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Abstract. Assessing climate change impacts on pesticide
leaching requires careful consideration of different sources
of uncertainty. We investigated the uncertainty related to cli-
mate scenario input and its importance relative to parame-
ter uncertainty of the pesticide leaching model. The pesticide
fate model MACRO was calibrated against a comprehensive
one-year field data set for a well-structured clay soil in south-
western Sweden. We obtained an ensemble of 56 acceptable
parameter sets that represented the parameter uncertainty.
Nine different climate model projections of the regional cli-
mate model RCA3 were available as driven by different com-
binations of global climate models (GCM), greenhouse gas
emission scenarios and initial states of the GCM. The fu-
ture time series of weather data used to drive the MACRO
model were generated by scaling a reference climate data set
(1970–1999) for an important agricultural production area in
south-western Sweden based on monthly change factors for
2070–2099. 30 yr simulations were performed for different
combinations of pesticide properties and application seasons.
Our analysis showed that both the magnitude and the direc-
tion of predicted change in pesticide leaching from present to
future depended strongly on the particular climate scenario.
The effect of parameter uncertainty was of major importance
for simulating absolute pesticide losses, whereas the climate
uncertainty was relatively more important for predictions of
changes of pesticide losses from present to future. The cli-
mate uncertainty should be accounted for by applying an en-
semble of different climate scenarios. The aggregated ensem-
ble prediction based on both acceptable parameterizations
and different climate scenarios has the potential to provide
robust probabilistic estimates of future pesticide losses.

1 Introduction

The assessment of climate change impacts on the fate and
transport of pesticides and other organic pollutants in the en-
vironment has been the subject of increased attention and
concern in recent years (Bloomfield et al., 2006; Noyes et al.,
2009; Delpla et al., 2009; Lamon et al., 2009). Climate
change will influence pesticide leaching in a number of ways,
which produce both direct and indirect effects. Direct effects
arise from changes in temperature and precipitation. Higher
temperatures induce faster microbial degradation of pesti-
cides. Sorption is also influenced by changes in temperature,
with the nature of the response depending on the characteris-
tics of the chemical compound. Most pesticides sorb to soils
with an exothermic reaction for which increased temperature
leads to weaker equilibrium sorption (e.g.ten Hulscher and
Cornelissen, 1996; Brücher and Bergström, 1997; Shariff and
Shareef, 2011) and consequently to higher leaching risks.
Higher temperatures imply higher potential evapotranspira-
tion, which might result in increased actual transpiration and
thus also changes in percolation and drain flow. In addition,
temperature governs processes such as freezing and thaw-
ing, as well as the partitioning of precipitation into rainfall
and snow. Higher temperatures also enhance diffusion rates,
which would tend to increase rates of equilibration of pes-
ticide concentrations between micropores and macropores,
and thereby lead to reduced leaching by preferential flow
(Jarvis, 1998).

Several studies have demonstrated the impact of precip-
itation patterns and amounts on pesticide leaching relative
to the time of pesticide application (e.g.Capel et al., 2001;
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Holvoet et al., 2007; Nolan et al., 2008; Lewan et al., 2009).
In a lysimeter study,Beulke et al.(2002) found an exponen-
tial relationship between pesticide losses and total outflow
for soils susceptible to preferential flow.Beulke et al.(2007)
used the MACRO model (Larsbo et al., 2005) to simulate fu-
ture pesticide losses in the UK in a climate change perspec-
tive. Enhanced losses of pesticides applied in autumn to sur-
face waters were predicted compared to present conditions,
most likely due to increased volumes of drain flow and runoff
from agricultural fields and higher intensities of individual
storm events (Beulke et al., 2007). Variation in soil mois-
ture conditions also influences degradation rates. Increased
soil moisture induces faster degradation, unless soil mois-
ture contents are close to saturation (at which point microbial
activity and thus degradation may be inhibited). Potentially
longer periods of droughts would also reduce degradation
and could additionally affect gas diffusion and volatilization
of pesticides.

Pesticide leaching can also be indirectly affected by
changes in the agroecosystem that are triggered by climate
change, such as changes in land-use (e.g. other crop types
or more autumn-sown crops), modified pesticide application
timings (e.g. more autumn application) or the use of different
pesticides against invasive weeds, diseases or pests (Bloom-
field et al., 2006; Whitehead et al., 2009). Kattwinkel et al.
(2011) focused on these indirect effects of climate change on
freshwater ecosystems in Europe and predicted that insecti-
cide applications, runoff and thus ecological risk will signifi-
cantly increase until the end of the 21st century in large areas
of Europe, especially in southern Scandinavia.

