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Abstract. Relations between mineralization and certain
geological processes are established mostly by geologist’s
knowledge of field observations. However, these relations
are descriptive and a quantitative model of how certain ge-
ological processes strengthen or hinder mineralization is not
clear, that is to say, the mechanism of the interactions be-
tween mineralization and the geological framework has not
been thoroughly studied. The dynamics behind these inter-
actions are key in the understanding of fractal or multifractal
formations caused by mineralization, among which singular-
ities arise due to anomalous concentration of metals in nar-
row space. From a statistical point of view, we think that
cascade dynamics play an important role in mineralization
and studying them can reveal the nature of the various inter-
actions throughout the process. We have constructed a mul-
tiplicative cascade model to simulate these dynamics. The
probabilities of mineral deposit occurrences are used to rep-
resent direct results of mineralization. Multifractal simula-
tion of probabilities of mineral potential based on our model
is exemplified by a case study dealing with hydrothermal
gold deposits in southern Nova Scotia, Canada. The extent
of the impacts of certain geological processes on gold mi-
neralization is related to the scale of the cascade process,
especially to the maximum cascade division numbernmax.
Our research helps to understand how the singularity occurs
during mineralization, which remains unanswered up to now,
and the simulation may provide a more accurate distribution
of mineral deposit occurrences that can be used to improve
the results of the weights of evidence model in mapping min-
eral potential.
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1 Introduction

Mineralization has complex connections with various geo-
logical processes and geologists can deduce part of these
connections from outcrop exploration. For example, if cer-
tain deposits are always coexisting with a special type of
intrusion, we may consider that this intrusion is related to
mineralization during geological periods. The summariza-
tion of such relations between mineralization and certain ge-
ological processes and their geological characteristics leads
to metallogenic models for distinct genetic types of mineral
deposits (Cox and Singer, 1986). Metallogenic models give
a comprehensive knowledge of favourable conditions for mi-
neralization, but they are far too insufficient to capture the
mechanism of the interactions between mineralization and
the geological framework, because they are inherently de-
scriptive. Such a mechanism is indispensable as we wonder
why common fractal or multifractal features has been formed
throughout mineralization.

A variety of approaches have already been proposed for
quantifying and integrating the relations between minerali-
zation and certain geological processes to evaluate mineral
potential, but they have not explained the physical back-
grounds of these relations, such as weights of evidence
(Bonham-Carter et al., 1988; Cheng and Agterberg, 1999;
Zhang et al., 2008), logistic regression (Sahoo and Pan-
dalai, 1999), Bayesian network (Porwal et al., 2006), neu-
ral network (Singer and Kouda, 1996; Porwal et al., 2003;
Nykänen, 2008), evidential belief functions (Carranza et al.,
2005, 2008) and expert-guided methods (Cassard et al.,
2008). Most of the methods are data-driven, that is to say,
the dynamics between mineralization and certain geologi-
cal processes are unstable and only empirically established

Published by Copernicus Publications on behalf of the European Geosciences Union and the American Geophysical Union.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27212292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/


162 L. Yao and Q. Cheng: Multi-scale interactions through mineralization

based on observations. Mineralization has been thought of
as a self-organization process with dissipative structures and,
thus, nonlinear features and complexities emerged (Yu et al.,
1988), but the dynamical model of the process is too sen-
sitive for the parameters that it is hard to characterise. A
novel understanding of the mineralization is its interpretation
as a singular event (Cheng, 2007b,a), which always results in
multifractal products. Besides mineralization, typical singu-
lar events include hazard events, such as earthquakes, land-
slides, volcanoes, floods and hurricanes, because they result
in anomalous amounts of energy release or mass accumula-
tion confined to narrow intervals in space or time (Cheng,
2007b,a). However, the mechanism of mineralization as a
singular event remains a puzzle.

Generally speaking, the dynamics of the interactions be-
tween mineralization and the geological framework is still
lacking in systematic research. The answer to the above
question would aid in understanding why singularity occurs
and the multi-scale nature of mineralization. In this paper, we
construct a cascade model to simulate interactions between
mineralization and the relevant geological processes. Then,
a case study of hydrothermal gold mineral deposits in south-
ern Nova Scotia, Canada is described for multifractal simu-
lation, in which we use some statistics fromCheng(2008).
Through our research, we think that mineralization may be
accompanied by diverse geological processes, which exerted
their impacts in a cascade-like manner and their impacts are
associated with mineralization in different scales.

