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Abstract. The method of Hybrid Adaptive Filtering (HAF) different spread of the latter. When an EEP occurs during
aims to recover the recorded electric field signals fromsignificant magnetic fluctuations the disturbances can be so
anomalies of magnetotelluric origin induced mainly by mag- severe that its recognition may not be possible.

netic storms. An adaptive filter incorporating neuro-fuzzy  The recovery of EEP signals has long puzzled the scien-
technology has been developed to remove any significantific community but very few approaches have shown promis-
distortions from the equivalent magnetic field signal, as re-ing results Hadjioannou and Vallianatp4993 Rovithakis
trieved from the original electric field signal by reversing the and Vallianatos 2000 Konstantaras et al2006f. The
magnetotelluric method. Testing with further unseen datamethod of “the subtraction of the telluric inductive compo-
verifies the reliability of the model and demonstrates the ef-nent from electric field recordings’Hadjioannou and Val-
fectiveness of the HAF method. lianatos 1993 developed in the early 1990s has the dis-
advantage of the assumption that the existence of preseis-
mic magnetic fields does not influence the estimated induced
electrical components. In an effort to ignore the impedance
tensor, a method incorporating neural networks has been de-
veloped Rovithakis and Vallianatg2000, where the neural

Prior to an earthquake, there is energy storage in the seis- . : . ; s
mogenic area, the release of which results in a number opetwork is trained to predict the Earth’s electric field. Thus,

micro-cracks, which in effect produce a weak electric sig- 2" electrotelluric anomaly due to a seismoelectric source is

nal. Initially, there is a rapid rise in the number of propa- enhanced on the prediction error sigpal, measu.reql as the dif-
gating cracks, which creates a transient electric field. Thefergn_ce of ‘t‘he recor,(,je_d and the predicted electncflelq signal,
as it is an “external” signal added on and not a genuine part

whole process lasts in the order of several tens of minutes,]cth lectric field. H the effecti fth thod
and the resulting electric signal is considered as an electrid! \N€ €l€ctric hield. However the eliectiveness ot the metho

earthquake precursor (EEPJzanis and Vallianato2001 relies on the assumption that at the time of their occurrence
Varotsos and Alexopoulpd984. EEPs appear on record- EEPs are not accompanied by any significant magnetotelluric

ings of the Earth's electric field&) and their recognition anomalies. . L
is mainly prevented by the probable appearance of severe This paper presents the Hybrid Adaptive Filtering method,

transient fluctuations induced mainly by magnetic storms (o WO-Step process incorporating neuro-fuzzy technology for

sub-storms), and/or other physical and anthropogenic typeghe development of adaptive filters trained to minimize the ef-
of noise Warotsos and Alexopoulo€984. At the occur- fect of magnetotelluric disturbances presented upon the elec-

rence of a magnetic storv4rotsos and Alexopoulog9gs  tric field.

Vallianatos et aJ.2002 at an observation point, which usu-

ally lasts for several tens of minutes, significant disturbances ) ) -
are recorded upon the Earth’s magnetic field measurementd Hybrid Adaptive Filtering
(H). This has an immediate effect on the electric field
(Cagniard 1953 Kaufman and Keller1981), resulting in a

1 Introduction

The HAF method is a two-step process (Fig. 1) based upon
the magnetotelluric methodKéufman and Keller 1987,

Correspondence toA. Konstantaras which specifies that at an observation point the relation be-
(akonstantaras@chania.teicrete.gr) tween the electric and magnetic field at a particular frequency
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E(f) Ef) - method, the “cured” magnetic field signAl is transformed

> FFT z to the frequency domaitl (w) for the equivalent electric
field signalE (w) to be computed throughout the relevant fre-
guency spectrum, i.eE (w)=Z(w)H (w). The resulting sig-
nal E (w) is finally transformed to the time domain providing
N-F [ > HQ© the reconstructed electric field signalwith minimal exter-
nal disturbances.