Predictions of pesticide leaching under climate change are
subject to uncertainties throughout the complete “modelling
chain” related to both the climate input data and the pes-
ticide fate model (the impact model;Dubus et al., 2003a;
Wilby et al., 2009). Uncertainties in the climate projections
mainly arise from the choice of the greenhouse gas emission
scenario, the structure and parameterization of the climate
models, as well as the initial conditions, which represent the
natural variability of the climate system (Hawkins and Sut-
ton, 2009; Wilby et al., 2009; Kjellström et al., 2011). Typi-
cally, global climate models (GCMs) provide climate scenar-
ios at a horizontal resolution of 100–300 km. For local and
regional applications, this may be too coarse, as such a model
cannot account for details of, for instance, land–sea distri-
bution, elevation, or land cover types. Furthermore, relevant
processes like mid-latitude low pressure systems are repre-
sented in a crude way. Higher resolution GCMs exist (e.g.
Zhao et al., 2009), but are expensive to run and therefore not
suited for sampling uncertainties related to greenhouse gas
emissions, model uncertainty and initial conditions. An alter-
native way to deal with the coarse resolution in most GCMs
is to apply some kind of downscaling in which the original
coarse scale data is refined to better represent smaller-scale
features. Dynamical downscaling, in which a regional cli-
mate model (RCM) is applied to a limited area, is one com-

monly used tool in this respect (e.g.Rummukainen, 2010).
The choice of procedures to downscale the regional climate
projections to even smaller scales (i.e. local or field scales)
by applying statistical methods involving observations in-
troduces another source of uncertainty (Wilby et al., 2000;
Fowler et al., 2007; Teutschbein et al., 2011). Measurement
errors in the observed reference time series as well as the spe-
cific choice of reference and future climate periods can con-
tribute to the overall uncertainty related to the downscaling
approach (Prudhomme et al., 2010; Ledbetter et al., 2012).

Uncertainties in the modelling chain of climate change im-
pact studies have been addressed in several studies focusing
on catchment hydrology (e.g. for river discharges and flood
risks; e.g.Graham et al., 2007; Dobler et al., 2012), but such
assessments have not yet been performed for pesticide leach-
ing. In a previous study,Steffens et al.(2013) addressed the
role of parameter and model structure uncertainty in predic-
tions of pesticide leaching under climate change. However,
in their study, only one climate model projection was used to
generate future climate conditions.

The aim of this study was, therefore, to assess the impact
of uncertainty in climate input data on long-term predictions
of pesticide leaching under climate change. The following
main questions were explored: (1) does input from different
climate model projections result in similar changes of pre-
dicted pesticide leaching between present and future climate
conditions? (2) Does climate input uncertainty have a larger
effect on predicted pesticide losses compared to uncertainties
in the parameterization of the pesticide fate model?

To address these issues, 30 yr simulations of pesticide
leaching under present and future climate conditions were
performed with a set of acceptable parameterizations of the
pesticide fate model MACRO obtained from model calibra-
tion against field data from a clay soil in south-western Swe-
den. A nine-member ensemble of regional climate scenarios
covering different GCMs, greenhouse gas emission scenar-
ios, and initial conditions of the GCMs (Kjellström et al.,
2011) was used to represent the uncertainty in future climate
projections.

2 Material and methods

2.1 The MACRO model and its calibration

The MACRO model (Larsbo et al., 2005), which is used for
pesticide registration purposes in the European Union (FO-
CUS, 2000, 2001), is a physics-based, one-dimensional dual-
permeability model for simulating unsaturated-saturated wa-
ter flow and solute transport in structured, macroporous soils.
In the soil matrix, water flow is described by Richards’ equa-
tion and solute transport by the convection–dispersion equa-
tion. Preferential water flow in soil macropores is described
by the kinematic wave equation (Germann, 1985). The parti-
tioning of water flow between matrix and macropore systems
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is governed by the infiltration capacity of the soil matrix.
The exchange of water and solutes between the two pore do-
mains via diffusion and convection is controlled by an ef-
fective diffusion path-length (d), which is a proxy param-
eter accounting for the geometry of soil macropore struc-
ture (Gerke and Van Genuchten, 1996). A complete water
balance is simulated: root water uptake is calculated us-
ing the model described byJarvis (1989); flow and trans-
port to drainage systems is calculated by the Hooghoudt
equation and seepage potential theory. Pesticide degrada-
tion is described by first-order kinetics, with the rate coef-
ficient given as a function of soil temperature, according to
the Arrhenius equation (Boesten and Van der Linden, 1991)
and moisture content, following a modified Walker function
(Walker, 1974). In this study, sorption is described with a lin-
ear isotherm, although MACRO can deal with non-linear
Freundlich sorption isotherms. We used an extended ver-
sion of MACRO5.2 that describes sorption and diffusion as
temperature-dependent processes (seeSteffens et al., 2013).
Temperature-dependent diffusion is implemented based on
the relationship between the diffusion coefficient of a spe-
cific chemical and the viscosity at reference temperature and
the actual temperature. The effect of temperature on sorption
is simulated according to the van’t Hoff equation for linear
equilibrium sorption with a constant sorption enthalpy.

