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Zvyšovanie kvality regulácie regulátormi neceločíselného rádu 
Príspevok sa zaoberá regulátormi neceločíselného rádu. Uvádza matematický popis 

neceločíselných regulátorov a metódy ich návrhu. Kvalita a robustnosť regulátorov 
neceločíselného rádu je porovnaná s klasickými celočíselnými regulátormi. Pre použitie 
regulátorov neceločíselného rádu je uvedený príslušný algoritmus. 
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Introduction 
 

PID controllers belong to the dominating industrial controllers (Leššo, 1997) and therefore 
there is a continuous effort to improve their quality and robustness. One of the possibilities to improve 
PID controllers is to use fractional order controllers with non integer derivation and integration parts. 

The controlled objects are generally of fractional order, however for many of them, the 
fractionality is very low. Their integer order description can cause significant differences in the 
adequacy between the mathematical model and the real system (Dorčák, 1994; Sýkorová,1996). The 
main reasons for using integer order models were the absence of solution methods for fractional order 
equations. In the previous time important achievements were obtained (Oldham, 1974; Axtell and 
Bise, 1990; Podlubný, 1994; Dorčák, 1994) which enable to be taken into account the real order of 
dynamic systems. For fractional order systems (Outstaloup, 1995), fractional controller CRONE has 
been developed which is a modified PDδ controller. 

In this paper we present a synthesis of fractional PIλDδ controllers, analysis of their behaviour 
and simulation methods. We point out the non-adequate approximation of non-integer systems by 
integer order models and differences in their closed loop behaviour. 
 

Properties of fractional order control system and fractional order  controllers 
 

Let's consider a feed-back control system with an unit gain in the feed-back loop (fig.1). 
Where Gr(p) is the controller transfer function and Gs(p) is the controlled system transfer function. 
 

 
Fig.1.  Feed - back control loop. 
 

The fractional order controlled system is  represented by the fractional order model with the 
transfer function (Podlubný, 1994), 
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where α and β are generally real numbers (α>β). 

Gr(p) is represented by the fractional PDδ  controller with the transfer function (Podlubný, 
1994), 
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or by the fractional PIλDδ controller with transfer function  (Podlubný, 1994), 
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where λ is an integral order , δ is a derivation order, K is a proportional gain, Ti  is an integration 
constant and Td  is a derivation constant.  
  

Synthesis of fractional order controllers 
 

For the synthesis of integer PD and PID controllers, different methods are used, e.g. the 
method of dominant roots, the Naslin’s method, the optimal module method, the symmetrical optimum 
method, the standard form method and the different empirical methods. 

Our approach is based on the modification of dominant roots method.  
 

• Synthesis of fractional PDδ controller  
This controller has about one more parameter  δ  comparing to the integer PD controller. This 

gives us one additional degree of freedom , and we can except from desired stability level St and 
dumping level Tl define maximal allowed control static deviation Et. 
 
The design procedure consists of two parts : 
 

1. Design of parameter K 
 

The proportional parameter K influences the value of static deviation Et, control time Tr and  the 
overregulation Pr. Generally, with the increased parameter K,  the control time Tr  decrease and the 
static deviation Et is lowering: 
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2. Design of parameters Td, δ 

 
We define the required stability level St=a and the dumping level Tl=b. These requirements satisfy 

a couple of conjugate complex roots (poles) 
 
i
b
aap ±−=2,1   (5) 

 
 
We use a characteristic equation similar, to that obtained by the classical method of dominant roots. 
The characteristic equation of the fractional order control loop has the form 
 
 

 (6) 01)( =+sr GpG  
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After substituing of the fractional order controller transfer function (2) and the fractional order 
controlled system transfer function (1) and after some corrections we obtain the characteristic 
equation in the following form 
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• Synthesis of fractional PIλDδ  controller  
The design procedure is similar to that  for the design of fractional PDδ controller : 

 
1. Design of parameter K 

 
For the determination of the parameter K  for the real time the same procedure as by PDδ  

controller can be used. 
 

