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Abstract. Relations between mineralization and certain 1 Introduction
geological processes are established mostly by geologist's

knowledge of field observations. However, these relationsyinerajization has complex connections with various geo-
are c_Jescrlp'uve and a quantitative model 9f hOV\_’ ce_rtalr_l ge'Iogical processes and geologists can deduce part of these
ological processes strengthen or hinder mineralization is NOL o nnections from outcrop exploration. For example, if cer-

clear, that is tlp say, the dmr(]achamlsm oflthe mteracktlr(])ns betain deposits are always coexisting with a special type of
tween mineralization and the geological framework has not. sion, we may consider that this intrusion is related to

begn thoroukghly St#d'ed' The dy_“amffs behllnd thels_fe 'melrfnineralization during geological periods. The summariza-
?Ct'°n§ are key in the un.derstlgnd.lng ofracta (?]r Tlu F' racita tion of such relations between mineralization and certain ge-
ormations caused by mineralization, among which singular-,,ica| processes and their geological characteristics leads

ities arise due to anomalous concentration of metals in narg, meajiogenic models for distinct genetic types of mineral
row space. From a statistical point of view, we think that 4o its Cox and SingerL986. Metallogenic models give
cascade dynamics play an important role in mineralization, ¢ qrehensive knowledge of favourable conditions for mi-

and studying them can reveal the nature of the various Interheralization, but they are far too insufficient to capture the

actions throughout the process. We have constructed & Mul,ochanism of the interactions between mineralization and

tiplicative cascade model to simulate these dynamics. Thgpe geoiogical framework, because they are inherently de-
probabilities of mineral deposit occurrences are used to rep'scriptive. Such a mechanism is indispensable as we wonder

r_esen; dlrictbrﬁsults fOf mlnerlahzatlop.l tl)\/lulu(fjractal S|mu:ja-| why common fractal or multifractal features has been formed
tion of probabilities of mineral potential based on our model y, o, o nout mineralization.

is exemplified by a case study dealing with hydrothermal ,
gold deposits in southern Nova Scotia, Canada. The extent A Variety of approaches have already been proposed for

of the impacts of certain geological processes on gold mi-duantifying and integrating the relations between minerali-

neralization is related to the scale of the cascade proces€2lion and certain geological processes to evaluate mineral
especially to the maximum cascade division nuMbgsy. potential, but they have not explained the physical back-

Our research helps to understand how the singularity occurgrounds of these relations, such as weights of evidence
during mineralization, which remains unanswered up to nOW,(Bonham-Carter et a'19_8?3 Cheng a_md Agterberdl999

and the simulation may provide a more accurate distributior?Nang €t al. 2008, logistic regression$ahoo and Pan-

of mineral deposit occurrences that can be used to improvd@lai 1999, Bayesian networkRorwal et al. 2009, neu-

the results of the weights of evidence model in mapping min-r&! network Ginger and Koudal99g Porwal et al. 2003
eral potential. Nykanen 2008, evidential belief functionsGarranza et al.

2005 2008 and expert-guided method€dssard et al.
2009. Most of the methods are data-driven, that is to say,

Correspondence tQ. Cheng the dynamics between mineralization and certain geologi-
BY (giuming@yorku.ca) cal processes are unstable and only empirically established
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based on observations. Mineralization has been thought of Suppose a geometrical support with linear siagas de-

as a self-organization process with dissipative structures andined asA(¢), andu[A(e)] represents a kind of measure on
thus, nonlinear features and complexities emergyeicet al, A(e), i.e., the most common measures of this kind related to
1988, but the dynamical model of the process is too sen-mineralization may be the average geochemical concentra-
sitive for the parameters that it is hard to characterise. Ations on areas at different scales, then the following power-
novel understanding of the mineralization is its interpretationlaw relationships exist in conditions of multifractal:

as a singular even€heng 2007ha), which always results in

multifractal products. Besides mineralization, typical singu- 4[A (€)] oce” (1)
lar events include hazard events, such as earthquakes, land- .
slides, volcanoes, floods and hurricanes, because they resuMx (¢€) e /@ (-0 (2)

in anomalous amounts of energy release or mass accumula-

tion confined to narrow intervals in space or tin@heng  Where o means “proportional to"« is singularity index,

