
Nat. Hazards Earth Syst. Sci., 6, 955–959, 2006
www.nat-hazards-earth-syst-sci.net/6/955/2006/
© Author(s) 2006. This work is licensed
under a Creative Commons License.

Natural Hazards
and Earth

System Sciences

Hybrid Adaptive Filter development for the minimisation of
transient fluctuations superimposed on electrotelluric field
recordings mainly by magnetic storms

A. Konstantaras1, M. R. Varley2, F. Vallianatos1, J. P. Makris1, G. Collins2, and P. Holifield2

1Technological Educational Institute of Crete, Chania, Crete, 731 33, Greece
2ADSIP Research Centre, Department of Technology, University of Central Lancashire, Preston, PR1 2HE, UK

Received: 17 July 2006 – Revised: 23 October 2006 – Accepted: 23 October 2006 – Published: 30 October 2006

Abstract. The method of Hybrid Adaptive Filtering (HAF)
aims to recover the recorded electric field signals from
anomalies of magnetotelluric origin induced mainly by mag-
netic storms. An adaptive filter incorporating neuro-fuzzy
technology has been developed to remove any significant
distortions from the equivalent magnetic field signal, as re-
trieved from the original electric field signal by reversing the
magnetotelluric method. Testing with further unseen data
verifies the reliability of the model and demonstrates the ef-
fectiveness of the HAF method.

1 Introduction

Prior to an earthquake, there is energy storage in the seis-
mogenic area, the release of which results in a number of
micro-cracks, which in effect produce a weak electric sig-
nal. Initially, there is a rapid rise in the number of propa-
gating cracks, which creates a transient electric field. The
whole process lasts in the order of several tens of minutes,
and the resulting electric signal is considered as an electric
earthquake precursor (EEP) (Tzanis and Vallianatos, 2001;
Varotsos and Alexopoulos, 1984). EEPs appear on record-
ings of the Earth’s electric field (E) and their recognition
is mainly prevented by the probable appearance of severe
transient fluctuations induced mainly by magnetic storms (or
sub-storms), and/or other physical and anthropogenic types
of noise (Varotsos and Alexopoulos, 1984). At the occur-
rence of a magnetic storm (Varotsos and Alexopoulos, 1984;
Vallianatos et al., 2002) at an observation point, which usu-
ally lasts for several tens of minutes, significant disturbances
are recorded upon the Earth’s magnetic field measurements
(H). This has an immediate effect on the electric field
(Cagniard, 1953; Kaufman and Keller, 1981), resulting in a
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different spread of the latter. When an EEP occurs during
significant magnetic fluctuations the disturbances can be so
severe that its recognition may not be possible.

The recovery of EEP signals has long puzzled the scien-
tific community but very few approaches have shown promis-
ing results (Hadjioannou and Vallianatos, 1993; Rovithakis
and Vallianatos, 2000; Konstantaras et al., 2006b). The
method of “the subtraction of the telluric inductive compo-
nent from electric field recordings” (Hadjioannou and Val-
lianatos, 1993) developed in the early 1990s has the dis-
advantage of the assumption that the existence of preseis-
mic magnetic fields does not influence the estimated induced
electrical components. In an effort to ignore the impedance
tensor, a method incorporating neural networks has been de-
veloped (Rovithakis and Vallianatos, 2000), where the neural
network is trained to predict the Earth’s electric field. Thus,
any electrotelluric anomaly due to a seismoelectric source is
enhanced on the prediction error signal, measured as the dif-
ference of the recorded and the predicted electric field signal,
as it is an “external” signal added on and not a genuine part
of the electric field. However the effectiveness of the method
relies on the assumption that at the time of their occurrence
EEPs are not accompanied by any significant magnetotelluric
anomalies.

This paper presents the Hybrid Adaptive Filtering method,
a two-step process incorporating neuro-fuzzy technology for
the development of adaptive filters trained to minimize the ef-
fect of magnetotelluric disturbances presented upon the elec-
tric field.

2 Hybrid Adaptive Filtering

The HAF method is a two-step process (Fig. 1) based upon
the magnetotelluric method (Kaufman and Keller, 1981),
which specifies that at an observation point the relation be-
tween the electric and magnetic field at a particular frequency
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Fig. 1. Flow chart analysis of the two-step operation of the HAF
method.

is linear, thus the magnetotelluric impedance tensorZ is de-
fined in matrix notation as:E=Z H. During the first step
the noise-affected recorded electric field signalEn is trans-
formed to the frequency domainEn(ω) and the equivalent
embedded-in-noise magnetic field signalHn(ω) is calculated
by reversing the magnetotelluric method, e.g.H=Z−1E. The
noise embedded magnetic field signal is then transformed
from the frequency domain to the time domainHn.