2. Design of parameters Ti, Td, λ, δ 
 

The closed loop characteristic equation has the form (5). After substituing of the controller and the 
controlled system transfer function into equation (5) and after modifying, the characteristic equation 
has the following form 
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 Algorithm for the fractional order controllers 
 
The control algorithm was designed according to the control scheme shown in Fig.1. This algorithm 
consists of the following steps:  
 

1. A difference  (e)  between the desired  (w)  and the output  (y)  value determination  
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or in the discrete form : 
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for the discrete time step (m=1,2,…). 
2. Control determination  

 
The control value u can be determined from  (3)   by the inverse Laplace transformation 
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For discrete time control  can be expressed  in the form 
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where h is the time step. For the approximation of the fractional derivation and integral we use 

equation after (Dorčák, 1994). The binomial coefficients dj and qj  were  calculated from the generally 
recurrent equation 
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where a0 =1 and α is a derivation or integral order. 

  The numerical algorithm requires store the whole history. For improving their effectiveness we 
have used the "short memory" principle (Dorčák, 1994). Besides the "short memory", the control 
quality is influenced by the time step h. The maximal and minimal control value have to be taken into 
account because of the limitations of their sources (e.g. gas input). 

Fractional order controllers can be realised as a software or  passive or active electrical 
elements. 
 

Comparison of the fractional and integer order controllers 
 
Example 
 

Here, the fractional PIλDδ controller is compared with the standard controller designed for the 
required steady deviation Et<1.3%.  For the real time K=75 was determined from (4). After substituing 
into (8) instead of p use one of the complex conjugate roots (5) and the calculated value of K, we 
obtain the following equation  

 
(14) 0)751()52()52()52(5.0)52(8.0 9.02.2 =+++−++−++−++− −λδ iTiTii id

 
 

This algebraic equation has four unknown parameters and cannot be unambigously solved. 
For an unambigous solution, we have chosen two parameters e.g. Ti, λ. We have used a weak 
integrator with order λ=0.5 and integration constant Ti =315. After substituing into (14) we obtain the 
equation for  the determination  of Td and δ. The designed parameters are : 

 
(15) 205.1,5.0,878.25,315,75 ===== δλdi TTK

 
The fractional order controller,  in comparison to the integer order controller, has the lower control 
surface by 111%, the overregulation by 93%, the control time by 107% and the steady control 
deviation by 135%. 
 

 
 
Fig.2 : Comparison of fractional and  integer  PID controller. 

 
 
Fig.2 represents the transient characteristics of the feed-back fractional (slim line) and the 

integer (thick line) PID controllers for the integer controlled system. 
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Robustness improvement  
 
 Robust controller is less sensitive to the parameter changes of controlled system. The 
uncertainty can be caused by the non-precise identification. The fractional order controllers are less 
sensitive to   changes of controlled system parameters. As an example, the parameter a1 was changed  
from 0.5 to -10. To Fig.3 is the transient function of the integer PID controller and in Fig.4 is the 
transient function of the fractional PIλDδ controller. As we can see the integer controller is behind its 
stability level but the fractional PIλDδ is still stable. The same is valid for the controller parameters 
variations. 
 

Fig.3 : Transient function of integer PID controller. 
 

 
 

From this result and from the results of  (Dorčák,1994; Sýkorová et al.,1996) it follows that the 
non-integer PID controllers are more robust than the integer controllers. 
 

Fig.4 : Transient function of  fractional PI�D�  controller. 
 

 
 

 
Conclusion 

 
The outlined design method of fractional order controllers enables them to be used for the 

integer and non-integer order controlled systems (Petráš et al., 1997). The fractional order controllers 
are designed in the  frequency domain for the determined stability and dumping level. They can 
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significantly improve static and dynamic control system properties. The fractional order controllers are 
less sensitive to controlled systems and controllers parameters variations and can be used as robust 
controllers. 
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