2 Multifractal and singularity

Since the fractal concept was proposed (Mandelbrot, 1977,
1983), fractal or multifractal methods became powerful tools
for identifying geological features associated with minerali-
zation. Fractal or multifractal modelling play important roles
in the quantifying of mineral deposits (Turcotte, 1996), char-
acterising the spatial distribution of mineral deposits (Carl-
son, 1991; Agterberg et al., 1996; Raines, 2008) and map-
ping mineral-potential (Cheng et al., 1996; Ford and Blenk-
insop, 2008). New methods based on the multifractal the-
ory, such as concentration-area (C-A) method (Cheng et al.,
1994), spectrum-area (S-A) method (Cheng et al., 2000) and
the singularity mapping technique (Cheng, 2007a), were de-
veloped to identify geochemical anomalies and to map min-
eral potential (Cheng, 2007b; Cheng and Agterberg, 2009;
Zuo et al., 2009a).

While many mathematical geologists are familiar with
multifractal spectrumf (α) in the model ofEvertsz and Man-
delbrot (1992); Schertzer and Lovejoy(1991), they devel-
oped another multifractal model in geophysics based on codi-
mension functionC(γ ), whereα andγ represent Ḧolder ex-
ponent and field order, respectively.Cheng(1996) compared
these two models. Here, we introduce the elementary nota-
tions and formulas based on thef (α) model.

Suppose a geometrical support with linear sizeε was de-
fined asA(ε), andµ[A(ε)] represents a kind of measure on
A(ε), i.e., the most common measures of this kind related to
mineralization may be the average geochemical concentra-
tions on areas at different scales, then the following power-
law relationships exist in conditions of multifractal:

µ[A(ε)] ∝ εα (1)

Nα (ε) ∝ ε−f (α) (ε → 0) (2)

where ∝ means “proportional to”,α is singularity index,
Nα(ε) is the number of cells having singularity indexα while
ε approaches zero andf (α) is the multifractal spectrum.
Equation (1) is scale-invariant because the singularity index
α remains constant under all rescalings of the linear sizeε.
If the size is changed fromεn−1 to εn for some scaleλ, that
is, εn = λεn−1, and the measure is changed fromµ

[
A(εn−1)

]
to µ[A(εn)], respectively, then the following can be obtained
from Eq. (1):

µ[A(εn)]/µ
[
A(εn−1)

]
= λα (3)

Actually fractal or multifractal describes the scale-
invariant relationship of a kind of measure on another kind
of measure. Thus, the above formulae can be extended to
Lebesgue measure space, and the support can even be fractal
itself (Falconer, 2003). In this study, posterior probabilities
of mineral deposit occurrences on certain geological condi-
tions and the probabilities of occurrences of the relevant geo-
logical occurrences are Lebesgue measures, so their relation-
ships can be multifractal only if the nonlinear interactions
exist between them.

If A(ε) is the volume inD-dimensional space, a fractal
density (Cheng, 2008) can be deduced from Eq. (1) as:

ρ [A(ε)] ∝ µ[A(ε)]/A(ε) ∝ εα−D (4)

where fractal densityρ is analogous to density in the physical
sense, but this density changes with scale and can approach
infinity; the index(α −D) also corresponds to the concept
of codimension meaning the differences between the dimen-
sions of space and fractal (Schertzer and Lovejoy, 1987).

3 Multiplicative cascade models and their multifractal
effect

Multiplicative cascade models provide mathematical outlines
to quantify turbulent intermittency and other extremely ir-
regular complexities (Schertzer and Lovejoy, 1987). Cas-
cade dynamics are fundamental in geological and geophys-
ical processes. Typical geophysical fields are thought to re-
sult from cascade processes (Lovejoy et al., 2001; Lovejoy
and Schertzer, 2007). The De Wijs model, was proposed
to analyse the concentration of ores (De Wijs, 1951) and
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ξ

(1 + d)ξ (1− d)ξ

(1 + d)2ξ (1− d)(1 + d)ξ (1− d)(1 + d)ξ (1− d)2ξ

...

