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Abstract. Along with the rise of sophisticated smartphones
and smart spaces, the availability of both static and dynamic
context information has steadily been increasing in recent
years. Due to the popularity of social networks, these data
are complemented by profile information about individual
users. Making use of this information by classifying users
in wireless networks enables targeted content and advertise-
ment delivery as well as optimizing network resources, in
particular bandwidth utilization, by facilitating group-based
multi-casting. In this paper, we present the design and imple-
mentation of a web service for advanced user classification
based on user, network, and environmental context informa-
tion. The service employs simple and advanced clustering
algorithms for forming classes of users. Available service
functionalities include group formation, context-aware adap-
tation, and deletion as well as the exposure of group charac-
teristics. Moreover, the results of a performance evaluation,
where the service has been integrated in a simulator mod-
eling user behavior in heterogeneous wireless systems, are
presented.

1 Introduction

Group communication is of particular interest in wireless
(access) networks, one example being the domain of multi-
casting, i.e. simultaneously delivering the same content to
multiple recipients. Chalmers and Almeroth(2001), Janic
and Van Mieghem(2009), as well asBaumung and Zitterbart
(2009), among others, have shown that multi-casting tech-
nologies can considerably contribute to more efficiently ex-
ploiting available network resources when applied under ap-
propriate circumstances. A typical use case for exploiting
multi-casting is a large-scale sport event with tens of thou-
sands of spectators that can be grouped according to their
user profile and context. Based on that classification, dif-
ferent groups can receive adapted content. However, a user
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classification service, as required in this use case, can also
be exploited for selecting people with particular characteris-
tics. Consumers with an affinity to a certain product category
could be identified for specific marketing purposes. Both use
cases would require a reliable means of data privacy and se-
curity as well as the user’s approval.

The remainder of this paper is organized as follows:
Sect. 2 presents the algorithms used for our user classification
service and Sect. 3 briefly discusses implementation aspects.
Section 4 evaluates the algorithms according to a compre-
hensive set of criteria. Section 5 concludes the paper with a
short summary and outlook.

2 Classification methods

In this section, we will briefly introduce the clustering meth-
ods used for a context-aware user classification service. This
includes the algorithm of the respective method as well as
relevant characteristics such as hard vs. soft mapping or vari-
able vs. fixed number of clusters. The notation employed in
this paper is defined below:

– C: Set of all clusters,C = {C1,C2,...,Ck}

– N : Set of all cluster centers (nodes),
N = {N1,N2,...,Nk}

– K: Context space,K ⊆ Rl

– X: Set of observations (user’s context) to classify,
X = {x1,x2,...,xn},xj ∈ K

– n: Number of observations (users) to classify
– k: Number of clusters (nodes)
– l: Dimension of context space
– �: Tuple of a clusterCi and an observationxj ,

� = (Ci,xj )

– µi : Center of clusterCi , µi ∈ Rl

– wi : Weighing vector of nodeNi (cluster center),
wi ∈ Rl

– t : Iteration counter
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2.1 Methods with fixed number of cluster centers

Common to the methods presented in this subsection is the
requirement to set the number of clusters before the start of
the classification algorithm. During runtime, the number of
clusters does not change.

2.1.1 K-Means algorithm

K-Means (MacQueen, 1967) is an algorithm that establishes
a hard mapping betweenCi and an observationxj , i.e. an
observation is unambiguously associated with one cluster.
Across multiple iterations, the following error function is
minimized:

E =

k∑
i=1

∑
xj ∈Ci

||xj −µi ||
2 (1)

The iteration steps of the algorithm are:

1. (Random) initialization ofk cluster centers (nodes)
– cluster centers are randomly initialized in the l-
dimensional context space.

2. Mapping of observations to centers– each observation
is mapped to the closest node based on the selected dis-
tance metric such as Euclidean distance.

3. Update of cluster centers– position of nodes is recom-
puted based on the observations that are assigned to the
node. Go back to step 2.

The algorithm terminates as soon as a specified termina-
tion criterion is reached, e.g. the error function falls below
a threshold. For further details on K-Means, the reader is
referred toSteinhaus(1957).

2.1.2 Neural Gas

The Neural Gas algorithms establishes a graph ofk nodes
that, independently of each other, move through the context
space during the iterations. The core idea is to present avail-
able observations to the graph and to accordingly adjust the
cluster centers. In brief, the steps of the algorithms are as
follows:

1. (Random) initialization ofk cluster centers (nodes)
– Cluster centers are randomly initialized in the l-
dimensional context space.