2007ha). However, the mechanism of mineralization as a N« (€) is the number of cells having singularity indexvhile

singular event remains a puzzle. € approaches zero anfl(«) is the multifractal spectrum.
Generally speaking, the dynamics of the interactions be-Equation () is scale-invariant because the singularity index

tween mineralization and the geological framework is still @ remains constant under all rescalings of the linear size

lacking in systematic research. The answer to the abovéf the size is changed from,_; to €, for some scale., that

question would aid in understanding why singularity occursis, €, = Ae,—1, and the measure is changed fraf (e,-1)|

and the multi-scale nature of mineralization. In this paper, weto u[A (,)], respectively, then the following can be obtained

construct a cascade model to simulate interactions betweefiom Eq. ():

mineralization and the relevant geological processes. Then,

a case study of hydrothermal gold mineral deposits in south#[A (€)1 /1 [A(€n-1)] =2 3)

ern Nova Scotia, Canada is described for multifractal simu-

lation, in which we use some statistics fraBineng(2008. invariant relationship of a kind of measure on another kind

Through our research, we think that mineralization may beof measure. Thus, the above formulae can be extended to

accompanied by diverse geological processes, which exerteEI
a . ) . ebesgue measure space, and the support can even be fractal
their impacts in a cascade-like manner and their impacts ar

. . ) L ftself (Falconey 2003. In this study, posterior probabilities
associated with mineralization in different scales. . : : : .
of mineral deposit occurrences on certain geological condi-

tions and the probabilities of occurrences of the relevant geo-
2 Multifractal and singularity logical occurrences are Lebesgue measures, so their relation-
ships can be multifractal only if the nonlinear interactions
Since the fractal concept was proposéth(delbrot 1977, exist between them.
1983, fractal or multifractal methods became powerful tools If A(¢) is the volume inD-dimensional space, a fractal
for identifying geological features associated with minerali- density Cheng 2008 can be deduced from Edl)(as:
zation. Fractal or multifractal modelling play important roles
in the quantifying of mineral deposit3rcotte 1996, char-  p[A(€)] o u[A(€)] /A () oxe® P (4)
acterising the spatial distribution of mineral deposEsu(- o o )
son 1991 Agterberg et al. 1996 Raines 2008 and map- where fractal _densﬁy_ is analogous '_to density in the physical
ping mineral-potentialCheng et al.1996 Ford and Blenk- ~ S€Nse, but thIS density changes with scale and can approach
insop 2008. New methods based on the multifractal the- INfinity; the index(« — D) also corresponds to the concept
ory, such as concentration-area (C-A) methGtiéng et al. of codimension meaning the differences bet\_/veen the dimen-
1994, spectrum-area (S-A) metho@lfeng et al.2000 and ~ SIons of space and fracté¢hertzer and LovejoyL987).
the singularity mapping techniqu€ljeng 20073, were de-
;?;?%i?;ﬁt;gf gtr:fgn%eggg;:? Iéﬁgigo;ﬂli?ecggg%%g min 3 Multiplicative cascade models and their multifractal
Zuo et al, 20093. effect
While many mathematical geologists are familiar with

Actually fractal or multifractal describes the scale-

. . Multiplicative cascade models provide mathematical outlines

multifractal spectrumny («) in the model oEvertsz and Man- : : . .

delbrot (1992: Schertzer and Lovejog1997), they devel- to quantify turbqlgnt intermittency and o.ther extremely ir-
' ' .regular complexitiesgchertzer and Lovejgyl987). Cas-

oped another multifractal model in geophysics based on COd'E:ade dvnamics are fundamental in aeoloaical and aeophvs-
mension functiorC (y), wherex andy represent lder ex- y g 9 geophy

ponent and field order, respectiveGheng(199 compared ical processes. Typical geophys'lcal fields are .thought to re-
: sult from cascade processéyejoy et al, 2001, Lovejoy

these two models. Here, we introduce the elementary nOtaénd Schertzer20079. The De Wijs model, was proposed

tions and formulas based on tlfiéx) model. & ) I : prop

to analyse the concentration of ord3e( Wijs, 1951 and
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Fig. 1. 1-D multiplicative cascade model of De Wijp¢ Wijs, 1951). The& means original concentration value, a#ds the dispersion
coefficient.