In order to minimize any probable external severe fluctu-
ations from the recovered magnetic field signalHn, a neuro-
fuzzy model is incorporated, trained to operate as an adap-
tive filter. To reliably assess its performance, the neuro-fuzzy
model is trained with simulated magnetic field signals featur-
ing the main characteristics of the Earth’s magnetic field, i.e.
chaotic time-series with a spectral density function that sat-
isfies the relationshipS (ω)∝ω−a . The neuro-fuzzy model
is trained by a hybrid algorithm (Jang, 1993) to identify the
signal’s main characteristics and reproduce the current in-
put samplen based upon previous samples, i.e.n–1, n–2,
n–3. In the event of external fluctuations, such as magnetic
storms, the neuro-fuzzy model compresses the amplitude of
the input samplen to the expected level of the unaffected
magnetic field signal. Thus, the resulting magnetic field sig-
nal H has its external distortions minimized to a satisfac-
tory level, no greater than that of random noise appearing on
the recorded data estimated at approximately 20 dB (Makris,
1997; d’Erceville and Kunetz; Groom, 1988).

The second step is the reconstruction process, which com-
putes the electric field signal based upon the “cured” mag-
netic field signalH . As a result, any external distortions
of magnetic origin are minimized upon the reconstructed
electric field signal to a satisfactory level, which approxi-
mates the level of standard random noise appearing on the
recorded data, i.e. 20 dB (Makris, 1997; d’Erceville and
Kunetz; Groom, 1988). According to the magnetotelluric

method, the “cured” magnetic field signalH is transformed
to the frequency domainH(ω) for the equivalent electric
field signalE(ω) to be computed throughout the relevant fre-
quency spectrum, i.e.E(ω)=Z(ω)H(ω). The resulting sig-
nalE(ω) is finally transformed to the time domain providing
the reconstructed electric field signalE with minimal exter-
nal disturbances.

3 Neuro-Fuzzy model architecture and training

Neuro-Fuzzy models are neural networks with intrinsic fuzzy
logic abilities (Konstantaras et al., 2002), i.e. the weights of
the neurons in the network define the premise and consequent
parameters of a fuzzy inference system. Premise parame-
ters determine the shape and size of the input membership
functions, whilst consequent parameters determine the char-
acteristics of the output membership functions and define the
rules guiding the fuzzy inference system. To generate an
initial fuzzy inference system, i.e. to produce an initial set
of premise and consequent parameters, subtractive cluster-
ing (Jang et al., 1997) is applied on the input data of an in-
put/output data set. The structure of the neuro-fuzzy model
depends on the number of inputs and input membership func-
tions per input. Each rule and membership function is repre-
sented by a single neuron. The number of rules guiding the
fuzzy inference system is equal to the number of membership
functions per input to the power of the total number of inputs
of the system. A single neuron is used as bias to define the
importance of either rule in the system. Each rule is associ-
ated to a single output membership function. A single neu-
ron is used to produce a crisp output (defuzzification). The
current and three previous samples of the recorded magnetic
field signalHn are used as inputs (layer 1) to the neuro-fuzzy
model (Fig. 2) introducing recursion to the network (input
data set). The required output is the magnetic field signal
with minimal additional disturbances (output data set).

The layer by layer operation of the neuro-fuzzy model is
described in this paragraph: In layer 1, the present and three
previous samples of the recorded signal are used as inputs
(A to D) to the network. In layer 2, every nodei in this
layer is an adaptive node with a node function:O1,i=µAi(x),
for i=1,2, orO1,i=µBi−2(y), for i=3,4, orO1,i=µCi−4(z),
for i=5,6, orO1,i=µDi−6(k), for i=7,8, wherex (or y, or
z, or k) is the input to nodei and Ai (or Bi , or Ci , or
Di) is the equivalent membership function. The type of
MFs A, B, C and D is that of the generalized bell func-

tion: µAi(x)=1/

(
1+

∣∣∣ x−ci

ai

∣∣∣2b
)

, where {ai , bi , ci} are

the premise parameters of the network (Konstantaras et al.,
2004) which determine the shape and size of the MF. In
layer 3, every node in this layer is a fixed node calculating
the normalized firing strength of either rule:O2,i=wi=

wi∑
i

wi
,

wherewi =µAi(x) µBi(y) µCi(z)µDi(k). In layer 4, every
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Figure 2 
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Fig. 2. Neuro-fuzzy model architecture: layer 1 – inputs, layer 2 –
input membership functions, layer 3 – rules, layer 4 – output mem-
bership functions, layer 5 – weighted sum output, layer 6 – output.
Black nodes indicate inputs and output of the neuro-fuzzy model
whilst every white node indicates a single neuron. The white dashed
node is a bias neuron.

node i in this layer is an adaptive node using an output
membership functions to compute the weighed output of the
equivalent rule, according to the following node function:
O3,i=wifi wherefi=pi+qi+mi+ni+ri , and{pi , qi , mi , ni ,
ri} are the consequent parameters (Konstantaras et al., 2004)
of the network that specify the rules of the fuzzy inference
system. In layer 5, the single node in this layer is a fixed
node, which converts the weighted fuzzy outputs of all rules
in the system into a single crisp output, as described by the
following node function:O4,1=

∑
i

wifi . Finally, in layer 6,

the node describes the actual output of the neuro-fuzzy model
for a given input data set.