2. Presentation of an observation– An observationxc ∈ X

is randomly chosen and presented to the graph. (An
observation can be drawn multiple times.)

3. Sorting of nodes– Nodes are sorted according to their
Euclidean distance toxc.

4. Adjustment of node positions– The positionwi of the
graph’s nodes within the context space is adjusted ac-
cording to the following equation:

wi(t +1) = wi(t)+ l(t) ·hd(i) ·(xc −wi(t)) (2)

where l(t) is the learning rate of the current iteration
(l(t) > l(t −1) for all t) andhd(i) the adjustment for an
individual node depending on its ranking in step 3. If the
termination criterion (e.g. number of iterations) has not
been reached yet, the next iteration can begin, starting
with step 2. Otherwise, observations are assigned to the
closest node.

For further details on the algorithm, the reader is referred to
Martinez and Schulten(1991) andFritzke(1997).

2.1.3 K-Fixed-Means

None of the presented algorithms considers fixed cluster cen-
ters. However, for some of the use cases described in Sect. 1,
this is an important alternative for user classification. There-
fore, we have developed the so-called K-Fixed-Means algo-
rithm, where the position of a cluster center is fix except for
a defined tolerance interval (for each dimension of the con-
text space) within which the cluster center can move. More-
over, the maximum distance to a center is limited, i.e. some
observations may not be assigned to any node at all. Fig-
ure 1 depicts the idea of tolerance space (purple rectangle)
and maximum distance (blue circle). The basic steps of the
algorithm are:

1. Initialization – k cluster centers (nodes) are initialized
at the determined (and fix) positions.

2. Mapping of observations to centers– each observation
is mapped to the closest node based on the selected dis-
tance metric such as Euclidean distance. Non-assigned
observations (i.e. those whose distance is above the de-
fined thresholds) are collected in a setU .

3. Adjustment of cluster centers– for each observation
in U , it is checked whether there exists a node that,
if moved within its tolerance room, can accommodate
the given observation. If their exists such a node, it is
moved according the following equation:

wi(t +1) = wi(t)+ l(t) ·d(xc,wi) ·(xc −wi(t)) (3)

wherel(t) is the learning rate andd(xc,wi) a factor that
takes into account the different tolerance intervals. Af-
ter all observations inU have been checked, the next
iteration starts with step 2, unless the criterion for ter-
mination is met.

As for the Neural Gas algorithm, the learning rate decreases
in later iterations.
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Fig. 1. Concept of K-Fixed-Means Algorithm

2.1.4 Fuzzy-C-Means

In contrast to the algorithms presented so far, Fuzzy-C-

Means can assign an observation to several clusters. The

degree uij of membership of an observation xj to a single

cluster Ci has to lie within the interval ]0,1] and the sum

of all memberships of an observation must add up to 1, i.e∑k
i=1

uij = 1 for any j. The algorithm minimizes the fol-

lowing error function:

E =

k∑

i=1

n∑

j=1

um
ij ||xj −µi||

2,1≤m≤∞ (4)

The exponent m is the so-called ”fuzzifier”. The higher its

value, the fuzzier the mappings of observations to nodes. In

practice, values between 1 and 2.5 have proven to generate

good clustering results (Bezdek, 1981). The basic steps of

the algorithm are:

1. Initialization - (Random) initialization of values uij

2. (Re)calculation of cluster centers - For the current iter-

ation step, the cluster centers are calculated according

to

µi =

∑n
j=1

um
ij ∗xj∑n

j=1
um

ij

(5)

3. Recalculation of degrees uij of membership - The de-

gree of membership of an observation xj to a cluster Ci

is calculated according to the following equation:

uij =
1

∑k
l=1

||xj−µi||
||xj−µl||

2

m−1

(6)

4. Test of termination criterion - If the termination crite-

rion, e.g. sum of changes of uij for all combinations i,j

is below a defined threshold, is not satisfied yet, another

iteration is performed starting with step 2.

The presented algorithm converges to a local minimum

which is not necessarily the optimal solution. Moreover, the

results depend on the initialization of uij .

2.2 Methods with Variable Number of Cluster Centers

In contrast to the algorithms presented so far, this class of al-

gorithms is capable of adjusting the number of cluster centers

during runtime. Hence, not only the assignment of observa-

tions to clusters but also the number of clusters is optimized.