later it was adopted as a binomial cascade model to simuehemical map patterns and proposed a random-cut variant of
late multifractal Mandelbrot 1989. Various cascade mod- the De Wijs modelAgterberg 20073, Cheng(2005 applied

els have been used to simulate rainfalls, clouds and geochena cascade model with variable partition procesSesertzer

ical concentrationsOeidda 1999 Lovejoy and Schertzer and Lovejoy(1987 developed a cascade model continuous
2008 Agterberg 2001). in scale.

A cascade process redistributes the mass concentrated on 1€ results of cascade dynamics are multifractal. The
an support to small pieces through a series of repeated stepdlultifractal generated by this cascade process have many lo-
leading to scale-invariant results. Taking the De Wijs model@ Maxima and minima with different singularitieSieng
of geochemical distribution as an example, if the original 2008 As a 1-D multiplicative cascade process, the mini-
concentration ig and the support is 1, then in the next it- Mal singularityamin and maximal singularitymax and their
eration, the support is divided into two equal blocks of 1/2 differenceAx can be calculated as:
with a concentration of1+d)& and(1—d)&; hered is the
dispersion coefficient and is independent of block size; the
procedure is iterated on the divided blocks (Hip. amax=1+100,(1+d)

Generally considering a measure defined on a support, 14d
a basic cascade step includes two intertwining proceduresAo = amax— ¢min =100, —— (5)
a partition procedure dividing current support into smaller 1-d
parts while the scale drops down by a constant ratio; and qvhered is the dispersion coefficient.
distribution procedure assigning different weights to the di-
vided parts based on a probability distribution. The size of
the ultimately divided supports would approach zero, while4  Quantification of nonlinear dynamical interactions
the cascade step is repeating endlessly. However, sometimes  throughout mineralization
the cascade steps throughout a cascade process are limited
and, thus, the ultimate size of the divided parts from the orig-4.1  Statistical model of mineralization by weights
inal support is determined by the divided times, which we of evidence
denote as the maximum cascade division numigk here.
The measures allocated on the divided parts in each subdPrecisely characterising interactions throughout mineraliza-
vision depend on the weights pattern for redistributing val-tion is almost impossible because of the limitation of data ac-
ues from previous results. The maximum cascade divisiomuisition. Unlike other continuous measurements from some
numbernmay is meaningful to geological processes becausereal-time instruments which are frequently used in meteoro-
it actually corresponds to the scale of a certain geologicalogical or geophysical observatory, data related to minerali-
process. For example, the continental or ocean plate movezation and certain geological processes can only be acquired
ment brings about global-scale change of geological settingspnce from the present, since these processes have evolved for
yet migrations of geochemical elements in a metallogenicmillions of years and there is no way to date them back. Con-
province can only be on a regional-scale. To represent retinuous measurements are impossible and also meaningless
ality, many kinds of modifications on the basic model havein mineral exploration because the time scales are too large
been investigated. For examphegterberg(200]) introduced  for us to find any changes of observation. The feasible way to
minor disturbances in the cascade processes to simulate gequantify interactions between mineralization and the related
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geological processes comes from statistical analysis of varievents to mineralization are arrangeddasAo, ..., A,,, while

ous exploration data. The exploration data include observathe contrary complements are denotediasAy, ..., A,, then

tions from mineral deposits, geological structures, geochema more comprehensive relation can be derived as

ical concentrations, petrological or stratigraphic formations

and so on. A specific kind of exploration data actually 1epre-p(pjAAy...A,) = P(D)P(A1|D)P(A2|D)...P(A,|D)

