the rank histogram and the MeDian of Coefficients of Varia-
tion (MDCV):

CC = w1
CRPSse

CRPSie
+ w2

z1 − IGNSse

z1 − IGNSie
(1)

+ w3
RDMSEse

RDMSEie

+ w4
δse

δie
+ w5

z2 − MDCVse

z2 − MDCV ie
,

where the result of each criterion in the selection ensem-
ble (se subscript) is divided by the criterion calculated on
the initial 800-member HEPS (ie subscript).zm represents
some thresholds to orient a direct minimization;wcp are the
weights assigned to each component. Here, the weight as-
signed to the reliability (the critical factor) is twice that of
the other factors, which have a unit weight.

The mechanism of member elimination begins with all
members, removing at each step the hydrological member
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that, when it is removed, has the greater impact on the train-
ing set error (i.e. minimises training error the most).

Step 3: Combination of results. It is highly likely that vari-
ability in the five experiments configured in the first step will
lead to different solutions. An integration mechanism is thus
needed for a global solution for each catchment. The im-
portance of each hydrological member within the ensemble
is then assumed as being directly proportional to the itera-
tion number at which it was eliminated during the selection
process in each experiment.

Attention is given to the interpretation of results of
the final hydrological members’ selection, because if the
HEPS is driven by a MEPS with interchangeable members
(e.g. ECMWF EPS), the selection should be directed more
clearly to a method of selection and weighting of hydrolog-
ical models based on their participation in the final selected
subset. Therefore, in the simplest case, we can create a new
simplified high-performance HEPS using the same propor-
tion of the hydrological members associated with a random
choice of the meteorological members.

Note that the CC could be used to compare the perfor-
mance of the hydrological members’ selection with respect
to the 800-member set. So, in a general framework, if all
features of the ensemble forecast have the same importance,
one members’ selection with equal performance to the 800-
member set will lead to a CC equal to 5, values lower than 5
indicate a selection of higher performance than the base set
of 800 members, and values greater than 5 indicate the detri-
ment of some feature of the 800-member set. Hereafter, this
particular condition of unit weights in the CC will be called
the normalized sum (NS). This distinction is important to dis-
play the priority that can be defined a priori to any feature in
the hydrological members’ selection training with BGS-CV.

It is important to note that the normalized sum may hide
some deterioration compensated by one or more other met-
rics. It is thus necessary to accompany this measure with the
results of each of its components, for a collective analysis.
In this sense, the analysis is facilitated if each component is
associated with an index that reflects the gain or loss of the
selected subset over the initial 800-member set:

Gain(%) = 100 ×
Scoreie − Scorese

|Scoreie|
. (2)

Note that the absolute value is used in the denominator
for accounting for possible negative values of the IGNS. The
MDCV function further requires the inversion of the numer-
ator, because the purpose of this metric is to maximize the
dispersion of the selected subset of hydrological members.

4 Generalization test methodology

The generalization ability of a hypothesis, namely, the qual-
ity of its inductive bias, can be measured if there is access to
data outside of the training process. The methodology pro-
posed in the companion paper simulates this by dividing the

training set into two parts. One part is used for training (i.e. to
find a hypothesis) and the remaining part (validation set) is
used to test the generalization ability. Nevertheless, if it is
necessary to report the error to approximate the expected se-
lection error, it is compulsory to make use of a third set, a test
set, sometimes also called the publication set, containing ex-
amples not used in training or validation (Alpaydin, 2010;
Hudson and Demuth, 2011).

Thus, the method of combining results, based on the mean
rank of elimination, is derived on the use of all series as
a means of optimizing the use of information in a short-
length series (seen from the point of view of the periodicity
of the hydrological cycle). However, results of this procedure
can be conceived as indicators of a relative performance or
otherwise as an optimistic estimate of the hydrological mem-
bers’ selection process (Diamantidis et al., 2000).

Figure2 shows the generalization or test methodology of
the hydrological members’ selection at two levels: the lo-
cal focuses on the extrapolation of results to different FTH
within the same catchment and another named regional,
while the regional level tests the temporal and spatial perfor-
mance in nearby catchments, or under a broader perspective
on the integration of regional results.

