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Control quality enhancement by fractional
order controllers

Ivo Petras ", Lubomir Doréak ', Imrich Kostial '

Zvysovanie kvality regulacie regulatormi necelo€iselného radu
Prispevok sa zaobera regulatormi neceloCiselného radu. Uvadza matematicky popis
neceloCiselnych regulatorov a metdédy ich navrhu. Kvalita a robustnost regulatorov
neceloCiselného radu je porovnana s klasickymi celoCiselnymi regulatormi. Pre pouzitie
regulatorov necelociselného radu je uvedeny prisludny algoritmus.

Kracové slova: regulator neceloCiselného radu, syntéza regulatora, regulovany systém
neceloCiselného radu, analyza kvality riadenia

Introduction

PID controllers belong to the dominating industrial controllers (Le$So, 1997) and therefore
there is a continuous effort to improve their quality and robustness. One of the possibilities to improve
PID controllers is to use fractional order controllers with non integer derivation and integration parts.

The controlled objects are generally of fractional order, however for many of them, the
fractionality is very low. Their integer order description can cause significant differences in the
adequacy between the mathematical model and the real system (Dor¢ék, 1994; Sykorova,1996). The
main reasons for using integer order models were the absence of solution methods for fractional order
equations. In the previous time important achievements were obtained (Oldham, 1974; Axtell and
Bise, 1990; Podlubny, 1994; Dor¢ak, 1994) which enable to be taken into account the real order of
dynamic systems. For fractional order systems (Outstaloup, 1995), fractional controller CRONE has
been developed which is a modified PD® controller.

In this paper we present a synthesis of fractional PI*D® controllers, analysis of their behaviour
and simulation methods. We point out the non-adequate approximation of non-integer systems by
integer order models and differences in their closed loop behaviour.

Properties of fractional order control system and fractional order controllers

Let's consider a feed-back control system with an unit gain in the feed-back loop (fig.1).
Where Gr(p) is the controller transfer function and Gs(p) is the controlled system transfer function.

Wp) + E(p) U(p) Y(p)
> Gr(p) Gs(p) >

Fig.1. Feed - back control loop.

The fractional order controlled system is represented by the fractional order model with the
transfer function (Podlubny, 1994),
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(1)
1

G =
() a,p” + alpﬂ +a,

where a and B are generally real numbers (o>p).
G/(p) is represented by the fractional PD° controller with the transfer function (Podlubny,
1994),

G (p)=K+T,p° 2)

or by the fractional PI"D® controller with transfer function (Podlubny, 1994),

G(p)=K+Tp" +T,p° (3)
where Ais an integral order , Sis a derivation order, Kis a proportional gain, T; is an integration
constant and T, is a derivation constant.

Synthesis of fractional order controllers
For the synthesis of integer PD and PID controllers, different methods are used, e.g. the
method of dominant roots, the Naslin’s method, the optimal module method, the symmetrical optimum
method, the standard form method and the different empirical methods.
Our approach is based on the modification of dominant roots method.
Synthesis of fractional PD? controller
This controller has about one more parameter & comparing to the integer PD controller. This
gives us one additional degree of freedom , and we can except from desired stability level S; and
dumping level T, define maximal allowed control static deviation E;.

The design procedure consists of two parts :

Design of parameter K

The proportional parameter K influences the value of static deviation E;, control time T, and the
overregulation P,. Generally, with the increased parameter K, the control time T, decrease and the
static deviation E; is lowering:

1
a,+K

E =

t

100[%)] (4)

Design of parameters Td,

We define the required stability level S;=a and the dumping level T;=b. These requirements satisfy
a couple of conjugate complex roots (poles)

a.
P, =—a igl (5)

We use a characteristic equation similar, to that obtained by the classical method of dominant roots.
The characteristic equation of the fractional order control loop has the form

G.(p)G.+1=0 ©)
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After substituing of the fractional order controller transfer function (2) and the fractional order
controlled system transfer function (1) and after some corrections we obtain the characteristic
equation in the following form

a,p® +a,p” +T,p° +(a, +K)=0 (7

Synthesis of fractional PI*D® controller
The design procedure is similar to that for the design of fractional PD® controller :

Design of parameter K

For the determination of the parameter K for the real time the same procedure as by PD°
controller can be used.