A hybrid algorithm (Jang, 1993), a combination of the
backpropagation algorithm (Jang et al., 1997) and the least
squares estimator (Jang et al., 1997), maps the input data
set to the output data set by adjusting accordingly the mem-
bership functions’ and rules’ parameters. In a similar way
to feed-forward neural networks (Haykin, 1999), the neuro-
fuzzy model generates an output signal during the forward
pass, based on the initial set of membership functions. The
consequent parameters are defined in the forward pass using
the least squares method. Then the output is compared to the
required output, and an error signal is fed back to the system
to be used during the backward pass to readjust the premise
parameters using the backpropagation algorithm. This pro-
cess continues for a number of epochs until the error signal
becomes sufficiently small (ideally zero) (Konstantaras et al.,
2006a).
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Electric Field signals Before and After HAF processing 

Fig. 3. Minimising the effect of magnetotelluric distortions upon
the electric field: subplot 1 – electric field signal partially affected
by severe transient fluctuations of magnetic origin (approximately
between data samples 2500 and 3000), subplot 2 – the reconstructed
electric field signal after being processed by the HAF method with
the external distortion minimized (electric field signals have been
down sampled by a factor of 4 with respect to their equivalent mag-
netic field signals for visualization purposes).

4 Experimental results

The neuro-fuzzy model was trained using a simulated mag-
netic field signal including significant distortions of similar
effect to that of a magnetic storm, with known location and
duration, at the input, and the simulated magnetic field signal
alone as the required output. The performance of the HAF
method and of the trained system was then tested using fur-
ther unseen simulated electric field signals partially affected
by noise external to the background signal approximately be-
tween data samples 2500 and 3000 (Fig 3, subplot 1) giving
a signal to noise ratio of 4.19 dB.

During the first stage of the HAF method the equiva-
lent magnetic field signal is automatically derived from the
original electric field signal, by reversing the magnetotel-
luric method. At this stage the magnetic field signal carries
the same distortions, which had infected the original elec-
tric field signal, distinguished clearly approximately between
data samples 10 000 and 12 000 (Fig. 4, subplot 1) exhibit-
ing a signal to noise ratio of 6.41 dB. Then, the neuro-fuzzy
model, already trained as an adaptive filter, is activated upon
the affected part of the data and minimizes the unwanted dis-
turbances from the magnetic field signal. The external distor-
tion on the resulting signal (Fig. 4, subplot 2) has been signif-
icantly reduced, leading to a signal to noise ratio of 21.07 dB.

During the second stage of the HAF method the electric
field signal is reconstructed (Fig. 3, subplot 2) based upon the
processed magnetic field signal, which results in significant
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Table 1. This table demonstrates the signal to noise ratio (SNR) of another ten unseen simulated magnetic field signals (featuring the main
characteristics of the Earth’s magnetic field, i.e. chaotic time-series with a spectral density function that satisfies the relationshipS (ω) ∝ω−a)

and equivalent electric field test-signals affected by severe transient fluctuations, before and after having been processed by the HAF method.
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Fig. 4. Minimisation of severe transient fluctuations upon magnetic
field time-series (approximately between data samples 10 000 and
12 000) using adaptive filtering: subplot 1 – magnetic field signal
before neural adaptation, subplot 2 – magnetic field signal after neu-
ral adaptation (fs=1 Hz).

reductions on the noise level of the former in comparison
to the original electric field signal. The signal to noise ra-
tio of the electric field signal after neural adaptation equals
19.74 dB, which is in balance with the noise level of random
noise appearing on the recorded data estimated at approxi-
mately 20 dB (Makris, 1997; d’Erceville and Kunetz; Groom,
1988).

Table 1 outlines results obtained using a further ten un-
seen magnetic and electric field test-signals, reinforcing ear-
lier observations on the performance of the HAF method.
In every case there is a significant improvement in signal to

noise ratio when the HAF method is used, with the average
improvement for the ten magnetic field test signals measured
at 12.48 dB and the average improvement for the ten electric
field test signals measured at 14.41 dB.

5 Conclusions

These results clearly demonstrate the ability of adaptive net-
works to process dynamic signals and the effectiveness of
neuro-fuzzy models as adaptive filters. The development
of the HAF method incorporating neuro-fuzzy technology
provides an effective mechanism that minimizes any signif-
icant disturbances of external origin to the background sig-
nal superimposed on electrotelluric field recordings. Thus,
the method is valid not only for magnetic storms, but it can
be applied to remove man-made noises and other spurious
effects. Providing that the impedance tensor of the subsoil
at the observation site is known, there are no limitations re-
garding the site’s location. Furthermore, noise minimisation
from electric field recordings is achieved by operating on the
equivalent magnetic field signal thereby preserving any “ex-
ternal” information added on the electric field, such as EEP
signals.
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