The model was calibrated against a comprehensive data
set from a field plot experiment performed at Lanna, in
south-western Sweden (58◦21′ N, 13◦08′ E), using the gen-
eralized likelihood uncertainty estimation method (GLUE,
Beven and Binley, 1992) according to the procedure de-
scribed inSteffens et al.(2013). Soil water content at differ-
ent depths in the soil profile and drain discharge were mea-
sured, as well as the concentrations of the non-reactive tracer
bromide and the mobile herbicide bentazone in both soil and
drainage flow, for a period of 14 months following applica-
tion of the pesticide in October 1994. This field experiment
is described in detail inLarsson and Jarvis(1999). The soil at
Lanna is a silty clay (Typic Eutrochrept, USDA, see Table1)
that has been under no-tillage practice since 1988. Thus, it
represents a “worst-case soil” in terms of pesticide leaching
via preferential flow to drains, since it has a strongly devel-
oped and stable aggregate structure and abundant earthworm
biopores.

Based on previous studies, the following parameters are
known to be sensitive and uncertain (Boesten, 1991; Dubus
et al., 2003b; Dubus and Brown, 2002; Larsbo and Jarvis,
2005) and were therefore included in the calibration proce-
dure: saturated matrix hydraulic conductivity (Kb), diffusion
path-length (d), degradation rate coefficient (µ)1, and the soil
organic carbon partitioning coefficient (Koc). Each of these
parameters was calibrated separately for both the topsoil (0–

1µ was used as input to the model, but we sampled from a dis-
tribution of degradation half-life time values (DT50), which is the
reciprocal ofµ multiplied by ln(2).

Table 1. Clay, sand and organic carbon content of the field site in
Lanna (fromBergström et al., 1994). The upper horizon is consid-
ered to be topsoil and the rest of the soil profile is considered to be
subsoil.

Depth Clay Sand Organic
[cm] (< 2 µm)[%] (> 60 µm)[%] carbon[%]

0–30 46.5 7.3 2.0
30–60 56.1 3.3 0.8
60–100 60.6 2.0 0.3
100–175 66.6 2.9 0.2

30 cm) and subsoil (below 30 cm). All other parameters were
set to the values inSteffens et al.(2013). Based on the previ-
ous results ofSteffens et al.(2013), we narrowed the ini-
tial prior uncertainty ranges ofKb in topsoil and subsoil,
as well asµ and Koc in the topsoil to increase the sam-
pling density, while reducing the number of simulations. We
sampled 40 000 parameter combinations according to a latin
hyper-cube sampling scheme from uniform prior distribu-
tions. The calibration model runs were initialized with mea-
sured soil water contents and driven by on-site measurements
of precipitation and other meteorological variables. Accept-
able parameter sets were defined as simulations that gave
positive model efficiencies (Nash and Sutcliffe, 1970) for all
six available types of measurements.

Acceptable parameter sets are often weighted according to
their performance in the calibration procedure (Beven, 2006).
However, we gave equal weights to all acceptable parameter-
izations, since tests showed that the effects of weighting (ei-
ther by averaging or multiplying the six model efficiencies)
on cumulative distribution functions of predicted leaching
were negligible.

2.2 Predictions for present and future climate
conditions

2.2.1 Climate input data

Reference climate data

The weather station at Såtenäs (58◦26′ N, 12◦41′ E) was used
as a representative station for the region around the field site
in Lanna (region 5a;Johnsson et al., 2008). Data from this
station were used to represent the present climate of the 30 yr
period between 1970 and 1999. Daily time series of average
temperature, solar radiation, wind speed and vapour pressure
deficit are required by MACRO to internally calculate poten-
tial evapotranspiration using the Penman–Monteith equation
(Jarvis, 1994). Daily precipitation data were disaggregated
to hourly data according to the method byOlsson(1998) and
used as driving data for MACRO.
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Table 2. Summary of the different climate model projections used in this study (see alsoKjellström et al., 2011). RCM stands for regional
climate model, GCM for global climate model, and SRES stands for the greenhouse gas emission scenarios as defined in the special report
on emission scenarios.

Climate
scenario RCM GCM SRES Initial state Reference for GCM

CS1 RCA3 BCM A1B – Bleck et al.(1992); Déqué et al.(1994)
CS2 RCA3 CCSM3 A1B – Collins et al.(2006)
CS3 RCA3 HadCM3Q0 A1B – Gordon et al.(2000)
CS4 RCA3 IPSL A1B – Hourdin et al.(2006)
CS5 RCA3 ECHAM5 A1B r1 Roeckner et al.(2006); Jungclaus et al.(2006)
CS6 RCA3 ECHAM5 A1B r2 Roeckner et al.(2006); Jungclaus et al.(2006)
CS7 RCA3 ECHAM5 A1B r3 Roeckner et al.(2006); Jungclaus et al.(2006)
CS8 RCA3 ECHAM5 B1 r1 Roeckner et al.(2006); Jungclaus et al.(2006)
CS9 RCA3 ECHAM5 A2 r1 Roeckner et al.(2006); Jungclaus et al.(2006)

Climate scenarios

Outputs from nine different climate model projections dy-
namically downscaled by the same RCM (called RCA3,
Samuelsson et al., 2011) were used to derive future time se-
ries of climate data. This ensemble of RCM projections cov-
ered different combinations of GCMs, greenhouse gas emis-
sion scenarios, and initial states of the GCMs (Table2). The
output of each of these individual climate modelling chains
is referred to as aclimate scenarioin the following. From the
grids of the RCM projections, only the grid cell covering the
study site was used.