· · ·· · · · · ·(1 + d)nξ · · · (1− d)nξ

Fig. 1. 1-D multiplicative cascade model of De Wijs (De Wijs, 1951). Theξ means original concentration value, andd is the dispersion
coefficient.

later it was adopted as a binomial cascade model to simu-
late multifractal (Mandelbrot, 1989). Various cascade mod-
els have been used to simulate rainfalls, clouds and geochem-
ical concentrations (Deidda, 1999; Lovejoy and Schertzer,
2006; Agterberg, 2001).

A cascade process redistributes the mass concentrated on
an support to small pieces through a series of repeated steps,
leading to scale-invariant results. Taking the De Wijs model
of geochemical distribution as an example, if the original
concentration isξ and the support is 1, then in the next it-
eration, the support is divided into two equal blocks of 1/2
with a concentration of(1+d)ξ and(1−d)ξ ; hered is the
dispersion coefficient and is independent of block size; the
procedure is iterated on the divided blocks (Fig.1).

Generally considering a measure defined on a support,
a basic cascade step includes two intertwining procedures:
a partition procedure dividing current support into smaller
parts while the scale drops down by a constant ratio; and a
distribution procedure assigning different weights to the di-
vided parts based on a probability distribution. The size of
the ultimately divided supports would approach zero, while
the cascade step is repeating endlessly. However, sometimes
the cascade steps throughout a cascade process are limited
and, thus, the ultimate size of the divided parts from the orig-
inal support is determined by the divided times, which we
denote as the maximum cascade division numbernmax here.
The measures allocated on the divided parts in each subdi-
vision depend on the weights pattern for redistributing val-
ues from previous results. The maximum cascade division
numbernmax is meaningful to geological processes because
it actually corresponds to the scale of a certain geological
process. For example, the continental or ocean plate move-
ment brings about global-scale change of geological settings,
yet migrations of geochemical elements in a metallogenic
province can only be on a regional-scale. To represent re-
ality, many kinds of modifications on the basic model have
been investigated. For example,Agterberg(2001) introduced
minor disturbances in the cascade processes to simulate geo-

chemical map patterns and proposed a random-cut variant of
the De Wijs model (Agterberg, 2007a), Cheng(2005) applied
a cascade model with variable partition processes,Schertzer
and Lovejoy(1987) developed a cascade model continuous
in scale.

The results of cascade dynamics are multifractal. The
multifractal generated by this cascade process have many lo-
cal maxima and minima with different singularities (Cheng,
2008). As a 1-D multiplicative cascade process, the mini-
mal singularityαmin and maximal singularityαmax and their
difference1α can be calculated as:

αmin = 1− log2(1+d)

αmax= 1+ log2(1+d)

1α = αmax−αmin = log2
1+d

1−d
(5)

whered is the dispersion coefficient.

4 Quantification of nonlinear dynamical interactions
throughout mineralization

4.1 Statistical model of mineralization by weights
of evidence

Precisely characterising interactions throughout mineraliza-
tion is almost impossible because of the limitation of data ac-
quisition. Unlike other continuous measurements from some
real-time instruments which are frequently used in meteoro-
logical or geophysical observatory, data related to minerali-
zation and certain geological processes can only be acquired
once from the present, since these processes have evolved for
millions of years and there is no way to date them back. Con-
tinuous measurements are impossible and also meaningless
in mineral exploration because the time scales are too large
for us to find any changes of observation. The feasible way to
quantify interactions between mineralization and the related
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geological processes comes from statistical analysis of vari-
ous exploration data. The exploration data include observa-
tions from mineral deposits, geological structures, geochem-
ical concentrations, petrological or stratigraphic formations
and so on. A specific kind of exploration data actually repre-
sents products of a certain geological process, and the min-
eral deposits can be seen as results of mineralization. There-
fore, analysing the relationships between mineralization and
other kinds of exploration data provides an approximation to
quantify the dynamical interactions between them. There are
already models to utilize and integrate these relationships in
order to evaluate mineral potential, as we have mentioned
in the previous section. We choose the weights of evidence
(WofE) method, which is very popular for mapping mineral
potential, to statistically quantify the relationships between
mineralization and certain geological processes, because it is
reasonable and easy to understand.