sents products of a certain geological process, and the min- P(A1)P(A2)...P(Ap)

eral deposits can be seen as results of mineralization. There-

fore, analysing the relationships between mineralization and y y ~

other kinds of exploration data provides an approximation to o P(D)P <A1ID) P (A2|D> ...P (AnlD)

guantify the dynamical interactions between them. There are’ (D|A1A2---An) = = = =

already models to utilize and integrate these relationships in P (Al) P (A2> "'P( ")

order to evaluate mineral potential, as we have mentioned ©)

in the previous section. We choose the weights of evidence

(WofE) method, which is very popular for mapping mineral Note the Eqgs.®) require conditional independence assump-

potential, to statistically quantify the relationships betweention, which can be written as

mineralization and certain geological processes, because it is

reasonable and easy to understand. P(A1A2...A;|D) = P(A1|D)P(A2|D)...P(A,|D)

The WofE model treats each kind of exploration dataas , = _ B ~ ~

a separate evidential layer and then integrates the evidentia? (AlAZ---An|D> =P (A1|D) P (A2|D> .. P (An|D) (8)

layers to support the final decision. Each kind of exploration

data corresponds to the result of a certain geological event. The weightsW* and W~ are then defined as follows

In particular, the mineral deposit occurrences are productgAgterberg et al.1990:

of mineralization. The geological events having a positive

correlation with occurrences of mineral deposits are called Wy = Ioge{P(D)/P(ﬁ)}

favourable events in mapping mineral potential. Evidential

layers are us_ually raster grids me_lde of d_lscrete cellsto faC'“'WX _ Ioge{P(A|D)/P(A|[))}

tate processing by GIS software in practiB@fham-Carter

1994. Each grid cell in an evidential layer falls into two - S
{P(A|D)/P<A|D)} .

©)

distinct groups according to positive or negative correlation W, =loge
with occurrences of mineral deposits. Grid cells having pos- _ _ . _
itive correlation with occurrences of mineral deposits consti-Under the transformation of posterior probabilities by logit
tute favourable areas, and the remaining grid cells constitutéUnction, the logits of posterior probabilities of mineral de-
unfavourable areas. Then the relationships between ming20Sit occurrences associated with multiple layers of evidence
ralization and certain geological events can be discussed b§2n e derived from Eqs9Yassuming that conditional inde-
the posterior probabilities of mineral deposit occurrences orP€ndence is satisfied:

condition that these events occurred. DA As.. AN = Wat WF + W+ wt 10
For simplicity, we use some specific symbols to representL( |4142.. An) = Wo+ Wy, + Wa, +...+ Wy, (10)

formations of different geological events. We suppose thewhere L represents logit function and(D|A1As...A,)

mtlﬂ_erahfzatl.on e\llzm ap and, as a re.sull<t, the prior Pmb' means logit ofP(D|A1A3...A,). The similar formulae can
ability of mineral deposit occurrence Is known AsD); a be derived under other combinations of evidential layers.

favourable ever}t 0 m'lnera'llzatlon S denqtecl aand then . The logit function is important to logistic regression and the
the corresponding evidential layer is a binary pattern W|thIogit of a numberp between 0 and 1 is given by the formula:
A or A representing favourable events or not and, respec-

tively, their probabilities of occurrences can be written as p

P(A) and P(A). Thus, D would be divided intobA and ~ L(P) =Iog<g> - (11)
DA, and the posterior probabilities can be represented by

P(D|A and P(D|A), respectively. From Bayesian rule, the Hence, the posterior probabilities of mineral deposit occur-

posterior probabilities can be calculated as rences can be easily calculated by the inversion of the logits.
However, most of the time the conditional independence of
P(D)P(A|D) o ) Lo
P(D|A) = —paA) evidential layers is not met, so that the estimation of poste-
(4) rior probabilities may be biased. Reasonable adjustments to
~ P(D)P(A|D) the posterior probabilities can improve this situation, but it
P (DIA) = T (6) needs more accurate knowledge of the distributions. We will

later discuss the possible application of our research to deal
If evidential patterns representing favourable geologicalwith this problem.