Using the algorithms from the previous section, this could

only be achieved by several runs with different amounts of

clusters.

2.2.1 Growing Neural Gas

The Growing Neural Gas algorithm is an extended version

of the Neural Gas algorithm as presented in the previous sec-

tion. By the insertion and aging of edges between cluster

centers (nodes) according to a set of rules, the topology of

the underlying data shall be reflected more precisely. For a

detailed description of the algorithm, the reader is referred to

Fritzke (1995). Here, only a short overview of the algorithm

steps is presented to sketch the basic idea:

1. Initialization - Two nodes are randomly put in the con-

text space (without an edge between them).

2. Selection of observation and calculation of closest

nodes - From the set of observations, one is picked (ran-

domly) and the closest node (N1) as well as the second

closest (N2) are determined based on the Euclidean dis-

tance

3. Insertion of edges - In case there is no edge between N1

and N2, it is inserted. In any case, the age of the edge is

set to 0.

4. Calculation of a node’s statistical error value - For ev-

ery node, the statistical error ENi
is stored. It represents

the total error of all observations assigned to that node.

For N1 (as determined in step 2), the value is updated by

adding its Euclidean distance to the current observation

xc:

EN1
(t)=EN1

(t−1)+ ||wN1
−xc||. (7)

5. Adaptation of node positions - The position of N1 as

well as its direct topological neighbors is adapted as fol-

lows:

wi(t+1)=wi(t)+ l∗(xc−wi(t)). (8)

The learning rate l, though being constant during all it-

erations, is different for N1 and its neighbors, i.e. for the

neighbors, it is approximately two orders of magnitude

lower than for N1.

6. Aging of edges - For all edges originating from N1, the

age is incremented by 1. If the age has passed a defined

threshold, the edge is removed. If this results in a node

without any edges, it is removed as well.

Fig. 1. Concept of K-Fixed-Means algorithm.

2.1.4 Fuzzy-C-Means

In contrast to the algorithms presented so far, Fuzzy-C-
Means can assign an observation to several clusters. The
degreeuij of membership of an observationxj to a single
clusterCi has to lie within the interval]0,1] and the sum
of all memberships of an observation must add up to 1, i.e.∑k

i=1uij = 1 for anyj . The algorithm minimizes the follow-
ing error function:

E =

k∑
i=1

n∑
j=1

um
ij ||xj −µi ||

2,1≤ m ≤ ∞ (4)

The exponentm is the so-called “fuzzifier”. The higher its
value, the fuzzier the mappings of observations to nodes. In
practice, values between 1 and 2.5 have proven to generate
good clustering results (Bezdek, 1981). The basic steps of
the algorithm are:

1. Initialization – (random) initialization of valuesuij

2. (Re)calculation of cluster centers– for the current itera-
tion step, the cluster centers are calculated according to

µi =

∑n
j=1um

ijxj∑n
j=1um

ij

(5)

3. Recalculation of degreesuij of membership– the degree
of membership of an observationxj to a clusterCi is
calculated according to the following equation:

uij =
1∑k

l=1
||xj −µi ||

||xj −µl ||

2
m−1

(6)

4. Test of termination criterion– if the termination crite-
rion, e.g. sum of changes ofuij for all combinationsi,j
is below a defined threshold, is not satisfied yet, another
iteration is performed starting with step 2.

The presented algorithm converges to a local minimum
which is not necessarily the optimal solution. Moreover, the
results depend on the initialization ofuij .

2.2 Methods with variable number of cluster centers

In contrast to the algorithms presented so far, this class of al-
gorithms is capable of adjusting the number of cluster centers
during runtime. Hence, not only the assignment of observa-
tions to clusters but also the number of clusters is optimized.
Using the algorithms from the previous section, this could
only be achieved by several runs with different amounts of
clusters.

2.2.1 Growing Neural Gas

The Growing Neural Gas algorithm is an extended version
of the Neural Gas algorithm as presented in the previous sec-
tion. By the insertion and aging of edges between cluster
centers (nodes) according to a set of rules, the topology of
the underlying data shall be reflected more precisely. For a
detailed description of the algorithm, the reader is referred to
Fritzke(1995). Here, only a short overview of the algorithm
steps is presented to sketch the basic idea:

1. Initialization – two nodes are randomly put in the con-
text space (without an edge between them).

2. Selection of observation and calculation of closest
nodes– from the set of observations, one is picked (ran-
domly) and the closest node (N1) as well as the second
closest (N2) are determined based on the Euclidean dis-
tance

3. Insertion of edges– in case there is no edge betweenN1
andN2, it is inserted. In any case, the age of the edge is
set to 0.