4.1 Extrapolation to different forecast time horizons

The hydrological members’ selection is performed on the
results of sixteen hydrological models fed with the 9th day
FTH of the ECMWF MEPS. Thus, the application of this se-
lection of members for the other eight FTHs (1 to 8 days) is
a first level test. It has to be stressed that the idea of simpli-
fying the HEPS is only valuable if the hydrological member
selection is invariant in regard to the FTH. However, one may
always argue that the assumption of statistical independence
between the test and training data, principally for FTHs next
to the ninth, may be somewhat questionable.

4.2 Extrapolation to a different catchment

Transferring selected members to a neighbouring catchment,
and even further to a different FTHs, constitutes a rigorous
test of the generalization ability of results at both the tempo-
ral and spatial scales. The choice of the second catchment
could first be viewed as a simple nearest neighbour prob-
lem. However, we explored the possibility of regionalizing
the selection of hydrological members from the grouping of
catchments byk-means clustering and subsequent integra-
tion of results to select the most representative hydrological
members.

4.2.1 k-means clustering

The k-means clustering algorithm is used to define 5 re-
gions based on the combination of different characteris-
tics of the catchments, such as geographic location of the
basin outlet, minimum, mean, and maximum precipitation,
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Fig. 2. Generalization test methodology for the hydrological members’ selection found with BGS-CV.

evapotranspiration and flow (see Table1). Of course, every
possible combination of features will yield a different distri-
bution of catchments that will be evaluated through the inte-
gration mechanism that will be presented in Sect.4.2.2.

It is convenient at this point to define some notation to
describe the assignment of catchments to a region or clus-
ter. The property setxl for each catchment is introduced into
a corresponding set of binary indicator variablesbl

k ∈ {0, 1},
wherek = 1, ...,K describe which of theK clusters the catch-
ment l or its property setxl is assigned to, so that ifxn is
assigned to clusterk thenbn

k = 1, andbn
j = 0 for j 6= k. Then

an objective function is given by:

J =

L∑
l=1

K∑
k=1

bl
k‖x

l
− mk‖

2, (3)

which represents the sum of the squares of the distances of
each catchment to its assigned vectormk. The goal is to find
values for thebl

k and themk so as to minimiseJ . Then the
iterative application of Eq. (3) leads to the following proce-
dure for finding themk centres:

Algorithm 1 k-means pseudo-code
1. Define the number of clusters (K), (hereK = 5)
2. Initialize randomly centresmk (k = 1,··· , K)
repeat

for all xl , l = 1,...,L do

bl
k =

{
1 l = argmink‖x

l
− mk‖

0 otherwise

end for
for all mk do

mk =

∑L
l=1 bl

k xl

bl
k

end for
until mk converges

Details of thek-means clustering algorithm are given by
Bishop (2006). Figure1 shows an example ofk-means clus-
tering results based only on the geographic location of the
basin outlets.

4.2.2 Regional integration mechanism

The hydrological members’ selection integration for re-
gion X, consisting ofC catchments, is defined from matrix
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S, which hasC columns withnmin rows representing the
mostnmin important hydrological members as assessed by
the mean rank of elimination (R) for each catchment. Then,
the process of forming a regional solutionrs with q mem-
bers is based on taking the most important members of each
catchment without replacement until the number of members
in rs is equal to the desiredq, i.e. each member cannot be se-
lected again later. Algorithm2 details this procedure:

Algorithm 2 Regional integration mechanism pseudo-code
1. Determine theC catchments in theX region (clustering
process).
2. Define the matrixS= {s1, s2, ···, sC}

3. Establish the number of hydrological membersq in the
regional solutionrs
4. Initialize rs = {}, h = 0 andi = 1
repeat

for j = 1, ..., C do
if Si,j /∈ rs then

rs = rs +Si,j

h =h + 1
end if

end for
i = i + 1

until h >q

4.2.3 Diversity evaluation

The participation of hydrological models in the regional se-
lection stresses the importance of the integration of models
with different characteristics. To view this in a deterministic
framework, an index based on the performance rank assigned
to each model in each catchment is proposed. Its calculation
is summarized as follows:

– MSE for catchmenti and hydrological modelj is first
calculated (MSEi,j ).

– Performances are next ranked for each catchment, lead-
ing to PRi,j , for which the model with the lowest MSE
is assigned the rank PR = 16 and the highest MSE is as-
signed the rank PR = 1.