Delta change method

Average monthly change factors (Wilby et al., 2009; Anandhi
et al., 2011) were derived by comparing present (1970–1999)
and future climate periods (2070–2099) as projected by each
member of the ensemble of climate scenarios. These monthly
change factors were applied to systematically change the ob-
served time series in order to generate a future time series.
Additive change factors were used in the case of temper-
ature and solar radiation. To get smooth changes, we used
the calculated change factors for the 15th of each month and
interpolated linearly between the months to get a separate
change factor for each day. For precipitation, multiplicative
change factors (without interpolation) were applied. Since
projected changes in wind speed towards the end of this
century do not show systematic patterns (Kjellström et al.,
2011), we kept the wind speed unchanged. Relative humid-
ity was also kept the same as in the reference scenario. The
rationale for this is that both observations and model results
show that relative humidity would broadly be maintained in
a changing climate, as changes in water vapour are governed
by changes in temperature following the Clausius–Clapeyron
relation (Bengtsson, 2010).

The monthly change factors for temperature and precipi-
tation are shown for the selected climate scenarios in Fig.1.
A larger ensemble could potentially show a larger spread

of change factors. We compared the spread in our scenar-
ios to an ensemble of more than 20 GCMs taken from
CMIP3 (Coupled Model Intercomparison Project, Phase 3,
cf. Christensen et al., 2007), for which Lind and Kjellström
(2008) calculated monthly change factors for southern Swe-
den, comparing the period 2071–2100 with 1961–1990. Our
RCA3-ensemble for south-western Sweden captures the sea-
sonal signatures of the changes in temperature and precipita-
tion well and covers a large part of the spread in precipitation
changes; however, it shows a narrower range of projected in-
creases in temperature than the GCM ensemble (see Fig.1).

The change factor method assumes a constant bias over
time and does not take into account changes in frequency
distributions of the climate variables, which might be im-
portant, especially for precipitation. We still considered the
method adequate for our study because (a) it represents real-
istic climatic conditions for the location of interest, including
daily rainfall amounts and temporal patterns, as it is based on
observations; (b) it removes the biases within the different
models, which is an advantage when using multiple climate
models (Ledbetter et al., 2012); (c) other types of methods
for downscaling from the regional to local scale would intro-
duce additional uncertainties (Chen et al., 2011); (d) we keep
a consistent relationship between downscaled precipitation
and the variables needed to calculate potential evapotranspi-
ration, which is not the case with most (simple) statistical
downscaling methods (Fowler et al., 2007); (e) the method is
simple and the interpretation of the results is clearer if only
the magnitude and not the frequency of extreme events is
changed.

2.2.2 Pesticide application scenarios

Predictions of pesticide leaching were performed with all
nine climate scenarios for three hypothetical compounds,
which were defined by multiplying the calibratedKoc values
for bentazone by a factor of 1, 10, and 50 to represent weakly,
moderately, and strongly sorbed pesticides, respectively (see
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Table 3.Results from the statistical analysis performed for the pesticide application scenarios of the different hypothetical compounds.FPU
denotes the ratio of variance within the climate input to the total variance in % for the absolute losses (abs) and for the predicted change (1).
The givenp values are the results from the Kruskal–Wallis (KW) test, a non-parametric analysis of variance. Kendall’sW test renders values
between 0 and 1 for no agreement and full agreement, respectively, between the ranks for pesticide losses as simulated with the different
climate scenarios over the range of acceptable parameterizations of the pesticide fate model.

Pesticide Statistical tests

Scenario Sorption Application FPUabs FPU1
p value (KW) Kendall’sW

WsSpr weak spring 92.0 54.9 0.790 0.880
WsAut weak autumn 87.7 35.8 0.741 0.851
MsSpr moderate spring 93.9 53.3 0.258 0.859
MsAut moderate autumn 85.6 53.5 < 0.0005 0.873
SsSpr strong spring 98.4 64.1 0.110 0.882
SsAut strong autumn 97.3 69.3 < 0.0005 0.912