A 4

A 4

IFFT
H,(f) H,(t)

Step 1: Hybrid Adaptive Filtering

3 Neuro-Fuzzy model architecture and training

H) » FFT H() Z £¢) IFFT ’E(t)

Neuro-Fuzzy models are neural networks with intrinsic fuzzy
logic abilities Konstantaras et al2002), i.e. the weights of

the neurons in the network define the premise and consequent
parameters of a fuzzy inference system. Premise parame-
ters determine the shape and size of the input membership
functions, whilst consequent parameters determine the char-
acteristics of the output membership functions and define the
rules guiding the fuzzy inference system. To generate an
initial fuzzy inference system, i.e. to produce an initial set
of premise and consequent parameters, subtractive cluster-
ing (Jang et al.1997 is applied on the input data of an in-
put/output data set. The structure of the neuro-fuzzy model
depends on the number of inputs and input membership func-
tions per input. Each rule and membership function is repre-
gented by a single neuron. The number of rules guiding the
fuzzy inference system is equal to the number of membership
functions per input to the power of the total number of inputs

In order to minimize any probable external severe ﬂUCtu_of the system. A single neuron is used as bias to define the

ations from the recovered magnetic field sighl a neuro- . . : ) :

L ; importance of either rule in the system. Each rule is associ-
fuzzy model is incorporated, trained to operate as an adap: . . . :
N . . ated to a single output membership function. A single neu-
tive filter. To reliably assess its performance, the neuro-fuzzy

i : AR o : ron is used to produce a crisp output (defuzzification). The
model is trained with simulated magnetic field signals featur- . .
. i - ; o . current and three previous samples of the recorded magnetic
ing the main characteristics of the Earth’s magnetic field, i.e

chaotic time-series with a spectral density function that sat—ﬂQId signalH, are used as inputs (layer 1) to the neuro-fuzzy

isfies the relationships () cw—2. The neuro-fuzzy model model (Fig. 2) introducing recursion to the network (input

. : . ) . . data set). The required output is the magnetic field signal
Is trained by a hybrid algorithmi@ng 1993 to identify the with minimal additional disturbances (output data set).

signal’'s main characteristics and reproduce the current in- . :
The layer by layer operation of the neuro-fuzzy model is

ut samplen based upon previous samples, iel, n—2, i o
P P pon p P " éjescnbed in this paragraph: In layer 1, the present and three

n—3. In the event of external fluctuations, such as magneti , ) ,
storms, the neuro-fuzzy model compresses the amplitude revious samples of the recorded signal are used as inputs
A to D) to the network. In layer 2, every nodein this

the input sample: to the expected level of the unaffected . : . .

magnetic field signal. Thus, the resulting magnetic field sig-\2Y€" IS an adaptive node with a node functigh; =uA (x),
nal H has its external distortions minimized to a satisfac- 10f {=1:2, Or O1;=1uB;—2(y), for i=3,4, or 01,;=uC;i4(2),
tory level, no greater than that of random noise appearing or(or i=5,6, or 01,/=uDi_g(k), for i=7,8, wherex (or y, or

the recorded data estimated at approximately 20Makgis, & ©F k) is the input to node and 4; (or B;, or C;, or
1997 d’Erceville and KunetzGroom 1988. D;) is the equivalent membership function. The type of

. . . MFs A, B, C and D is that of the generalized bell func-
The second step is the reconstruction process, which com-
X—Cj

putes the electric field signal based upon the “cured” magtion: wA;(x)=1/ <1+ =t

netic field signalH. As a result, any external distortions premise parameters of the netwokogstantaras et al.

of magnetic origin are minimized upon the reconstructedzooép which determine the shape and size of the MF. In
electric r1:ie||d si?n?l to %s%tisfat(:jtory level, which ?DPVOXi'h|ayer 3, every node in this layer is a fixed node calculating
mates the level of standard random noise appearing on t ; » ; e W
recorded data, i.e. 20 dBM@kris, 1997 d’Erf:)gville gnd fhe normalized firing strength OfeltherrUIQQ"_wl_[Zwi'
Kunetz Groom 1988. According to the magnetotelluric wherew; =uA; (x) uB;(y) uC;(z)uD; (k). In layer 4, every

Step 2: Reconstruction

Fig. 1. Flow chart analysis of the two-step operation of the HAF
method.

is linear, thus the magnetotelluric impedance ter’s@s de-
fined in matrix notation asE=Z H. During the first step
the noise-affected recorded electric field sighalis trans-
formed to the frequency domaih, (w) and the equivalent
embedded-in-noise magnetic field sigi&l(w) is calculated
by reversing the magnetotelluric method, &dgZ~1E. The
noise embedded magnetic field signal is then transforme
from the frequency domain to the time domdif.