– Finally, the mean rank of performance or rank index RIj

for each model is estimated based on the results of all
28 basins:

RIj =
1

28

28∑
i=1

PRi,j . (4)

5 Results and discussion

In the companion paper we have shown the high performance
of the 800-member HEPS for the 9th day FTH. However, as

one of the objectives of this paper is to show the transferabil-
ity of the hydrological members selections to other FTHs,
it is necessary to show the performance of the 800-member
HEPS in such scenarios to clearly establish our point of ref-
erence concerning the quality of the hydrological members’
selection. In the companion paper we also stressed that on
theδ ratio and the RDMSE scores rest the main advantages of
the 800-member HEPS.

Figure3 shows the HEPS’ behaviour with different set-up
and different FTH. Results focus on the reliability (RDMSE)
and the ensemble consistency (δ ratio) for two schemes
formed from sixteen hydrological models, one led by the de-
terministic ECMWF forecast and the other by the 50 per-
turbed members from ECMWF EPS. The results in Fig.3,
expressed in terms of interquartile range (iqr) and median,
are due to the grouping of the scores obtained in the 28 basins
evaluated here. Note that theδ ratio and RDMSE scores are
directly comparable since their scale is independent of the
measured variable.

Figure 3 illustrates that the 800-member HEPS advan-
tages becomes apparent after the 4th day FTH. According to
Velázquez et al.(2011), part of this difficulty may be inher-
ited from the meteorological ensembles, which are not reli-
able prior to about a 3-day lead time. Furthermore the spread
in the results of both the RDMSE and theδ ratio, viewed
from the interquartile range, shows two features: first, the 16-
member HEPS has greater dispersion than the 800-member
HEPS, and second, the 800-member HEPS spread dimin-
ishes with increasing lead time.

5.1 Selection process

The optimal number of hydrological members simplifying
the HEPS was identified in the companion paper to be be-
tween 50 and 100, depending on the catchment. In most
cases a significant gain with respect to the balance of the dif-
ferent criteria evaluated from the initial 800-member HEPS
was then achieved. Results presented in this section are based
on a selection of 50 hydrological members.

Table 2 presents the results of the 50-member selection
based on the combined criterion, for 16 catchments uni-
formly distributed over France (see Fig.1). The overall per-
formance is the normalized sum given by Eq. (1) with unit
weights definition, values lower than 5 indicate a selection
of higher performance than the base set of 800 hydrological
members, and values greater than 5 indicate the detriment of
any feature of the 800-member set.

To facilitate the visualization of results, Table2 shows the
performance of one selection oriented with the hydrological
members’ proportion found in the BGS-CV process. How-
ever, Fig.4 and6 present an analysis that shows the perfor-
mance of multiple selections oriented by the BGS-CV so-
lution and a random choice of the meteorological members
from ECMWF.
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Fig. 3. Interquartile range (iqr) of RDMSE andδ ratio assessed in the 28 catchments under two HEPS schemes: 16-member HEPS (16 hy-
drological models are driven by the deterministic forecast from ECMWF) and the 800-member HEPS (16 hydrological models are driven by
the 50-perturbed member forecast from ECMWF).

Table2 shows that in all cases the normalized sum (NS)
is always lower than 5, indicating the superiority of the
50-member HEPS, even after a size reduction equivalent
to a 94% compression of the initial 800-member HEPS
(i.e. 750 members are removed).

Based on the gain score formulation (Eq.2), it is noted that
for the 50-member selection, the CRPS and the MDCV show
low variability with mean gain indexes around 2 % and 5 %,
respectively.

RDMSE shows a minimum gain of 49 % (catchment B21)
and a maximum gain of 87 % (catchment K17), reflecting
the emphasis given to this property in the formulation of the
combined criterion used in the selection process. With re-
spect to the IGNS, index gains between−5 % and 27 % (ex-
cluding the catchment B21) reflect an acceptable behaviour.

Finally, theδ ratio is the score more difficult to minimise
or preserve; a positive index gain was obtained for only 25%
of the cases (4/16), while the spread ranged from−39 % for
catchment H53 to 27 % for catchment B31. Note that theδ

ratio has an inverse relationship with the number of mem-
bers of the selection, so it directly follows the complexity in
maintaining the value of the initial 800-member HEPS in the
selection process. Nonetheless, it was shown in the compan-
ion paper that theδ ratio is the best individual metric for the
hydrological members’ selection.

5.2 Generalization test

5.2.1 Local analysis

For operational convenience, it is fundamental that the 50 hy-
drological members selected for the 9th day FTH are also ap-
propriate for the 8 previous time horizons. A lack of transfer-
ability of the selected members would considerably reduce
the actual level of achieved simplification.