Table3). We used the same sorption enthalpy for all three
hypothetical compounds (−30 kJmol−1). Leaching of these
hypothetical pesticides was simulated for spring and autumn
applications under present and future climate conditions with
the same yearly dose of 0.45 kgha−1. Each unique combi-
nation of hypothetical pesticide and application period is
hereafter referred to as apesticide application scenario. In
all these pesticide application scenarios, the crop was win-
ter wheat. Pesticides were applied between 1 and 16 May
and between 29 September and 15 October for spring and
autumn scenarios, respectively, based on the current agri-
cultural practice in the studied region (Graaf et al., 2010,
2011). The application date in each year was chosen ran-
domly among all days with less than 2 mm of rain. We chose
the same application dates for the present time series and all
climate scenarios in order to avoid an additional source of
uncertainty. In order to ascertain that the choice of individual
application dates did not significantly affect the overall re-
sults, two sets of simulations were conducted with different
realizations of pesticide application days. The differences in
the cumulative distribution functions for pesticide leaching
between these two sets of simulations were negligible. This
suggests that a 30 yr simulation period was sufficient to ac-
count for the effects on leaching of year-to-year variations in
weather conditions in relation to application timing.

In order to generate appropriate initial conditions, a six-
year spin-up period was run preceding the 30 yr simulations,
as is commonly done in simulations for pesticide registration
purposes (FOCUS, 2000, 2001). Thus, simulations were run
for 36 yr, of which the first six years (the spin-up period)
were excluded from the analysis.

2.2.3 Presentation of results

As target output variable, we focused on the accumulated
pesticide loss to drains for the 30 yr period expressed as
a percentage of the total amount of pesticide applied dur-
ing that period. Apart from presenting the actual losses sim-
ulated with the pesticide fate model, we calculated the differ-

ence in simulated pesticide losses between present and future
scenarios separately for each parameter set, climate scenario
and pesticide application scenario. The latter results are dis-
played aschanges in total pesticide losses, for which the ab-
solute differences are given in the same unit as the actual
losses.

2.2.4 Statistical analysis

The importance of climate input uncertainty relative to pa-
rameter uncertainty of the pesticide fate model was evaluated
using three statistical indices and tests. Each test was con-
ducted separately for each pesticide application scenario and
for both absolute pesticide losses and changes in pesticide
losses from present to future.

The fraction of the variance in predicted pesticide leaching
losses explained by the parameter uncertainty (FPU) in rela-
tion to the total variance, which included both parameter and
climate input uncertainty, was calculated as

FPU = 100

(∑k
i=1

∑n
j=1(yij − ȳi)

2∑k
i=1

∑n
j=1(yij − ȳ)2

)
, (1)

whereyij are the predictions of thej th parameter set in re-
sponse to theith climate scenario,̄yi denotes the average pre-
diction in response to the climate scenarioi, andȳ the overall
average prediction for all parameter sets and climate scenar-
ios. The closerFPU is to 100, the larger is the contribution
of parameter uncertainty to the total uncertainty of the pre-
dictions of pesticide losses and changes in pesticide losses,
respectively.

In addition, we performed the Kruskal–Wallis test, a non-
parametric analysis of variance, to test whether the ensem-
ble mean output of the nine different climate scenarios (i.e.
ȳj , following the syntax in Eq.1) were significantly different
between the acceptable parameter sets. A non-significant re-
sult would suggest that the parameterizations are very similar
in their predictions of average pesticide losses based on the
nine-member ensemble of climate scenarios.
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Fig. 1. Monthly change factors for(A) temperature and(B) pre-
cipitation derived from the nine different climate scenarios (see Ta-
ble 2). The dark-grey background area represents the spread in the
change factors for southern Sweden derived from an ensemble of
23 different GCMs (taken fromLind and Kjellström, 2008).

Kendall’s non-parametric W statistic (also called
Kendall’s coefficient of concordance) was used to evaluate
the consistency of the response of the different parameter
sets to climate change as projected by the different climate
scenarios. For each of the acceptable parameterizations
of the pesticide fate model, the simulated pesticide losses
obtained with the different climate scenarios were first
ranked2, and then Kendall’sW was calculated to test
whether this ranking was similar for the different param-
eterizations. Kendall’sW ranges from 0 (no agreement

2Rank 1 was given to the climate scenario producing the highest
leaching losses within a particular parameterization of the pesticide
fate model, and rank 9 to the climate scenario producing the lowest
leaching losses.

Fig. 2. Comparison between measurements (black) and the simula-
tion results of all 56 acceptable parameter sets (grey) for(A) drain
flow, (B) bentazone and(C) bromide concentrations in the drain
flow.

between the ranks of the climate scenarios) to 1 (complete
agreement).No agreementmeans total randomness of the
response to different climate scenarios, whereascomplete
agreementmeans that the response of the pesticide model to
changed climate was robust and consistent irrespective of the
specific parameterization of the pesticide fate model. Thus,
the larger the value ofW , the stronger the role of climate
input uncertainty compared to the parameter uncertainty of
the pesticide fate model.