The WofE model treats each kind of exploration data as
a separate evidential layer and then integrates the evidential
layers to support the final decision. Each kind of exploration
data corresponds to the result of a certain geological event.
In particular, the mineral deposit occurrences are products
of mineralization. The geological events having a positive
correlation with occurrences of mineral deposits are called
favourable events in mapping mineral potential. Evidential
layers are usually raster grids made of discrete cells to facili-
tate processing by GIS software in practice (Bonham-Carter,
1994). Each grid cell in an evidential layer falls into two
distinct groups according to positive or negative correlation
with occurrences of mineral deposits. Grid cells having pos-
itive correlation with occurrences of mineral deposits consti-
tute favourable areas, and the remaining grid cells constitute
unfavourable areas. Then the relationships between mine-
ralization and certain geological events can be discussed by
the posterior probabilities of mineral deposit occurrences on
condition that these events occurred.

For simplicity, we use some specific symbols to represent
formations of different geological events. We suppose the
mineralization event asD and, as a result, the prior prob-
ability of mineral deposit occurrence is known asP(D); a
favourable event to mineralization is denoted asA and then
the corresponding evidential layer is a binary pattern with
A or Ã representing favourable events or not and, respec-
tively, their probabilities of occurrences can be written as
P(A) andP(Ã). Thus,D would be divided intoDA and
DÃ, and the posterior probabilities can be represented by
P(D|A andP(D|Ã), respectively. From Bayesian rule, the
posterior probabilities can be calculated as

P (D|A) =
P(D)P (A|D)

P (A)

P
(
D|Ã

)
=

P(D)P (Ã|D)

P (Ã)
. (6)

If evidential patterns representing favourable geological

events to mineralization are arranged asA1,A2,...,An, while
the contrary complements are denoted asÃ1,Ã2,...,Ãn, then
a more comprehensive relation can be derived as

P
(
D|A1A2...An

)
=

P(D)P (A1|D)P (A2|D)...P (An|D)

P (A1)P (A2)...P (An)

P
(
D|Ã1Ã2...Ãn

)
=

P(D)P
(
Ã1|D

)
P

(
Ã2|D

)
...P

(
Ãn|D

)
P

(
Ã1

)
P

(
Ã2

)
...P

(
Ãn

) .

(7)

Note the Eqs. (7) require conditional independence assump-
tion, which can be written as

P
(
A1A2...An|D

)
= P

(
A1|D

)
P

(
A2|D

)
...P

(
An|D

)
P

(
Ã1Ã2...Ãn|D

)
= P

(
Ã1|D

)
P

(
Ã2|D

)
...P

(
Ãn|D

)
.(8)

The weightsW+ and W− are then defined as follows
(Agterberg et al., 1990):

W0 = loge

{
P(D)/P (D̃)

}
W+

A = loge

{
P(A|D)/P (A|D̃)

}
W−

A = loge

{
P

(
Ã|D

)
/P

(
Ã|D̃

)}
. (9)

Under the transformation of posterior probabilities by logit
function, the logits of posterior probabilities of mineral de-
posit occurrences associated with multiple layers of evidence
can be derived from Eqs. (9) assuming that conditional inde-
pendence is satisfied:

L(D|A1A2...An) = W0+W+

A1
+W+

A2
+ ...+W+

An
(10)

where L represents logit function andL(D|A1A2...An)

means logit ofP(D|A1A2...An). The similar formulae can
be derived under other combinations of evidential layers.
The logit function is important to logistic regression and the
logit of a numberp between 0 and 1 is given by the formula:

L(p) = log

(
p

1−p

)
. (11)

Hence, the posterior probabilities of mineral deposit occur-
rences can be easily calculated by the inversion of the logits.
However, most of the time the conditional independence of
evidential layers is not met, so that the estimation of poste-
rior probabilities may be biased. Reasonable adjustments to
the posterior probabilities can improve this situation, but it
needs more accurate knowledge of the distributions. We will
later discuss the possible application of our research to deal
with this problem.
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P (D|A1A2) P (D|A1
˜A2) P (D| ˜A1A2) P (D| ˜A1

˜A2)

P (D|A1) P (D| ˜A1)

P (D)

...