Here, temporal transferability is first evaluated comparing
the normalized sum of the performance of the 50-member se-
lection to the 800-member performance, whose normalized
sum equals 5 in all cases. It is then compared to the per-
formance of 200 random combinations with 50 hydrological
members, in order to evaluate if any good performance may
only be attributable to chance. Results for the 8 first FTHs
and sixteen basins are gathered in box-plot diagrams (Fig.4),
where the performance of the solution is based on random
experiments that are set-up following these guidelines:

– Experiments considering the participation of hydrologi-
cal models found with BGS-CV: taking into account the
participation of hydrological models to assign to each
model a number of members chosen randomly from
ECMWF EPS.

– Without considering any “a priori” participation of hy-
drological models: hydrological members are picked
randomly from the initial 800-member HEPS.

www.hydrol-earth-syst-sci.net/15/3327/2011/ Hydrol. Earth Syst. Sci., 15, 3327–3341, 2011
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Table 2. Selection of 50 hydrological members based on combined criterion and the BGS-CV process on the 9-day FTH. Beside each score
is presented the gain index evaluated by Eq. (2). NS represents the normalized sum (Eq.1 with unit weights). NHM indicates the number of
hydrological models participating in the selection. RDMSE values are expressed on a 10−3 basis.

Catchment
Codes

Scores MDCV
function

NS NHM
CRPS RDMSE δ IGNS

A69 0.284 (+0 %) 1.3 (+81 %) 1.5 (+18 %) 0.67 (+14 %) 0.39 (+5 %) 4.0 9
800 members 0.284 7.0 1.8 0.78 0.37 5.0 16

A79 0.254 (+3 %) 1.5 (+69 %) 3.6 (−11 %) 0.34 (+23 %) 0.41 (−1 %) 4.4 11
800 members 0.263 5.1 3.3 0.44 0.41 5.0 16

A92 0.183 (+4 %) 0.3 (+86 %) 2.3 (−28 %) −0.42 (+27 %) 0.57 (+0 %) 4.4 11
800 members 0.192 2.4 1.8 −0.33 0.57 5.0 16

B21 0.232 (−1 %) 1.2 (+49 %) 2.6 (−16%) −0.18 (−38%) 0.63 (+9 %) 4.6 13
800 members 0.230 2.4 2.2 −0.29 0.57 5.0 16

B31 0.134 (+1 %) 1.3 (+72 %) 2.0 (+27 %) −0.84 (−5 %) 0.24 (+7 %) 4.0 11
800 members 0.135 4.5 2.7 −0.88 0.22 5.0 16

H36 0.157 (+2 %) 0.7 (+80 %) 2.0 (−37%) −1.02 (+2 %) 0.36 (−1 %) 4.5 14
800 members 0.161 3.5 1.5 −0.99 0.37 5.0 16

H53 0.165 (+3 %) 1.9 (+74 %) 4.3 (−39 %) −0.76 (+8 %) 0.36 (+8 %) 4.6 11
800 members 0.171 7.4 3.1 −0.71 0.33 5.0 16

H24 0.180 (+2 %) 2.2 (+68 %) 3.8 (−32%) −0.82 (+9 %) 0.37 (+6 %) 4.6 12
800 members 0.185 7.1 2.9 −0.76 0.35 5.0 16

K17 0.205 (+4 %) 0.5 (+87 %) 1.8 (−9 %) −0.73 (+12 %) 0.38 (−2 %) 4.2 12
800 members 0.213 3.6 1.7 −0.65 0.39 5.0 16

U25 0.290 (+0 %) 0.9 (+74 %) 2.6 (−1 %) −0.40 (+13 %) 0.38 (+7 %) 4.2 14
800 members 0.289 3.4 2.5 −0.36 0.35 5.0 16

J85 0.159 (+2 %) 0.4 (+80 %) 1.7 (−5 %) −1.00 (+2 %) 0.40 (+8 %) 4.2 14
800 members 0.163 2.2 1.7 −0.98 0.37 5.0 16

K73 0.160 (+3 %) 0.9 (+70 %) 2.1 (−5 %) −0.93 (+0 %) 0.38 (+9 %) 4.3 11
800 members 0.165 3.1 2.0 −0.93 0.35 5.0 16