, where {a;, b;, c;} are
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Electric Field signals Before and After HAF processing
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Fig. 2. Neuro-fuzzy model architecture: layer 1 — inputs, layer 2 — data samples

input membership functions, layer 3 — rules, layer 4 — output mem-

bership functions, layer 5 — weighted sum output, layer 6 — output.rijg_ 3. Minimising the effect of magnetotelluric distortions upon

Black nodes indicate inputs and output of the neuro-fuzzy modelne electric field: subplot 1 — electric field signal partially affected

whllst_ever)_/ white node indicates a single neuron. The white dasheoby severe transient fluctuations of magnetic origin (approximately

node is a bias neuron. between data samples 2500 and 3000), subplot 2 — the reconstructed
electric field signal after being processed by the HAF method with
the external distortion minimized (electric field signals have been
down sampled by a factor of 4 with respect to their equivalent mag-
netic field signals for visualization purposes).

nodei in this layer is an adaptive node using an output

membership functions to compute the weighed output of the )

equivalent rule, according to the following node function: 4 Experimental results

O3,;=w; f; wheref;=p;+q;+m;+n;+r;, and{p;, q;, m;, n;, . . .

r;} are the consequent paramete¢srfstantaras et al2004 The neuro-fuzzy model was trained using a simulated mag-

of the network that specify the rules of the fuzzy inference netic field signal including significant distortions of similar
system. In layer 5, the single node in this layer is a fixed effect to that of a magnetic storm, with known location and

node, which converts the weighted fuzzy outputs of all rulesduration, at the input, and the simulated magnetic field signal

in the system into a single crisp output, as described by th&/0ne as the required output. The performance of the HAF
following node functionO 1= "; f:. Finally, in layer 6, method and of the trained system was then tested using fur-

; ther unseen simulated electric field signals partially affected

the node describes the actual output of the neuro-fuzzy modely noise external to the background signal approximately be-

for a given input data set. tween data samples 2500 and 3000 (Fig 3, subplot 1) giving
a signal to noise ratio of 4.19dB.

A hybrid algorithm (ang 1993, a combination of the During the first stage of the HAF method the equiva-
backpropagation algorithmidng et al.1997 and the least lent magnetic field signal is automatically derived from the
squares estimatoldéng et al. 1997, maps the input data original electric field signal, by reversing the magnetotel-
set to the output data set by adjusting accordingly the memiuric method. At this stage the magnetic field signal carries
bership functions’ and rules’ parameters. In a similar waythe same distortions, which had infected the original elec-
to feed-forward neural networkslaykin, 1999, the neuro- tric field signal, distinguished clearly approximately between
fuzzy model generates an output signal during the forwarddata samples 10000 and 12 000 (Fig. 4, subplot 1) exhibit-
pass, based on the initial set of membership functions. Théng a signal to noise ratio of 6.41dB. Then, the neuro-fuzzy
consequent parameters are defined in the forward pass usingodel, already trained as an adaptive filter, is activated upon
the least squares method. Then the output is compared to thbe affected part of the data and minimizes the unwanted dis-
required output, and an error signal is fed back to the systenturbances from the magnetic field signal. The external distor-
to be used during the backward pass to readjust the premisigon on the resulting signal (Fig. 4, subplot 2) has been signif-
parameters using the backpropagation algorithm. This proicantly reduced, leading to a signal to noise ratio of 21.07 dB.
cess continues for a number of epochs until the error signal During the second stage of the HAF method the electric
becomes sufficiently small (ideally zerd®ddnstantaras etal.  field signal is reconstructed (Fig. 3, subplot 2) based upon the
20063. processed magnetic field signal, which results in significant
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Table 1. This table demonstrates the signal to noise ratio (SNR) of another ten unseen simulated magnetic field signals (featuring the main
characteristics of the Earth’s magnetic field, i.e. chaotic time-series with a spectral density function that satisfies the rekationship“)
and equivalent electric field test-signals affected by severe transient fluctuations, before and after having been processed by the HAF methoo