3 Results and discussion

3.1 Calibration

Model calibration resulted in 56 different parameter sets that
were able to satisfactorily describe drain flow, water con-
tents, and bentazone and bromide concentration in drain flow
and soil. A visual depiction of the quality of the calibration
results for the drain flow data is provided in Fig.2. The
posterior parameter values are presented as histograms in
Fig. 3, with the x axes marking the prior parameter uncer-
tainty ranges. Most of the parameters were quite well con-
strained, especially for the topsoil (Kb, d and DT50, see
Fig. 3a, c, and g). ForKoc in topsoil, the results seem to
suggest some degree of equifinality (Fig.3e). However, this
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Fig. 3. Histograms with the posterior distributions of the eight dif-
ferent parameters included in the calibration step: saturated matrix
hydraulic conductivity (Kb), diffusion path-length (d), soil organic
carbon partitioning coefficient (Koc) and the degradation half-life
time (DT50). The range of values on thex axis denote the prior
range used for the different parameters. The total number of counts
is 56 in all cases.

is because quite narrow prior uncertainty bounds were set
for this parameter based on the previous simulations run by
Steffens et al.(2013). Calibrated subsoilKoc values were
always (with one exception) larger than the corresponding
topsoil values, which shows the importance of inorganic soil
constituents for sorption when the organic carbon content is
low (Ghafoor et al., 2013). The slow degradation rates (i.e.
high DT50 values) in the subsoil (Fig.3h) agree well with the
results of batch experiments carried out on samples from the
same soil (Bergström et al., 1994). The measured total pes-
ticide loss to drains was 8.5 % of the applied amount, while
simulated total losses for the calibration period varied be-
tween 3.1 and 6.2 %. This discrepancy was probably due to
the inability of the model to simulate the first peak of pesti-
cide leaching after application (see Fig.2), which might be
due to a lack of measurements below one metre depth, which
presumably led to erroneous initial moisture conditions (es-
pecially regarding the initial depth of the ground water table
in the model simulations).

3.2 Pesticide leaching losses

Simulated pesticide leaching losses under present and fu-
ture climate conditions based on the 56 acceptable param-
eterizations of the MACRO model are summarized as cu-
mulative distribution functions for all pesticide application
scenarios in Fig.4. The response of pesticide leaching to
the different climate scenarios is denoted by the separate
curves, which are also aggregated to a cumulative distribu-
tion function for the ensemble prediction. As expected, pre-
dicted leaching was highest for weakly, followed by mod-
erately and strongly sorbed compounds. Pesticide leaching
was generally higher for autumn applications than for spring
applications, especially for moderately and strongly sorbed
compounds. The climate uncertainty approximated by the
variation in simulated pesticide losses for the different cli-

Fig. 4. Cumulative distribution functions of simulated pesticide
losses for present (black solid) and future (grey lines) climate con-
ditions based on nine different climate scenarios and 56 different
parameterizations of the pesticide fate model. The aggregated en-
semble predictions for the future are shown as black dashed lines for
each of the pesticide application scenarios (abbreviations according
to Table3).

mate scenarios was also larger for autumn applications than
for spring application, and decreased from weakly to strongly
sorbed pesticides.

3.3 Predicted changes in pesticide leaching losses

Both the magnitude and the direction of predicted change in
pesticide leaching from present to future (i.e. whether leach-
ing increased or decreased) depended strongly on the partic-
ular climate scenario. This can be seen in Fig.4, which shows
absolute leaching losses, and in Fig.5, in which the changes
are explicitly plotted. For all pesticide application scenarios,
there was at least one climate scenario that simulated an op-
posite direction of change in pesticide leaching compared to
the other climate scenarios. The interplay of changes in tem-
perature and precipitation throughout the year and the partly
counteracting effects these variables have on the leaching
of pesticides make a clear analysis of the causes of these
differences very difficult. However, projections of autumn
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Fig. 5. Cumulative distribution functions for the predicted changes
in pesticide leaching losses for the different climate scenarios (grey
lines) as generated by 56 different parameterizations of the pesticide
fate model. The pesticide application scenarios are abbreviated ac-
cording to Table3. The black dashed line represents a zero change
in pesticide loss.

precipitation could be identified as one important reason. For
example, in all autumn pesticide application scenarios, the
climate scenario CS1 (RCA3-BCM-A1B) simulated reduced
pesticide leaching in the future compared to the present. This
is the only climate scenario that projected reduced precipita-
tion in October and negligible changes in November (Fig.1),
which demonstrates the importance of the projections of au-
tumn precipitation for predicting pesticide leaching. This has
significant implications for predictions of overall leaching
risks that also consider the likely indirect effects of climate
change, such as more autumn-sown crops and consequently
more frequent application of pesticides in autumn. These po-
tential indirect effects will be assessed in future studies.

For all pesticide application scenarios, the 5th and 95th
percentiles of the changes in pesticide leaching3 included

3Here expressed as the smallest 5th and largest 95th percentile
of the changes in pesticide leaching as simulated with all climate
scenarios.