4. Calculation of a node’s statistical error value– for ev-
ery node, the statistical errorENi

is stored. It represents
the total error of all observations assigned to that node.
ForN1 (as determined in step 2), the value is updated by
adding its Euclidean distance to the current observation
xc:

EN1(t) = EN1(t −1)+||wN1 −xc||. (7)

5. Adaptation of node positions– the position ofN1 as
well as its direct topological neighbors is adapted as fol-
lows:

wi(t +1) = wi(t)+ l ·(xc−wi(t)). (8)

The learning ratel, though being constant during all it-
erations, is different forN1 and its neighbors, i.e. for the
neighbors, it is approximately two orders of magnitude
lower than forN1.

6. Aging of edges– for all edges originating fromN1, the
age is incremented by 1. If the age has passed a defined
threshold, the edge is removed. If this results in a node
without any edges, it is removed as well.
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7. Insertion of a new node - After a defined number of

iterations has passed, the node NEmax
with the high-

est accumulated error Emax is determined. Among its

direct topological neighbors, the one with the highest

accumulated error Enmax
is chosen and a new node is

placed midway the selected nodes. The edge between

NEmax
and NEn,max

is removed and edges between the

new node and NEmax
and NEn,max

, respectively, are

inserted. The accumulated error of the old nodes is de-

creased by a factor α. The accumulated error of the new

node is set to arithmetic mean of these two (updated)

values.

8. Reduction of accumulated error - For all nodes, the ac-

cumulated error is decreased by a factor β <<α.

9. Test of termination criterion - If the termination crite-

rion (e.g. current number of nodes) is not fulfilled, the

next iteration starts at step 2.

A summarizing overview of the employed algorithms and

their characteristics is given in Fig.2.

Fig. 2. Overview of Algorithm Characteristics

3 Implementation

Implementation of the user classification service has been

guided by several objectives, most importantly:

– high availability of the service

– high scalability

– simple extensibility

– usage of widely adopted protocols and data representa-

tion formats

– adequate latency behavior

Taking these aspects into account, we designed a service

creation and delivery environment utilizing the JavaEE plat-

form in conjunction with the JBOSS Application Server (ver-

sion 5.1.0.GA). Service functionality can be reached via http

requests and, optionally, additional transmission of XML

data. The service hence implements a so-called RESTful

(Tyagi, 2006) interface and can be made available to basi-

cally any hardware/software platform and (almost) indepen-

dently of the kind of access network. Available functional-

ity currently includes group formation, context-aware group

adaptation, and deletion as well as the provisioning of char-

acteristics of active groups.

4 Results and Performance Evaluation

For evaluating the performance of the presented algorithms,

the following set of criteria has been defined:

– Quality of clustering results - Quality is given by the

total classification error of a given result.

– Temporal performance - This criteria measures the total

time necessary for a classification.

– Stability - Evaluates similarity of outcomes for multiple

runs with identical data set.

– Flexibility - Are algorithms capable of handling other

than metric data?

– Implementation - Evaluates the amount of effort neces-

sary for algorithm implementation

4.1 Quality and Temporal Performance of Clustering

Methods

For a comprehensive evaluation within the given multi-

casting scenario, every algorithm has been executed 100

times for any given input parameter combination. Input pa-

rameters included number of entities (840 and 8400), number

of groups to be formed (4, 6, 9, 13, 19, 28), and dimension

of context space (2 and 5). We analyzed total execution time

of an algorithm, its variance as well as total accumulated er-

ror. In summary, most important observations and results are

(a more detailed performance analysis of the individual algo-

rithms can be found in Appendix A):

4.1.1 K-Means

K-Means is among the best performing algorithms. How-

ever, computation times significantly increase with higher

number of users and groups. In terms of the absolute clas-

sification error, it achieves the best result of all analyzed al-

gorithms with an average of 133.52 across 100 runs of the

standard scenario.

4.1.2 Neural Gas

Similar to K-Means, Neural Gas is a relatively fast algorithm.

Moreover, runtime decreases significantly for larger amount

of groups because assignment of observations, in contrast to

K-Means, is done only once and not in every iteration. More-

over, with higher numbers of nodes, their final position is

reached much faster. The average classification error was

133.54.