Nonlin. Processes Geophys., 18, 1616 2011 www.nonlin-processes-geophys.net/18/161/2011/
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P(D)

[P(DIA )] [P(DIAA)] [P(DIAA)]
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’P(D|A1A2-~~An)‘ ’p(D@leg")

Fig. 2. Updating and integrating of evidential patterns in weights of evidence mett®qd) means the prior probability of mineral

deposit occurrencedy, Ao, ..., A, are different evidential patterns having positive correlations with mineral depositd amth, ..., A,

are evidential patterns in contrary. The posterior probabilities are updated as the new evidence patterns are integrated; this figure can b
compared with Figl.

4.2 Generalized cascade process throughout Equations 12) and (L3) are important formulae to charac-
mineralization and singularities terise the singularities of dynamical interactions between mi-

neralization and certain geological processes. The formulae

The similarity between the WofE method and multiplicative agre based upon the assumption of mineralization as a singu-

cascade models has been discussedhiang(2008, and a  |ar event and more detailed descriptions can be se€hémg

variant of WofE based on singularity was proposed as a nove{2008.

approach for information integration. The posterior proba-

bilities of mineral deposit occurrences are updated as new

evidential patterns are put in (Flg). Each evidential pattern 5 Cascade dynamics model of mineralization through

represents the product of a certain geological process and the multifractal simulation

updated posterior probabilities represents its impact exerted

on mineralization. Assuming mineralization as a singular Considering the posterior probability of mineralization due

event, the impacts caused by the participation of certain geoto a certain geological process as an indirect measurement

logical processes should be accumulated nonlinearly so thaif interaction between them, we can study the cascade dy-

singularities emerge. The updating of each evidential pattermamics of mineralization from statistical points of view. The

and the relevant posterior probabilities is very similar to onedispersion coefficient, in an ordinary de Wijs model, could

cascade step and, therefore, we take the successive partige regarded as a random variath} with a distribution of

ipating of new evidential patterns as a generalized cascad@ (D* = d) = P (D* = —d) = 1/2 (Agterberg 20073. Here

process. The nonlinear dynamics of interactions throughouthe distribution ofd should be identical to the distribution

mineralization can then be constructed by a generalized casf an evidence which is denoted &s later on. The fre-

cade model.. _ . . quency distribution of concentration values generated by a
For an arbitrary evidential layer A, supposeor A means 1D multiplicative cascade model is logbinomial, that is, the
presence or absence 4f respectively. If we have eviden-  |ogarithmically transformed values have binomial distribu-

tial layers, then the total area can be divided irfts@b-areas  tion (Agterberg 20073. So the logarithmic varianae? can
at last, marked by the different combinations of evidence. Onpe derived as:

each iteration of adding an evidence layer, the posterior prob-

ability on each evidential combination will be distributed into n = (14+d)/(1—d)

two partitions. So this process can be regarded as a binary2 5

cascade process and the comparisons are shown i8.Fg. ¢~ = maxPe(1— Pe)(In7) (14)

the figure shows, the singularity caused by the evidence layer . —
A can be easily derived from Ec@)as: wherenmax means the maximum cascade division number.

WhenPe=1/2, Eq. @4) will follow into o2 = nmax(Inn)?/4
a(A)=IlogP(A|D)/logP(A) (12)  corresponding to a simple de Wijs modabterberg 20073.
. The variance can be estimated from its relationship with the
The singularity of pattermd can be defined from the same |ggarithmic variance:
procedures as:
_ _ . s(Inx) _ d(Inx)
a(A):IogP(A|D)/IogP(A). 13 S S ax |

X=X

1 (15)
X

www.nonlin-processes-geophys.net/18/161/2011/ Nonlin. Processes Geophys., 18018031
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P(DA) W~ P@
- == ~
N - - =~ b
N - =~ - e
P(DA)/P(A) = P(D|A) pien)/€ = plen)
Idecreasing scale
P(D) wlen) - _ B
P(D) p(€n—1)