M04 0.158 (+1 %) 0.6 (+68 %) 1.6 (−2 %) −0.98 (−1 %) 0.37 (+2 %) 4.3 13
800 members 0.160 1.7 1.6 −0.99 0.37 5.0 16

M06 0.153 (+4 %) 0.3 (+79 %) 1.6 (−4 %) −1.09 (+6 %) 0.39 (+1 %) 4.2 13
800 members 0.159 1.4 1.5 −1.03 0.38 5.0 16

O34 0.166 (+2 %) 1.0 (+71 %) 1.6 (+1 %) −0.91 (+5 %) 0.37 (+3 %) 4.2 13
800 members 0.169 3.5 1.6 −0.86 0.36 5.0 16

Q25 0.159 (+3 %) 0.6 (+73 %) 1.1 (+22 %) −0.94 (−5 %) 0.39 (+4 %) 4.0 12
800 members 0.163 2.1 1.4 −0.98 0.37 5.0 16

Figure4 shows that the median of 200 evaluations of 50-
member HEPS for the 9th day FTH is superior to the 800 ref-
erence members in 82 % of the evaluated cases. It is also
noteworthy that in only 11 % of the cases (14/128) the 50 hy-
drological members selected oriented by the BGS-CV pro-
cess lead to a worse performance than the 25 percentile of
200 random combinations test. Note that all these cases cor-
respond to short lead times (1 to 3 days), remarkably in the
2-day FTH. Another aspect that draws attention is the low
dispersion of the BGS-CV selections represented by the in-
terquartile range, highlighting the importance of the hydro-
logical models participation in the selection process.

Figure 4 also shows that the selection slowly loses effi-
ciency as it moves away from the 9th day FTH. It also detects
a systematic deficiency for catchment A69 and to a lesser ex-
tent for catchment B21. Nonetheless, these results are very
encouraging.

5.2.2 Regional analysis

As described in Sect.4.2, the regional analysis assesses the
generalization ability of the hydrological member selection
for a specific catchment with respect to another one. For ex-
ample, Fig.5 explores the transferability of the 50-member
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(c) FTH = 3 days
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(d) FTH = 4 days
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(e) FTH = 5 days
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(f) FTH = 6 days
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(g) FTH = 7 days
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(h) FTH = 8 days
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Fig. 4. Evolution of the normalized sum (NS) to evaluate the response sensibility with regard to the interquartile range (iqr) of 200 random
experiments in different FTHs following these guidelines: (1) Considering the participation of hydrological models found with BGS-CV
(vertical blue bars), and (2) Without regard to any “a priori” participation of hydrological models, i.e. completely random selection (vertical
cyan bars).

selection obtained for catchment Q25 for a lead time of
9 days to catchment P72 for the 4-day lead time.

In general, Fig.5 shows that results for the different scores
are very similar for the 800-member and 50-member sets, ex-
cept for the RDMSE where the gain index reaches 51 %. In
particular, Fig.5a shows that the 50-member CRPS equals
the reference value. Taking into account that the CRPS gen-
eralizes the mean absolute error (CRPS) for a point forecast
(Gneiting and Raftery, 2007), it is important to stress that the
CRPS values are always lower than the MAE values, when
the deterministic counterpart was taken as the mean of each
daily ensemble, in agreement with results obtained by other
authors (Boucher et al., 2009; Velázquez et al., 2011).

Another remarkable feature of CRPS is its direct relation-
ship with the flow magnitude; the shapes of the CRPS and of
the hydrograph are similar.

A direct strategy of optimization could then focus on
removing the hydrological members that have a large im-
pact on the daily extreme CRPS values. Note also that the

selection not only preserves the mean CRPS (0.16) but also
the structure of the CRPS series.

Figure5b shows that the trimmed mean IGNS for the 50-
member HEPS (−1.65) also presents an improvement over
the initial value (−1.59). Regarding the time structure of
the IGNS, it is observed that both the 50-member and 800-
member series have high values for extreme events, showing
a systemic problem in terms of ensemble bias.