Lilagnetic SHE (dB) SHE (dBEY | Improvement | Egquivalent SHE (dB) SHNE(dBEY | Improvement
field signals hefore after i SHE (dB) electric field before after in SHE (dB)
fiearal tieural sighals tieural tieural
adaptation | adaptation adaptation | adaptation
test signal | 6.41 21.07 14 66 test signal | 4.19 19.74 15.55
test signal 2 5.91 2087 14 26 test signal 2 362 18 25 14 67
test signal 3 6. 37 2061 1424 test signal 3 4. 25 1903 1478
test signal 4 g.01 21.80 13.7% test signal 4 5.38 12.95 14.5%
test signal 5 9.67 20.37 10,770 test signal 3 5,77 20.56 14.7%
test signal 6 10,28 20.55 10277 test signal & 6. 02 1978 1376
test signal ¥ 251 20772 11.21 test signal 7 5.91 1975 13 54
test signal & a.70 1973 11.03 test signal 8 5.64 19 &7 14.03
test signal ? 8.33 12.9% 11.66 test sigral ? 4.%8 15.85 13,80
test signal 10 8.0%8 2029 12.20 test signal 10 5.14 12.31 14.17
Adaptive Filtering: Magnetic Field signals Before and After Neural Adaptation noise ratio when the HAF method is used, with the average
o — improvement for the ten magnetic field test signals measured
2000 | . at 12.48 dB and the average improvement for the ten electric

ol | field test signals measured at 14.41 dB.

amplitude

-2000 - B

4000 5 Conclusions

1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
data samples

P . . . . . . . . These results clearly demonstrate the ability of adaptive net-
works to process dynamic signals and the effectiveness of
neuro-fuzzy models as adaptive filters. The development
of - of the HAF method incorporating neuro-fuzzy technology
provides an effective mechanism that minimizes any signif-
icant disturbances of external origin to the background sig-
0 G T G G i i e T R nal superimposed on electrotelluric field recordings. Thus,
data samples the method is valid not only for magnetic storms, but it can
be applied to remove man-made noises and other spurious
Fig. 4. Minimisation of severe transient fluctuations upon magnetic effects. Providing that the impedance tensor of the subsoil
field time-series (approximately between data samples 10000 angt the observation site is known, there are no limitations re-
12000) using adaptive filtering: subplot 1 — magnetic field signal g5 ding the site’s location. Furthermore, noise minimisation
before neu_ral adaptation, subplot 2 — magnetic field signal after NeUs.om electric field recordings is achieved by operating on the
ral adaptation (fs=1 Hz). . o . . u
equivalent magnetic field signal thereby preserving any “ex-
ternal” information added on the electric field, such as EEP
signals.
reductions on the noise level of the former in comparison
to the original electric field signal. The signal to noise ra- AcknowledgementsThis work was supported from the project
tio of the electric field signal after neural adaptation equalsArchimedes |, sub-project No 2.2.15 entitled: Multiparametric
19.74 dB, which is in balance with the noise level of random tempo-spatial estimation of the seismic hazard at the front of the
noise appearing on the recorded data estimated at approxi€llenic arc. Application to the protection of the old town and the

mately 20 dB [akris, 1997 d’Erceville and KunetzGroom ~ venetian port of Chania in the frame of the Operational Programme
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Table 1 outlines results obtained using a further ten un-national resources of Greece.

seen magnetic and electric field test-signals, reinforcing ear-
lier observations on the performance of the HAF method.Edited by: P. F. Biagi
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