· · ·· · · · · ·P (D|A1A2 · · ·An) · · · P (D| ˜A1
˜A2 · · · ˜An)

Fig. 2. Updating and integrating of evidential patterns in weights of evidence method.P(D) means the prior probability of mineral
deposit occurrence;A1,A2,...,An are different evidential patterns having positive correlations with mineral deposits andÃ1,Ã2,...,Ãn

are evidential patterns in contrary. The posterior probabilities are updated as the new evidence patterns are integrated; this figure can be
compared with Fig.1.

4.2 Generalized cascade process throughout
mineralization and singularities

The similarity between the WofE method and multiplicative
cascade models has been discussed inCheng(2008), and a
variant of WofE based on singularity was proposed as a novel
approach for information integration. The posterior proba-
bilities of mineral deposit occurrences are updated as new
evidential patterns are put in (Fig.2). Each evidential pattern
represents the product of a certain geological process and the
updated posterior probabilities represents its impact exerted
on mineralization. Assuming mineralization as a singular
event, the impacts caused by the participation of certain geo-
logical processes should be accumulated nonlinearly so that
singularities emerge. The updating of each evidential pattern
and the relevant posterior probabilities is very similar to one
cascade step and, therefore, we take the successive partic-
ipating of new evidential patterns as a generalized cascade
process. The nonlinear dynamics of interactions throughout
mineralization can then be constructed by a generalized cas-
cade model.

For an arbitrary evidential layer A, supposeA or Ã means
presence or absence ofA, respectively. If we haven eviden-
tial layers, then the total area can be divided into 2n sub-areas
at last, marked by the different combinations of evidence. On
each iteration of adding an evidence layer, the posterior prob-
ability on each evidential combination will be distributed into
two partitions. So this process can be regarded as a binary
cascade process and the comparisons are shown in Fig.3. As
the figure shows, the singularity caused by the evidence layer
A can be easily derived from Eq. (3) as:

α(A) = logP(A|D)/logP(A) (12)

The singularity of patternÃ can be defined from the same
procedures as:

α
(
Ã

)
= logP

(
Ã|D

)
/logP

(
Ã

)
. (13)

Equations (12) and (13) are important formulae to charac-
terise the singularities of dynamical interactions between mi-
neralization and certain geological processes. The formulae
are based upon the assumption of mineralization as a singu-
lar event and more detailed descriptions can be seen inCheng
(2008).

5 Cascade dynamics model of mineralization through
multifractal simulation

Considering the posterior probability of mineralization due
to a certain geological process as an indirect measurement
of interaction between them, we can study the cascade dy-
namics of mineralization from statistical points of view. The
dispersion coefficientd, in an ordinary de Wijs model, could
be regarded as a random variableD∗ with a distribution of
P(D∗

= d) = P (D∗
= −d) = 1/2 (Agterberg, 2007a). Here

the distribution ofd should be identical to the distribution
of an evidence which is denoted asPe later on. The fre-
quency distribution of concentration values generated by a
1-D multiplicative cascade model is logbinomial, that is, the
logarithmically transformed values have binomial distribu-
tion (Agterberg, 2007a). So the logarithmic varianceσ 2 can
be derived as:

η = (1+d)/(1−d)

σ 2
= nmaxPe(1−Pe)(lnη)2 (14)

wherenmax means the maximum cascade division number.
WhenPe= 1/2, Eq. (14) will follow into σ 2

= nmax(lnη)2/4
corresponding to a simple de Wijs model (Agterberg, 2007a).
The variance can be estimated from its relationship with the
logarithmic variance:

s (lnx)

s(x)
≈

d(lnx)

dx

∣∣∣∣
x=x̄

=
1

x̄
. (15)
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P (D) ρ(εn−1)

P (D) μ(εn−1) 1 εn−1

P (DA)/P (A) = P (D|A) μ(εn)/ε = ρ(εn)

P (DA) μ(εn) P (A) εn

decreasing scale

Fig. 3. Analogy between probabilities updated by an evidential layer and scale-invariant measures generated by multiplicative cascade
process. This figure shows two consecutive iterations for demonstration. The prior probabilityP(D) is defined on the whole support 1, and
one of its branches goes to posterior probabilityP(D|A) on patternA; this process is similar to the changing of measure fromµ(εn−1) to
µ(εn) as the scale decreases fromεn−1 to εn, so does the fractal densityρ.