4.1.3 Growing Neural Gas

In terms of both temporal behavior and dependency on entity

as well as group count, the algorithm behaves very similar

to Neural Gas. Moreover, its average classification error was

only slightly higher, averaging at 137.74.

Fig. 2. Overview of algorithm characteristics.

7. Insertion of a new node– after a defined number of it-
erations has passed, the nodeNEmax with the highest ac-
cumulated errorEmax is determined. Among its direct
topological neighbors, the one with the highest accu-
mulated errorEnmax is chosen and a new node is placed
midway the selected nodes. The edge betweenNEmax

andNEn,max is removed and edges between the new node
andNEmax andNEn,max, respectively, are inserted. The
accumulated error of the old nodes is decreased by a
factorα. The accumulated error of the new node is set
to arithmetic mean of these two (updated) values.

8. Reduction of accumulated error– for all nodes, the ac-
cumulated error is decreased by a factorβ � α.

9. Test of termination criterion– if the termination crite-
rion (e.g. current number of nodes) is not fulfilled, the
next iteration starts at step 2.

A summarizing overview of the employed algorithms and
their characteristics is given in Fig.2.

3 Implementation

Implementation of the user classification service has been
guided by several objectives, most importantly:

– high availability of the service

– high scalability

– simple extensibility

– usage of widely adopted protocols and data representa-
tion formats

– adequate latency behavior

Taking these aspects into account, we designed a service
creation and delivery environment utilizing the JavaEE plat-
form in conjunction with the JBOSS Application Server (ver-
sion 5.1.0.GA). Service functionality can be reached via http
requests and, optionally, additional transmission of XML
data. The service hence implements a so-called RESTful

(Tyagi, 2006) interface and can be made available to basi-
cally any hardware/software platform and (almost) indepen-
dently of the kind of access network. Available functional-
ity currently includes group formation, context-aware group
adaptation, and deletion as well as the provisioning of char-
acteristics of active groups.

4 Results and performance evaluation

For evaluating the performance of the presented algorithms,
the following set of criteria has been defined:

– Quality of clustering results – quality is given by the
total classification error of a given result.

– Temporal performance – this criteria measures the total
time necessary for a classification.

– Stability – evaluates similarity of outcomes for multiple
runs with identical data set.

– Flexibility – are algorithms capable of handling other
than metric data?

– Implementation – evaluates the amount of effort neces-
sary for algorithm implementation

4.1 Quality and temporal performance of clustering
methods

For a comprehensive evaluation within the given multi-
casting scenario, every algorithm has been executed 100
times for any given input parameter combination. Input pa-
rameters included number of entities (840 and 8400), number
of groups to be formed (4, 6, 9, 13, 19, 28), and dimension
of context space (2 and 5). We analyzed total execution time
of an algorithm, its variance as well as total accumulated er-
ror. In summary, most important observations and results are
(a more detailed performance analysis of the individual algo-
rithms can be found in Appendix A):

4.1.1 K-Means

K-Means is among the best performing algorithms. How-
ever, computation times significantly increase with higher
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4.1.4 Fuzzy-C-Means

With regard to performance, the algorithm performs worse

with increasing numbers of observations, variables per obser-

vation and number of groups. Due to its high computational

effort, the algorithm cannot handle more than ten groups in

a timely manner. For the calculation of the average classifi-

cation error (134.69), observations have been assigned to the

node they have had the highest affiliation to.

4.1.5 K-Fixed-Means

Overall, algorithm runtime is on a satisfying level and com-

parable to that of K-Means. For five variables (i.e. a five-

dimensional context space), the algorithm arrives in a stable

state earlier since (with the given set of test observations) the

cluster centers reach their final position faster. A comparison

of the accumulated classification error does not make sense

since some observations were not classified at all.

4.2 Overall Evaluation

A brief summary of the remaining evaluation criteria is de-

picted in Fig. 3.

Fig. 3. Summary Evaluation of Classification Algorithms

Overall, the K-Means algorithm disposes of the most ap-

propriate characteristics in the given multi-casting use case.

Not only good results in terms of quality and performance

but also its capability to handle nominal data makes it the de-

fault choice for classification requests. Neural Gas is the pre-

ferred algorithm for large entity and group counts; however,

it should not be used for clustering observations with nom-

inal data. In case that the number of groups is not known

yet, Growing Neural Gas, despite its difficult parametriza-

tion, is the best choice. Fuzzy-C-Means is especially recom-

mended if the number of groups remains small and the struc-

ture of the observation set is rather complex. Finally, the

K-Fixed-Means algorithm should be chosen if cluster cen-

ters, i.e. group characteristics, are pre-determined and should

only be marginally changed during execution.