Fig. 3. Analogy between probabilities updated by an evidential layer and scale-invariant measures generated by multiplicative cascade
process. This figure shows two consecutive iterations for demonstration. The prior probgilityis defined on the whole support 1, and

one of its branches goes to posterior probabiltyD|A) on patternA; this process is similar to the changing of measure fro@),_1) to

u(en) as the scale decreases frep 1 to €, so does the fractal density

Equation {5) provides an approximation of variance for any 1971, Agterberg and Chen@002. In order to estimate the
random variable with meanx (cf. Agterberg et al.1990. If standard deviation df ¢, firstly, variances of the weights can
the original concentration value in the multiplicative cascadebe estimated based on the asymptotic theory of discrete mul-
model is&, then the variance of final concentration values tivariate analysisAgterberg et al.1990); these can be aug-

should be: mented by variances for missing data and added to the vari-
> .22 ance of the prior logit, and then the result is an estimate of
pe=§% (16) the standard deviation df ; (Agterberg and Chen@002).

where? ando? represent, respectively, variance and Ioga—SO the variance ofy can be expressed as follows:

rithmic variance _of the final distribl_Jti_on. Therefore, we can SZ(Pf) ~ {Pf (1_ Pf)S(Lf)}Z (19)
deduce the maximum cascade division numhgix as long
as the dispersion coefficiedtand logarithmic variance2 wherePy andL ; are the post probabilities of mineral deposit
or varianceﬂz are known. The parametedsand iimax are occurrences and their logits, respectiveﬁ(;Pf) andsz(Lf)
crucial parameters for the multiplicative cascade model andire the variances df, andL ;, respectively. o
they have been applied to simulate geochemical distribution !f the total number of evidential layers is (m =4 in this
(Agterberg 2007ab). examplq), that is, theT number of involved geologlcal pro-
Consider a certain evidence layéthe dispersion coeffi- €eSSes isn, then 2' different patterns can be achieved by
cientd can be estimated based on singularity calculated fromfOmbination. The posterior probabilities would havesbs-

Egs. (12) and (L3) as: sible values, so we can define a new random varizplaere
and regardP, as the samples. Note that a binomial cascade
n= 144 — pa(A)—a(A) (17) model is used to distribute the posterior probabilities, so the
1-d ' expectation ofPr should be equal to the prior probability

Pp, which is considered as the original concentration. The

ties are the sum of weights determined by the combinationd"oPability of Pr = P can be roughly estimated as the pro-
portion of the pattern occupied by tiRy in the total study

of all of the evidential patterns. The posterior probabilities thus. th i o5 b imated as follow:
stop updating after all the evidential layers are integrated suc@rea. us, the variance gy can be estimated as follow.

cessively and their results can be calculated from inversion , 1Z )

of the logits. We suppose the posterior probabilities and thei#“(Pr) =~ Y nys?(Pp) (20)
logits produced by WofE after integration of all available ev- =1

idential layers are denoted & andL f, respectively. From  wheren s andn, are numbers of cells inside patterns occu-

Equation (0) shows that the logits of posterior probabili-

the definition of logit function Py can be calculated as: pied by‘Pf and the total study area, respectively;means
Lo the number of evidential layers. Suppose the final probabil-
Pr=el /(e +1). (18)  ities satisfy logbinomial distribution as the cascading result,

The standard deviation d?; can be estimated by multi- the variance 0P should be:

plying the standard deviation df; by Py (1— Py) (Fisher  s?(Pp)~ PEo? (21)

Nonlin. Processes Geophys., 18, 1616 2011 www.nonlin-processes-geophys.net/18/161/2011/
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Table 1. Statistics obtained from each of the four layers of binary map<teéng 2009.