Equation (15) provides an approximation of variance for any
random variablex with meanx̄ (cf. Agterberg et al., 1990). If
the original concentration value in the multiplicative cascade
model isξ , then the variance of final concentration values
should be:

β2
= ξ2σ 2 (16)

whereβ2 andσ 2 represent, respectively, variance and loga-
rithmic variance of the final distribution. Therefore, we can
deduce the maximum cascade division numbernmax as long
as the dispersion coefficientd and logarithmic varianceσ 2

or varianceβ2 are known. The parametersd andnmax are
crucial parameters for the multiplicative cascade model and
they have been applied to simulate geochemical distribution
(Agterberg, 2007a,b).

Consider a certain evidence layerA, the dispersion coeffi-
cientd can be estimated based on singularity calculated from
Eqs. (12) and (13) as:

η =
1+d

1−d
= 2α(A)−α(Ã). (17)

Equation (10) shows that the logits of posterior probabili-
ties are the sum of weights determined by the combinations
of all of the evidential patterns. The posterior probabilities
stop updating after all the evidential layers are integrated suc-
cessively and their results can be calculated from inversion
of the logits. We suppose the posterior probabilities and their
logits produced by WofE after integration of all available ev-
idential layers are denoted asPf andLf , respectively. From
the definition of logit function,Pf can be calculated as:

Pf = eLf /(eLf +1). (18)

The standard deviation ofPf can be estimated by multi-
plying the standard deviation ofLf by Pf

(
1−Pf

)
(Fisher,

1971; Agterberg and Cheng, 2002). In order to estimate the
standard deviation ofLf , firstly, variances of the weights can
be estimated based on the asymptotic theory of discrete mul-
tivariate analysis (Agterberg et al., 1990); these can be aug-
mented by variances for missing data and added to the vari-
ance of the prior logit, and then the result is an estimate of
the standard deviation ofLf (Agterberg and Cheng, 2002).
So the variance ofPf can be expressed as follows:

s2(Pf ) ≈
{
Pf

(
1−Pf

)
s(Lf )

}2 (19)

wherePf andLf are the post probabilities of mineral deposit
occurrences and their logits, respectively;s2(Pf ) ands2(Lf )

are the variances ofPf andLf , respectively.
If the total number of evidential layers ism (m = 4 in this

example), that is, the number of involved geological pro-
cesses ism, then 2m different patterns can be achieved by
combination. The posterior probabilities would have 2m pos-
sible values, so we can define a new random variablePF here
and regardPf as the samples. Note that a binomial cascade
model is used to distribute the posterior probabilities, so the
expectation ofPF should be equal to the prior probability
P0, which is considered as the original concentration. The
probability ofPF = Pf can be roughly estimated as the pro-
portion of the pattern occupied by thePf in the total study
area, thus, the variance ofPF can be estimated as follow:

s2(PF ) =
1

nt

2m∑
f =1

nf s2(Pf ) (20)

wherenf andnt are numbers of cells inside patterns occu-
pied byPf and the total study area, respectively;m means
the number of evidential layers. Suppose the final probabil-
ities satisfy logbinomial distribution as the cascading result,
the variance ofPF should be:

s2(PF ) ≈ P 2
0 σ 2 (21)
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Table 1. Statistics obtained from each of the four layers of binary maps (cf.Cheng, 2008).