Fig. 6. Cumulative distribution functions of the ensemble predic-
tions of the changes in pesticide leaching losses from present to fu-
ture for the six pesticide application scenarios (as in Table3). Each
curve combines all 56 acceptable parameterizations of the pesticide
fate model and the nine different climate scenarios. Spring applica-
tions are represented with black lines and autumn applications with
grey lines. Dotted lines represent weakly sorbed pesticides; dashed
lines represent moderately sorbed pesticides; solid lines represent
strongly sorbed pesticides.

zero and ranged between−4.3 to+6.5 % of the applied dose
(see Fig.5). Thus, a consistent direction of change could not
be identified for any pesticide application scenario, when tak-
ing into account the variation in the response of pesticide
leaching to the whole ensemble of climate scenarios. This
demonstrates the necessity of applying an ensemble of dif-
ferent climate scenarios in order to avoid biased conclusions
and over-confidence in predicting the response of pesticide
losses to climate change.

Ensemble modelling has been widely applied within cli-
mate sciences, and several studies have demonstrated that the
mean of the climate model ensemble is the best estimate of
the observations (Christensen et al., 2007; van der Linden
and Mitchell, 2009; Kjellström et al., 2011). In hydrological
impact studies, it has been shown that the use of an ensem-
ble of climate models as input to hydrological models gives
more appropriate results and should be preferred to the use
of a single climate scenario (Teutschbein and Seibert, 2010,
2012; Dobler et al., 2012). Based on these ideas, the ensem-
ble prediction for future pesticide losses presented as cumu-
lative distributions (Fig.4) could be considered a robust esti-
mate for pesticide leaching under future climate conditions.
For all spring application scenarios, as well as for the au-
tumn application of the weakly sorbed pesticide, the ensem-
ble prediction indicated very little change in a future climate
compared to the present. However, in the case of autumn ap-
plications of moderately and strongly sorbed compounds, the
ensemble predictions suggested increased pesticide losses in
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Fig. 7. Changes in pesticide leaching loss for the moderately sorbed pesticide applied in spring (MsSpr) and autumn (MsAut). The different
coloured dots mark the different climate scenarios (same colour code as Fig.1), the black lines denote the ensemble mean of the different
climate scenarios for each parameterization (x axes) and the grey dashed line marks the zero line, which denotes no change between present
and future leaching.

a future climate. This reflects the relatively larger importance
of increased winter precipitation for autumn applications and
the balancing or competitive effect of higher temperatures
on degradation for compounds applied in spring (see also
Steffens et al., 2013).

An ensemble prediction can also be made based on the
calculated changes in pesticide leaching losses. These en-
semble predictions of all 56 acceptable parameter sets and
climate scenarios are presented as cumulative distribution
functions for each pesticide application scenario in Fig.6.
For the weakly sorbed pesticide applied in spring (WsSpr),
the ensemble indicated a 70 % probability of reduced or
unchanged pesticide losses in a future climate. For moder-
ately and strongly sorbed pesticides applied in spring (MsSpr
and SsSpr) and for the weakly sorbed pesticide applied in
autumn (WsAut), the probability of increased or reduced
losses were similar (i.e. 50 %). However, for moderately and
strongly sorbed pesticides applied in autumn (MsAut and
SsAut), the probability of increased leaching in a future cli-
mate was about 80 % (Fig.6). Thus, considering the over-
all result of the complete ensemble based on the available
climate scenarios and parameterizations allowed for a prob-
abilistic assessment of trends and direction of changes in
pesticide leaching under climate change. This contributes to
more robust and balanced conclusions regarding the poten-
tial impact of climate change on the risk of environmental
pollution by pesticides.

3.4 Parameter vs. climate input uncertainty

The parameter uncertainty was represented in our study by
the range of predictions of 56 acceptable parameterizations
of the pesticide fate model. The effects of parameter uncer-
tainty were rather high in all pesticide application scenarios

for actual losses of pesticides under present and future cli-
mate conditions (Fig.4). For absolute losses, the effects of
uncertainty in the climate data, which are represented by the
variation in simulation results for different climate scenar-
ios, were smaller than the effects of parameter uncertainty.
However, a consideration of the predictions of changes of
pesticide losses from present to future (Fig.5) suggests the
opposite conclusion: the steep slopes indicate small effects of
parameter uncertainty, while the differences between the cli-
mate scenarios were relatively more pronounced. These vi-
sual impressions were supported by the statistical indices we
calculated (Table3): the fraction of the parameter uncertainty
in relation to the total uncertainty for absolute values of pes-
ticide leaching losses (FPUabs) was 85–98 %, which clearly
demonstrated the dominance of parameter uncertainty. How-
ever, for the predicted changes of pesticide losses, the cor-
respondingFPU1 values were much smaller, with values be-
tween 35 and 55 % for weakly and moderately sorbed com-
pounds and nearly 70 % for the strongly sorbed pesticide. It
can be noted that these values overestimate the pure parame-
ter uncertainty, since the GLUE method maps all the different
sources of uncertainty (e.g. forcing and model structure) onto
the parameter space (Beven, 2006; Vrugt et al., 2009). How-
ever, the remaining fraction of the total uncertainty can be
attributed exclusively to the climate input uncertainty, which
is therefore rather high for weakly and moderately sorbed
compounds (45 to 65 %). For strongly sorbed compounds,
climate uncertainty plays a smaller role, contributing to 30 to
35 % of the total uncertainty.