Layer Pe o a(~)  Aa wt s(whH) w— s(WD)

A 0.394 0.276 2.960 2.684 0.67 0.25 -0.97 0.47
B 0.568 0.084 3.657 3573 0.57 0.23 -2.23  1.00
C 0.398 0.125 4.370 4.245 081 0.24 -1.68 0.67
E 0.194 0.391 3.465 3.074 1.00 0.31 -0.53 0.32

Average 0.388 0.219 3.613 3.394

where Po mea_ns the prior p_robablllty of mlneral de_posn OC- Taple 2. Statistics obtained from combinations of the four layers of
currences. Finally, we derive the following equation basedbinary maps (cfCheng 2008. The digits 0 and 1 correspond to the

on Egs. {4), (20) and @1): presence and absence of binary patterns, respectively.
_— s2(Pr) _
max P02Pe(1— Po) (|n77)2 ABCE Arga ny/nt Ly s“(Lf) Py
(kme)
i 2
1 2 npPF(1=Pr)°s?(Ly) 0000 29448 0.37851 -11.37 1.8223 0.0000115
= P2Po(1— Po)(Inn)2 (22) 0001 126 0.00162 -9.84 1816  0.0000533
=1 fo'e e n 0010 333.8 0.04291 -8.88 1.431 0.0001391
wheren;, andnp mean numbers of units of the total study 0011 74.7 0.00960 -7.35  1.4247  0.0006422
area and units of the mineral deposits, respectively. Equa- 0100 792.4 010185 -8.57  0.8752  0.0001897
tion (22) can be used to estimate the maximum cascade divi- 0101 854 001098 -7.04 08689  0.0008754

0110 654.9 0.08418 -6.08 0.4839  0.0022830
0111 257.1 0.03305 -4.55 0.4776  0.0104567
1000 446.1 0.05734 -9.73 1.6639  0.0000595

6 Case study: validating the cascade dynamics model 10(1)1 5‘;"}1 0'00732 _3'34 11257726 0'000277146
of mineralization 010 3014 0.03874 7. 2726  0.0007168

1011 292.3 0.03757 -5.71 1.2663  0.0033017

: : : P 1100 2416 0.03105 -6.93 0.7168 0.0009770
The nonlinear dynamics throughout mineralization were 1101 1067 001371 54 07105 00044963

!acking _research becguse (_)f the difficulties to quantifying the 1110 5541 007122 444 03255 00116584
mtergcnons during m|neraI|.zat|or.1. We_pro_pose a cascade d_y— 1111 626.9 0.08058 -291 03192 0.0516614
namics model to characterise mineralization based on statis-
tical analysis of exploration data by WofE. Here, we will use
a case study to demonstrate the usage and validate this model.

The case study simulates mineral potential of gold deposits in

the southwestern Nova Scotia, Canada. The simulation is imand D, respectively, correspond to the regional anomalies and
plemented on the basis of the cascade dynamics model of mlocal mineralization-associated anomalies favourable to mi-
neralization. About 20 gold deposit occurrences are found if€eralization which may originated from geochemical migra-
sedimentary rocks in the study area of about 7788.Kfine  tions in different scaleGheng 2008. More detailed descrip-
Study area is g”dded |nto>a_1 km2 Ce”s as GIS map |ayer tions of geological Settings and datasets in this area can be
and four deliberately designed evidence layers were used ifound in Xu and Cheng200]). For convenience, we only
Cheng(2008. Layers A and B represent binary patterns de- Use some statistical results (Tall)efor our simulation from
termined by optimum distance from anticline axes (2.5 km) Cheng(2008 without discussing how to utilize the original
and optimum distance from the contacts between Goldenvilldata in the WofE method; more details about data processing
and Halifax formations (4 km), respectively. Layers C and E and information integration can be found@meng(2008.

are two geochemical anomaly maps created by multifractal The value ofPe is set to the average probabilities of four
filter mapping of loadings of elements on two componentspatterns fe = 0.388); the dispersion coefficientsare cal-
derived via principle components analysis of geochemicalculated on the average range of singularity of each evidential
concentrations of elements. In terms of geological back-ayer and the value ig = 0.826 (Tablel); the variance of
grounds, layers A and B are, respectively, used to characlogit L ; equals the sum of variances of weights and variance
terise the impacts to mineralization caused by the fold tec-of prior logit (Table2). According to Eqg. 22) and statis-
tonics and metamorphosed sedimentary rocks which are suliics from Table2, the maximum cascade division number
divided into the Goldenville and Halifax formations; layers C nmax is calculated agmax=9.16~ 9. The prior probability

sion number max.
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7 Discussions and conclusions
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Mineralization is a long process, so that it is impossible to ob-
serve all the stages. However, nonlinear features have been
discovered in the products of mineralization, from regional-
scale of mineral depositarlson 1991, Agterberg et al.
1996, to micro-texture of mineralsZhang et al. 200%;