Layer Pe α α(∼) 1α W+ s(W+) W− s(W−)

A 0.394 0.276 2.960 2.684 0.67 0.25 –0.97 0.47
B 0.568 0.084 3.657 3.573 0.57 0.23 –2.23 1.00
C 0.398 0.125 4.370 4.245 0.81 0.24 –1.68 0.67
E 0.194 0.391 3.465 3.074 1.00 0.31 –0.53 0.32

Average 0.388 0.219 3.613 3.394

whereP0 means the prior probability of mineral deposit oc-
currences. Finally, we derive the following equation based
on Eqs. (14), (20) and (21):

nmax =
s2(PF )

P 2
0 Pe(1−Pe)(lnη)2

=
1

nt

2m∑
f =1

nf P 2
f

(
1−Pf

)2
s2

(
Lf

)
P 2

0 Pe(1−Pe)(lnη)2
. (22)

wherent andnD mean numbers of units of the total study
area and units of the mineral deposits, respectively. Equa-
tion (22) can be used to estimate the maximum cascade divi-
sion numbernmax.

6 Case study: validating the cascade dynamics model
of mineralization

The nonlinear dynamics throughout mineralization were
lacking research because of the difficulties to quantifying the
interactions during mineralization. We propose a cascade dy-
namics model to characterise mineralization based on statis-
tical analysis of exploration data by WofE. Here, we will use
a case study to demonstrate the usage and validate this model.
The case study simulates mineral potential of gold deposits in
the southwestern Nova Scotia, Canada. The simulation is im-
plemented on the basis of the cascade dynamics model of mi-
neralization. About 20 gold deposit occurrences are found in
sedimentary rocks in the study area of about 7780 km2. The
study area is gridded into 1×1 km2 cells as GIS map layer
and four deliberately designed evidence layers were used in
Cheng(2008). Layers A and B represent binary patterns de-
termined by optimum distance from anticline axes (2.5 km)
and optimum distance from the contacts between Goldenville
and Halifax formations (4 km), respectively. Layers C and E
are two geochemical anomaly maps created by multifractal
filter mapping of loadings of elements on two components
derived via principle components analysis of geochemical
concentrations of elements. In terms of geological back-
grounds, layers A and B are, respectively, used to charac-
terise the impacts to mineralization caused by the fold tec-
tonics and metamorphosed sedimentary rocks which are sub-
divided into the Goldenville and Halifax formations; layers C

Table 2. Statistics obtained from combinations of the four layers of
binary maps (cf.Cheng, 2008). The digits 0 and 1 correspond to the
presence and absence of binary patterns, respectively.

ABCE Area nf /nt Lf s2(Lf ) Pf

(km2)

0000 2944.8 0.37851 –11.37 1.8223 0.0000115
0001 12.6 0.00162 –9.84 1.816 0.0000533
0010 333.8 0.04291 –8.88 1.431 0.0001391
0011 74.7 0.00960 –7.35 1.4247 0.0006422
0100 792.4 0.10185 –8.57 0.8752 0.0001897
0101 85.4 0.01098 –7.04 0.8689 0.0008754
0110 654.9 0.08418 –6.08 0.4839 0.0022830
0111 257.1 0.03305 –4.55 0.4776 0.0104567
1000 446.1 0.05734 –9.73 1.6639 0.0000595
1001 55.1 0.00708 –8.2 1.6576 0.0002746
1010 301.4 0.03874 –7.24 1.2726 0.0007168
1011 292.3 0.03757 –5.71 1.2663 0.0033017
1100 241.6 0.03105 –6.93 0.7168 0.0009770
1101 106.7 0.01371 –5.4 0.7105 0.0044963
1110 554.1 0.07122 –4.44 0.3255 0.0116584
1111 626.9 0.08058 –2.91 0.3192 0.0516614

and D, respectively, correspond to the regional anomalies and
local mineralization-associated anomalies favourable to mi-
neralization which may originated from geochemical migra-
tions in different scale (Cheng, 2008). More detailed descrip-
tions of geological settings and datasets in this area can be
found in Xu and Cheng(2001). For convenience, we only
use some statistical results (Table1) for our simulation from
Cheng(2008) without discussing how to utilize the original
data in the WofE method; more details about data processing
and information integration can be found inCheng(2008).