With regard to the reliability diagram, Fig.5c shows a con-
siderable agreement improvement (4.21× 10−3) over the ini-
tial value (8.67× 10−3). This gain in reliability may be
traced back to the optimization criterion used: the combined
criterion (CC) that focuses primarily on system reliability as
defined by its weights. Similarly, Fig.5d reveals that the
rank histograms have a nearly uniform distribution, even if
the first and the last rank reflect a slight bias. Those imper-
fections demonstrate the difficulty inherent in minimizing the
δ ratio.
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Opt. criterion = CC. Train = Catchment Q2593310 − FTH = 9. Test = Catchment P7261510 − FTH = 4

Reference values (800 members) P7261510 → CRPS = 0.132, RD(e−3) = 8.67, δ = 3.2, MDCV = 0.15, IGNS = −1.59

Fig. 5. Comparison between the initial ensemble (800 members) and the ensemble selected (50 members) for a lead time of 9 days.(a) Figure
above: observed flow; figure below: CRPS (x-axis formatted as: day/month). Note the correspondence between higher observed flows and
higher CRPS.(b) Figure above: observed flow; figure below: IGNS (x-axis formatted as: day/month).(c) Reliability diagram error (MSE
based on vertical distances between the points).(d) Rank histogram for the 50 hydrological members selected. The horizontal dashed
line indicates the frequency (N/d + 1) attained by a uniform distribution.(e) Occurrences of the employed models in the final solution of
50 hydrological members.

Figure5e illustrates the occurrence of each lumped model
within the 50-member hydrological ensemble. A wide selec-
tion of models alone could justify the multi-model approach
advocated here. Results show that 12 models out of 16 were
selected in this case, and that no models were selected more
than 9 times. Knowing that these models are not of equal
quality with regards to MSE performance, for instance, this
suggests that the selection favoured a diversity of errors. At
the end of the selection process, the MDCV has slightly in-
creased, from 0.15 to 0.16.

To display an overview of the extrapolation of results to
the nearest basin, Fig.6 shows such an assessment under
the same selection schemes analysed in Fig.4, i.e. analyzing

various combinations considering or ignoring the solution
found with BGS-CV. Although in general the solution found
with BGS-CV (red stars in Fig.5) exhibits the highest per-
formance, given the interchangeability of MEPS members as
input of hydrological models, solutions focus on comparing
the median of the evaluations that follow the participation of
hydrological models found with BGS-CV.

Additionally, it is clear that the dispersion of the BGS-
CV selections, evaluated from the interquartile range, is less
than that assessed in completely random selections. Like-
wise, the median of the BGS-CV selections is usually better
than the reference set of 800 hydrological members, which
corresponds to a normalized sum equal to 5.
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(f) FTH = 6 days
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(h) FTH = 8 days
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(i) FTH = 9 days
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Fig. 6. Evolution of the normalized sum (NS) to evaluate the response sensibility of the extrapolation of results in the nearest catchments.
Each vertical bar represents the interquartile range (iqr) of 200 combinations of 50 hydrological members under the following guidelines: the
combination is oriented with the same proportion of hydrological models found with BGS-CV (blue vertical bars), the selection is completely
random (cyan vertical bars). Note the deficiency of the selections’ extrapolation in basin A69 to basin A79, notably for early lead times (2 to
5 days); these results do not appear in the figure because they are above 7.

Another aspect that stands out in the extrapolation is the
recurrent deficiency of selection in the basins A69, A92,
B21 and B31, i.e. 25 % of the basins tested. Initially, the
deficiency in these basins at different FTHs shows the tem-
poral consistency of HEPS, as if the deficiency of a given
selection disappears at certain lead times would reflect in-
consistency of the selection task.

Likewise, it is noteworthy that extrapolation of the results
of selection in the basins A69, A79 and B21 are tested in
the basin A70; however, only the results of the hydrological
members’ selection in the basin A79 show considerable effi-
ciency in most of the FTHs evaluated. It follows that while
the geographic location of the basin outlet is an acceptable
feature to run the extrapolation of results, it is not sufficient
in some cases, which requires a more detailed analysis of
other factors such as hydrometeorological and physiographic
characterization of the basins.

The regional analysis that integrates several basins, which
seeks to identify features that facilitate the combination of
results, revealed that geographical location is the most im-
portant feature, followed by evapotranspiration, precipitation
and flow, when the normalized sum is used to evaluate the
gain. However, consideration of the geographic location was
found to be sufficient. Such results are presented in Table3,
after application of thek-means algorithm and the regional
integration procedure already described in Sect.4.2.2.