Zuo et al, 2009, indicating that mineralization is a typical

nonlinear process. In this article, we researched the inter-

actions between mineralization and certain geological pro-
cesses through statistical analysis of explorative data. Based
on the proposition of taking mineralization as a singular
event, the interactions can be regarded as generalized cas-

ool cade dynamics and a cascade model was constructed to sim-

[ - | 1L ulate the probabilities of mineral potential. Although the re-
0 10 20 uenceno, ° 40 50 sult is from a statistical point of view, cascade dynamics may
be the physical nature of interactions between mineralization

Fig. 4. Multifractal simulation of posterior probabilities of min- and certain geological processes. The maximum cascade di-

eral deposit occurrences based on multiplicative cascade model; thgision number: max actually relies on the scale of the impacts

original concentration was set to the prior probability of mineral de- of certain geological processes. Some factors, like regional
posit occurrences, and the highest value was truncated below 0.1 iﬂactonics, could have large scale impacts on mineralization,

Fhe figure. The sequence numbers only rgpresent an arbitrary ranK,—vhile some factors, like migration of geochemical elements,

ing of the simulated res_ults, and the maximum sequence nu_mber iRave finer scale impacts.

determined by the maximum cascade numbggy as Zmax, that is, . . .

512 in this example. The research e_stabllshed a S|mple the_ore_tlc model to learn
nonlinear dynamics throughout mineralization, and the ex-
ploration data are usually abundant to obtain so that the
model is easy to set up. The multifractals generated by the
cascade dynamics can be used to explain the singularities
caused by mineralization. Unfortunately, the parameters in

Po =20/7780=0.00257 was set as the original concentra- our model are also affected by conditional dependence of ge-

tion and distributed to the final partitions. Figudeshows  ological data. From Eq.2@), we can find that conditional

the distribution of the posterior probabilities of mineral de- dependence between evidence layers will increase the vari-
posit occurrences generated by multifractal simulation, andance and lead to the largempax. However, if cascade dy-
the highest value was truncated below 0.1. Known fromnamics were true in mineralization, then we could have some

Eq. (L0), the WofE method can only generate posterior prob-empirical values ofimax, and actually this type oinax has

abilities of mineral deposit occurrences whose amount is ndeen discussed in the geochemical distributidkgiérberg

more than the number of combinations by the evidential lay-20073. The empirical values 0imax Should most probably

ers. For example, the number of the values of posterior probeomes from the stochastic distribution of mineral deposits

abilities would not exceed2if there arem evidential layers ~ from some mature exploration area, where good training sets
involved. This sparse result provides little information for can be ensured. Thus, we can give a rough estimation of
studying the distribution of mineral deposit occurrences. Al- probabilities of mineralization from the multifractal simula-
though parts of statistical data are analysed from WOofE, theion and improve the conditional independence limitation of
respective mechanism represented by the cascade dynamittee weights of evidence method. It should be pointed out
model is different from WofE. Thus, the distribution of the that the random generation of the dispersion coefficieist
mineral potential generated by simulation is different from also important to the cascade model, which was simplified to

WofE. The number of possible results is associated to thean ordinary De Wijs model in this papekgterberg(20073

maximum cascade division numbehax, Which reaches to  proposed random generation of the normal distribution in si-

2'max 35 Fig.4 shows. However, the highest posterior proba- mulating geochemical distributions but the applications were
bilities which represent the most favourable areas to minerastill not enough, and it may need further research in the fu-
lization should be reflected in the result of multifractal sim- ture.

ulation. From the simulation, we can see several peaks of R . )
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