The value ofPe is set to the average probabilities of four
patterns (Pe = 0.388); the dispersion coefficientsd are cal-
culated on the average range of singularity of each evidential
layer and the value isd = 0.826 (Table1); the variance of
logit Lf equals the sum of variances of weights and variance
of prior logit (Table2). According to Eq. (22) and statis-
tics from Table2, the maximum cascade division number
nmax is calculated asnmax= 9.16≈ 9. The prior probability
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Fig. 4. Multifractal simulation of posterior probabilities of min-
eral deposit occurrences based on multiplicative cascade model; the
original concentration was set to the prior probability of mineral de-
posit occurrences, and the highest value was truncated below 0.1 in
the figure. The sequence numbers only represent an arbitrary rank-
ing of the simulated results, and the maximum sequence number is
determined by the maximum cascade numbernmax as 2nmax, that is,
512 in this example.

P0 = 20/7780= 0.00257 was set as the original concentra-
tion and distributed to the final partitions. Figure4 shows
the distribution of the posterior probabilities of mineral de-
posit occurrences generated by multifractal simulation, and
the highest value was truncated below 0.1. Known from
Eq. (10), the WofE method can only generate posterior prob-
abilities of mineral deposit occurrences whose amount is no
more than the number of combinations by the evidential lay-
ers. For example, the number of the values of posterior prob-
abilities would not exceed 2m if there arem evidential layers
involved. This sparse result provides little information for
studying the distribution of mineral deposit occurrences. Al-
though parts of statistical data are analysed from WofE, the
respective mechanism represented by the cascade dynamics
model is different from WofE. Thus, the distribution of the
mineral potential generated by simulation is different from
WofE. The number of possible results is associated to the
maximum cascade division numbernmax, which reaches to
2nmax as Fig.4 shows. However, the highest posterior proba-
bilities which represent the most favourable areas to minera-
lization should be reflected in the result of multifractal sim-
ulation. From the simulation, we can see several peaks of
values between 0.05 and 0.06 excluding one highest value;
this is in accordance with the result of WofE. The multifrac-
tal results can also be used to explain why singularities occur
throughout mineralization, of which dynamical mechanism
are still not clear.

7 Discussions and conclusions

Mineralization is a long process, so that it is impossible to ob-
serve all the stages. However, nonlinear features have been
discovered in the products of mineralization, from regional-
scale of mineral deposits (Carlson, 1991; Agterberg et al.,
1996), to micro-texture of minerals (Zhang et al., 2001;
Zuo et al., 2009b), indicating that mineralization is a typical
nonlinear process. In this article, we researched the inter-
actions between mineralization and certain geological pro-
cesses through statistical analysis of explorative data. Based
on the proposition of taking mineralization as a singular
event, the interactions can be regarded as generalized cas-
cade dynamics and a cascade model was constructed to sim-
ulate the probabilities of mineral potential. Although the re-
sult is from a statistical point of view, cascade dynamics may
be the physical nature of interactions between mineralization
and certain geological processes. The maximum cascade di-
vision numbernmax actually relies on the scale of the impacts
of certain geological processes. Some factors, like regional
tectonics, could have large scale impacts on mineralization,
while some factors, like migration of geochemical elements,
have finer scale impacts.

The research established a simple theoretic model to learn
nonlinear dynamics throughout mineralization, and the ex-
ploration data are usually abundant to obtain so that the
model is easy to set up. The multifractals generated by the
cascade dynamics can be used to explain the singularities
caused by mineralization. Unfortunately, the parameters in
our model are also affected by conditional dependence of ge-
ological data. From Eq. (22), we can find that conditional
dependence between evidence layers will increase the vari-
ance and lead to the largernmax. However, if cascade dy-
namics were true in mineralization, then we could have some
empirical values ofnmax, and actually this type ofnmax has
been discussed in the geochemical distributions (Agterberg,
2007a). The empirical values ofnmax should most probably
comes from the stochastic distribution of mineral deposits
from some mature exploration area, where good training sets
can be ensured. Thus, we can give a rough estimation of
probabilities of mineralization from the multifractal simula-
tion and improve the conditional independence limitation of
the weights of evidence method. It should be pointed out
that the random generation of the dispersion coefficientd is
also important to the cascade model, which was simplified to
an ordinary De Wijs model in this paper.Agterberg(2007a)
proposed random generation of the normal distribution in si-
mulating geochemical distributions but the applications were
still not enough, and it may need further research in the fu-
ture.
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