Note that the results in Table3 are due to the evaluation
of one combination of MEPS members randomly chosen,
but respecting the participation of hydrological models found
with BGS-CV. Additionally, for purposes of extrapolation of
results, in the evaluation of the normalized sum, a threshold
z1 equal to−4 was used, because in the first lead times (1 to
4 days) some values lower than−2 were obtained for the
trimmed mean IGNS.
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Table 3. Test based on the normalized sum in new catchments and different FTHs of regional integration given by the analysis of clusters by
geographical location of the basin outlets. Values lower than 5 determined that the scores of selection are better than the reference set. See
clusters’ distribution in Fig.1. In each cluster, the catchments highlighted in bold represent the series that are not used by the hydrological
members’ selection training methodology.

FTH
Cluster 1 Cluster 2

H24 K17 U25 K13 K52 U06 U24 U27 J85 K73 M04 M06 H93 M15 M36

1 5.08 5.25 5.06 5.19 5.36 5.20 5.15 5.12 4.96 5.19 5.09 5.07 5.06 5.09 4.96
2 5.17 5.18 5.12 5.07 5.24 5.02 5.36 5.04 5.03 4.97 4.97 4.89 4.85 4.90 5.00
3 4.89 4.85 4.87 4.71 5.01 4.60 4.86 4.78 4.66 4.63 4.67 4.73 4.71 4.70 4.67
4 4.50 4.56 4.69 4.26 4.76 4.53 4.68 4.59 4.67 4.57 4.72 4.71 4.70 4.71 4.60
5 4.82 4.56 4.56 4.31 4.85 4.54 4.76 4.68 4.70 4.33 4.51 4.54 4.40 4.43 4.29
6 4.99 4.74 4.86 4.59 4.87 4.59 4.76 4.79 4.41 4.47 4.53 4.29 4.49 4.53 4.34
7 4.50 4.52 4.42 4.58 4.74 4.50 4.52 4.50 5.01 5.04 5.00 4.81 4.77 4.80 4.80
8 4.38 4.25 4.27 4.16 4.71 4.22 4.33 4.33 4.43 4.61 4.78 4.62 4.47 4.84 4.41
9 4.50 3.97 4.09 4.04 4.36 4.07 4.32 4.17 4.09 4.32 4.59 4.39 4.31 4.39 4.22

FTH
Cluster 3 Cluster 4 Cluster 5

O34 Q25 P70 P72 B31 H36 H53 H62 A69 A79 A92 B21 A70

1 4.88 4.68 4.74 4.78 5.69 5.21 4.92 5.09 4.20 4.78 4.42 4.98 4.94
2 4.83 4.61 4.73 4.81 5.85 5.11 4.64 5.15 4.40 4.98 4.78 4.52 5.22
3 4.16 4.36 5.98 4.74 5.83 4.69 7.24 4.65 5.03 5.42 5.02 4.96 5.45
4 4.77 3.43 4.47 4.28 5.97 4.49 5.23 7.01 5.19 5.57 5.58 5.11 6.22
5 4.80 4.53 4.69 4.68 5.71 5.29 5.24 5.60 5.10 5.80 4.74 5.50 5.60
6 4.68 4.47 4.59 4.55 5.78 4.96 5.41 5.45 4.78 5.62 5.32 5.31 5.45
7 4.62 4.74 4.45 4.32 5.24 4.60 4.81 5.16 5.12 5.11 4.35 5.53 5.57
8 4.70 4.34 4.39 4.28 4.58 4.57 4.91 5.46 4.97 5.22 4.25 5.50 5.08
9 4.36 4.15 4.28 4.12 4.26 4.08 4.50 4.74 4.87 4.66 4.45 4.92 5.38

In Table3, the normalized sum (NS) for the 9-day FTH
is generally lower than 5 for catchments subjected to the re-
gional integration (except basin A70). Furthermore, in 44 %
of such assessments (catchments H24, K17, U25, J85, K73,
H36, and H53) the regional integration presents better re-
sults than the local performance relative indicators shown in
Table2.

Although the regional integration in clusters 1, 2 and 3
shows that the 85 % of the normalized sums are lower than 5
and the remaining 15 % corresponds principally to the first
lead times (1 to 3 days), the clustering and posterior regional
integration is less efficient for the groups 4 and 5, whose nor-
malized sums are higher to 5 in 65 % of the cases.

The behaviour in cluster 5 is inherited from the low extrap-
olation efficiency highlighted in basins A69, A92, and B21
(Fig. 6). As such, the proposed regional integration mech-
anism is shown as a consistent task since its efficiency is a
function of performance of its components.