The consistency in the simulation results between different
parameterizations of the pesticide fate model is one aspect
that influences the relative importance of different sources
of uncertainty. As an example, Fig.7 visualizes the results
of individual parameter sets for simulated changes in losses
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of the moderately sorbed pesticide applied in spring and au-
tumn (MsSpr, MsAut). The results for each climate scenario
are shown as coloured dots and the mean predictions of the
ensemble of climate scenarios are marked with thick black
lines. The ensemble means are rather similar in the different
parameterizations in the case of spring application, but dif-
fer more between different parameterizations after autumn
application. The results of the Kruskal–Wallis test (a non-
parametric analysis of variance) for all pesticide scenarios
support the visual impression of Fig.7 and the conclusions
drawn from the evaluation of theFPU values; the mean values
for changes in pesticide losses did not vary significantly be-
tween different parameterizations for the weakly sorbed pes-
ticides irrespective of the application timing, and for moder-
ately and strongly sorbed pesticides applied in spring (Ta-
ble 3). Thus, for these pesticide application scenarios, the
use of only one parameter set in combination with an en-
semble of climate scenarios to estimate mean changes in
pesticide leaching would be justified. For moderately and
strongly sorbed pesticides applied in autumn, the Kruskal–
Wallis test showed significant differences among parameter
sets (Table3), and the use of an ensemble of parameteriza-
tions would be recommended. In the case of absolute leach-
ing losses, the analysis of variance showed significant dif-
ferences among parameter sets for all pesticide application
scenarios (not shown).

The rank order of the simulated leaching losses forced by
the nine climate scenarios differed between the pesticide ap-
plication scenarios because the interplay of climate variables
affected pesticide leaching in different ways mainly depend-
ing on the period of pesticide application (see Fig.7), but
also on the properties of the pesticide. However, the ranking
was approximately consistent within a given pesticide appli-
cation scenario (see Fig.7), as Kendall’sW test gave values
between 0.85 and 0.91 for all pesticide application scenarios
(Table3). This illustrates that the response of the pesticide
fate model to changes in climate projected by the climate sce-
narios was similar and highly systematic for the different pa-
rameterizations of the pesticide fate model. Notably, this was
even true for cases where the ensemble mean outputs varied
significantly between parameter sets (MsAut and SsAut).

Taken together, these results strongly support the conclu-
sion that although the effect of parameter uncertainty is large
for simulated absolute pesticide losses, it is less significant in
relation to climate uncertainty for predictions of changes of
pesticide leaching in a future climate. Thus, our study gives
some support to the findings ofDobler et al.(2012), which
indicate that parameter uncertainty is less important than
climate uncertainty. Furthermore, we might have underesti-
mated the effect of climate uncertainty as we only included a
limited number of climate scenarios in our study. As seen in
Fig. 1, a larger ensemble often shows larger variation in pro-
jected climate changes, which is likely to result in a larger
spread of pesticide losses. Our study clearly emphasized the
necessity of applying an ensemble of climate scenarios in

climate change impact assessments to account for the uncer-
tainty in climate projections (see e.g.Teutschbein and Seib-
ert, 2010).

4 Concluding remarks

From this study, we conclude that (1) climate input uncer-
tainty is important and should be accounted for by applying
an ensemble of possible climate scenarios; (2) a determinis-
tic approach based on one acceptable parameterization of the
impact model seems sufficient if the focus of the analysis is
on assessing average changes in pesticide leaching between
present and future, at least for many scenarios of interest
(mobile or spring applied compounds); (3) for probabilistic
assessments of changes in pesticide leaching, as much infor-
mation as possible should be included in the analysis, i.e. en-
sembles of both parameterizations and climate scenarios; this
will increase the robustness of the results and confidence in
the predictions of directions and trends.

We assessed the role of uncertainties in predictions of pes-
ticide leaching under present climate conditions and condi-
tions for the end of the 21st century for the particular case of
a well-structured clay soil in south-western Sweden. Since
projections for future climate conditions vary locally and
each soil requires individual parameterization, our results
may not be transferable to other locations and sites. How-
ever, it seems rather likely that the effect of parameter uncer-
tainty would be less important in non-structured soils without
macropore flow, which would further strengthen our main re-
sults and recommendations. The choice of another downscal-
ing approach, additional bias corrections or larger ensembles
of climate scenarios might also affect the extent of the un-
certainty arising from the climate projections as well as the
predicted directions and especially magnitudes of changes in
pesticide leaching losses. However, this should not change
the general conclusion that the parameterization of the pes-
ticide fate model is less important than the uncertainty in
future climate projections.
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