Design of parameters Ti, Td, A.

The closed loop characteristic equation has the form (5). After substituing of the controller and the
controlled system transfer function into equation (5) and after modifying, the characteristic equation
has the following form

azp“+a1pﬁ+po5+7;p_ﬂ+(ao+K):O (8)

Algorithm for the fractional order controllers

The control algorithm was designed according to the control scheme shown in Fig.1. This algorithm
consists of the following steps:

A difference (e) between the desired (w) and the output (y) value determination

() = w(t)~ y(0) ©)

or in the discrete form :

em:Wm_ym (10)

for the discrete time step (m=1,2,...).
Control determination

The control value u can be determined from (3) by the inverse Laplace transformation
_ (-2) &) (11)
u(t) = Ke(t)+Te " (t)+T,e(¢)

For discrete time control can be expressed in the form

u, =Ke, + Tihﬂiqjem_j + Tdh_‘szm:d

Jj=0 Jj=0

(12)

7€m-j

where h is the time step. For the approximation of the fractional derivation and integral we use
equation after (Dor¢ak, 1994). The binomial coefficients d; and q; were calculated from the generally
recurrent equation
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. [1— 1+.aJaH (13)
| T

where ap;=1 and a is a derivation or integral order.

The numerical algorithm requires store the whole history. For improving their effectiveness we
have used the "short memory" principle (Dorc¢ak, 1994). Besides the "short memory", the control
quality is influenced by the time step h. The maximal and minimal control value have to be taken into
account because of the limitations of their sources (e.g. gas input).

Fractional order controllers can be realised as a software or passive or active electrical
elements.

Comparison of the fractional and integer order controllers

Example

Here, the fractional PI"D® controller is compared with the standard controller designed for the
required steady deviation Ei<1.3%. For the real time K=75 was determined from (4). After substituing
into (8) instead of p use one of the complex conjugate roots (5) and the calculated value of K, we
obtain the following equation

0.8(=2+51)** +0.5(=2+5)* + T,(=2+5i)° + T(-2+5i)) " +(1+75) =0 (14)

This algebraic equation has four unknown parameters and cannot be unambigously solved.
For an unambigous solution, we have chosen two parameters e.g. T;, A. We have used a weak
integrator with order 1=0.5 and integration constant T; =375. After substituing into (14) we obtain the
equation for the determination of Ty and ¢. The designed parameters are :

K =75T =315,T, = 25.878,4 =0.5,5 =1.205 (15)

The fractional order controller, in comparison to the integer order controller, has the lower control
surface by 111%, the overregulation by 93%, the control time by 107% and the steady control
deviation by 135%.

¥1)
05 4

=
b
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Fig.2 : Comparison of fractional and integer PID controller.

Fig.2 represents the transient characteristics of the feed-back fractional (slim line) and the
integer (thick line) PID controllers for the integer controlled system.
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Robustness improvement

Robust controller is less sensitive to the parameter changes of controlled system. The
uncertainty can be caused by the non-precise identification. The fractional order controllers are less
sensitive to changes of controlled system parameters. As an example, the parameter a; was changed
from 0.5 to -10. To Fig.3 is the transient function of the integer PID controller and in Fig.4 is the
transient function of the fractional PI"D° controller. As we can see the integer controller is behind its
stability level but the fractional PI"D° is still stable. The same is valid for the controller parameters
variations.

3 L L L ) L 1 L . 1
0 0.5 1 15 2 2.5 3 35 4 45 5

Fig.3 : Transient function of integer PID controller.

From this result and from the results of (Dor¢ak,1994; Sykorova et al.,1996) it follows that the
non-integer PID controllers are more robust than the integer controllers.
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Fig.4 : Transient function of fractional PI"D~ controller.

Conclusion
The outlined design method of fractional order controllers enables them to be used for the

integer and non-integer order controlled systems (Petras et al., 1997). The fractional order controllers
are designed in the frequency domain for the determined stability and dumping level. They can
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significantly improve static and dynamic control system properties. The fractional order controllers are
less sensitive to controlled systems and controllers parameters variations and can be used as robust
controllers.
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