With regard to cluster 4, the regional solution shows a
lower diversity of hydrological models. This factor is evi-
dent in Fig.7 which illustrates that for this cluster 70 % of
the hydrological members originate from only three hydro-
logical models (HM03, HM06, and HM14), which is quite a

different behaviour than for clusters 1, 2 and 3 where the por-
tion of the three most selected models reaches 58 %, 56 %,
and 44 %, respectively.

Thus it seems that diversity as characteristic of the final se-
lection of hydrological members appears to be a factor with
a significant impact on the performance of the selection. In
other words, the participation of hydrological models in the
regional selection stresses the importance of the integration
of models with different characteristics. To view this in a de-
terministic framework, the index based on the performance
rank assigned to each model in each catchment (Sect.4.2.3)
shows that the most selected models (HM01, HM03, HM06,
HM09, and HM14) occupy quite different ranks (Fig.7). For
instance, HM03 and HM09 present a high performance while
HM01, HM06 and HM14 are of lower performance. This
feature exemplifies the notion of the diversity discussed in
different stages of the scientific community concerning en-
semble methods.

Alpaydin (2010) statistically showed that if an ensemble
of d models with outputs that are independent and identi-
cally distributed, has a negative correlation between their er-
ror, the error variance of the average ensemble decreases pro-
portionally with d2. For hydrological model combination,
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Fig. 7. Hydrological Models participation. Distribution in the five regions (clusters) are presented in(a)–(e). Model performance evaluated
as the mean rank index is shown in(f).

Vrugt et al.(2008) proposed positive correlation (lack of di-
versity) as an efficient mechanism for removal of members
of an ensemble.

Diversity can be defined as the search for models that com-
plement their skills, so that each model focuses on different
objects. Diversity in the ensemble is thus a vital require-
ment for successful modelling. In practice, it appeared to be
difficult to define a single measure of diversity and even more
difficult to relate that measure to the ensemble performance
in a neat and expressive dependency (Kuncheva, 2004). Nev-
ertheless, the regional clusters in Fig.7 make use of most
of the 16 available models, whatever their performance rank.
For example, the most frequently selected models in cluster 2
are HM03 and HM06 despite the fact that HM02 exhibits the
same rank of performance as HM03 and that HM06 presents
one of the lowest ranks in the ensemble.

6 Conclusions

A companion paper has already demonstrated the success of
the backward greedy member selection technique for sim-
plifying a 800-member HEPS combining the 50 perturbed
members from the ECMWF MEPS with 16 lumped hydro-
logical models (Brochero et al., 2011). The present paper
has focused on the generalization quality in time and space
of a 50-member HEPS selected from the 800-member en-
semble correspondent to the 9-day FTH. When applied to
the other 8 time horizons, the 50 selected members also im-
proved performance over the initial 800-member HEPS in
82 % of the situations. It was particularly successful when
applied to a nearby catchment of the same cluster. Member
diversity seems to be the key to this simplified HEPS that
makes use of only 6.25 % of the initial structures (50 mem-
bers/800 members). Indeed, it has been shown that most 50-
member HEPS relied on a broad selection of hydrological

models, which gives further support to the multi-model hy-
drological approach.

Comparing scores obtained for the 50 representative hy-
drological members to the ones of the initial 800-member
ensemble indicated that the proposed selection methodol-
ogy, which is based on cross-validation and the combina-
tion of scores into a single function, generally leads to good
performance in terms of gains of individual scores. However,
these gains were not entirely transferable under the scheme
of extrapolation evaluated here. This drawback may in part
be attributable to the simple selection methodology used here
along a linear integration of scores that has no real control
over balance, or the need to evaluate more features to en-
hance such transferability in the clustering approach.

A more sophisticated approach would optimize all perfor-
mance diagnostics simultaneously or find a Pareto set of so-
lutions identifying trade-offs among the various performance
metrics. Such a framework, but in a context of combina-
tion rather than selection of hydrological members, was pro-
posed byVrugt et al.(2006). It consists in the optimization
of Bayesian Model Averaging weights and variance using
the A Multi-ALgorithm Genetically Adaptive Multiobjective
(AMALGAM) method.

Finally, it would be interesting, in the case of a HEPS
driven by interchangeable meteorological members, to com-
bine the participation of hydrological models found with
BGS-CV with the meteorological members chosen by a tech-
nique such as that proposed byMolteni et al.(2001) instead
of testing them randomly.
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