5 Conclusions

This paper has presented an evaluation of different user

classification algorithms for enabling group communication

and multi-casting in wireless networks. Classification tests

have been performed based on simulated context information

about users (such as location, music taste, and age) with dif-

ferent numbers of both users and expected groups. K-Means

and (Growing) Neural Gas as well as the newly developed

K-Fixed-Means have consistently recognized the basic struc-

ture within the set of users and produced fast and stable clas-

sification results with low total errors.

A major aspect of future work is the development of clas-

sification methods that can handle nominal (and ordinal) data

since most of the interesting user data enabling multi-casting

(such as a user’s profile) fall into these categories. Moreover,

the implemented service will be verified in a testbed envi-

ronment where efficiency gains based on the realization of

multi-casting will be analyzed quantitatively.

Appendix A

Algorithms Performance Results

Fig. A1. Performance of K-Fixed-Means Algorithm

Fig. A2. Performance of K-Means Algorithm

Fig. 3. Summary evaluation of classification algorithms.

number of users and groups. In terms of the absolute clas-
sification error, it achieves the best result of all analyzed al-
gorithms with an average of 133.52 across 100 runs of the
standard scenario.

4.1.2 Neural Gas

Similar to K-Means, Neural Gas is a relatively fast algorithm.
Moreover, runtime decreases significantly for larger amount
of groups because assignment of observations, in contrast
to K-Means, is done only once and not in every iteration.
Moreover, with higher numbers of nodes, their final posi-
tion is reached much faster. The average classification error
was 133.54.

4.1.3 Growing Neural Gas

In terms of both temporal behavior and dependency on entity
as well as group count, the algorithm behaves very similar
to Neural Gas. Moreover, its average classification error was
only slightly higher, averaging at 137.74.

4.1.4 Fuzzy-C-Means

With regard to performance, the algorithm performs worse
with increasing numbers of observations, variables per obser-
vation and number of groups. Due to its high computational
effort, the algorithm cannot handle more than ten groups in
a timely manner. For the calculation of the average classifi-
cation error (134.69), observations have been assigned to the
node they have had the highest affiliation to.

4.1.5 K-Fixed-Means

Overall, algorithm runtime is on a satisfying level and com-
parable to that of K-Means. For five variables (i.e. a five-
dimensional context space), the algorithm arrives in a stable
state earlier since (with the given set of test observations) the
cluster centers reach their final position faster. A comparison
of the accumulated classification error does not make sense
since some observations were not classified at all.

4.2 Overall evaluation

A brief summary of the remaining evaluation criteria is de-
picted in Fig.3.

Overall, the K-Means algorithm disposes of the most ap-
propriate characteristics in the given multi-casting use case.
Not only good results in terms of quality and performance
but also its capability to handle nominal data makes it the de-
fault choice for classification requests. Neural Gas is the pre-
ferred algorithm for large entity and group counts; however,
it should not be used for clustering observations with nom-
inal data. In case that the number of groups is not known
yet, Growing Neural Gas, despite its difficult parametriza-
tion, is the best choice. Fuzzy-C-Means is especially recom-
mended if the number of groups remains small and the struc-
ture of the observation set is rather complex. Finally, the
K-Fixed-Means algorithm should be chosen if cluster cen-
ters, i.e. group characteristics, are pre-determined and should
only be marginally changed during execution.

5 Conclusions

This paper has presented an evaluation of different user
classification algorithms for enabling group communication
and multi-casting in wireless networks. Classification tests
have been performed based on simulated context information
about users (such as location, music taste, and age) with dif-
ferent numbers of both users and expected groups. K-Means
and (Growing) Neural Gas as well as the newly developed
K-Fixed-Means have consistently recognized the basic struc-
ture within the set of users and produced fast and stable clas-
sification results with low total errors.

A major aspect of future work is the development of clas-
sification methods that can handle nominal (and ordinal) data
since most of the interesting user data enabling multi-casting
(such as a user’s profile) fall into these categories. Moreover,
the implemented service will be verified in a testbed envi-
ronment where efficiency gains based on the realization of
multi-casting will be analyzed quantitatively.
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