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Data clustering techniques are valuable tools for researchers working with large 
databases of multivariate data. In this tutorial, we present a simple yet powerful one: 
the k-means clustering technique, through three different algorithms: the Forgy/Lloyd, 
algorithm, the MacQueen algorithm and the Hartigan & Wong algorithm. We then 
present an implementation in Mathematica and various examples of the different 
options available to illustrate the application of the technique. 

 
 

Data clustering techniques are descriptive data analysis 
techniques that can be applied to multivariate data sets to 
uncover the structure present in the data. They are 
particularly useful when classical second order statistics (the 
sample mean and covariance) cannot be used. Namely, in 
exploratory data analysis, one of the assumptions that is 
made is that no prior knowledge about the dataset, and 
therefore the dataset’s distribution, is available. In such a 
situation, data clustering can be a valuable tool. Data 
clustering is a form of unsupervised classification, as the 
clusters are formed by evaluating similarities and 
dissimilarities of intrinsic characteristics between different 
cases, and the grouping of cases is based on those emergent 
similarities and not on an external criterion. Also, these 
techniques can be useful for datasets of any dimensionality 
over three, as it is very difficult for humans to compare 
items of such complexity reliably without a support to aid 
the comparison.   

The technique presented in this tutorial, k-means 
clustering, belongs to partitioning-based techniques 
grouping, which are based on the iterative relocation of data 
points between clusters. It is used to divide either the cases 
or the variables of a dataset into non-overlapping groups, or 
clusters, based on the characteristics uncovered. Whether 
the algorithm is applied to the cases or the variables of the 
dataset depends on which dimensions of this dataset we 
want to reduce the dimensionality of. The goal is to produce 
groups of cases/variables with a high degree of similarity 
within each group and a low degree of similarity between 

groups (Hastie, Tibshirani & Friedman, 2001). The k-means 
clustering technique can also be described as a centroid 
model as one vector representing the mean is used to 
describe each cluster. MacQueen (1967), the creator of one of 
the k-means algorithms presented in this paper, considered 
the main use of k-means clustering to be more of a way for 
researchers to gain qualitative and quantitative insight into 
large multivariate data sets than a way to find a unique and 
definitive grouping for the data.  

K-means clustering is very useful in exploratory data 
analysis and data mining in any field of research, and as the 
growth in computer power has been followed by a growth 
in the occurrence of large data sets. Its ease of 
implementation, computational efficiency and low memory 
consumption has kept the k-means clustering very popular, 
even compared to other clustering techniques. Such other 
clustering techniques include connectivity models like 
hierarchical clustering methods (Hastie, Tibshirani & 
Friedman, 2000). These have the advantage of allowing for 
an unknown number of clusters to be searched for in the 
data, but are very costly computationally due to the fact that 
they are based on the dissimilarity matrix. Also included in 
cluster analysis methods are distribution models like 
expectation-maximisation algorithms and density models 
(Ankerst, Breunig, Kriegel & Sander, 1999). 

A secondary goal of k-means clustering is the reduction 
of the complexity of the data. A good example would be 
letter grades (Faber, 1994). The numerical grades are 
clustered into the letters and represented by the average 
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included in each class.  
Finally, k-means clustering can also be used as an 

initialization step for more computationally expensive 
algorithms like Learning Vector Quantization or Gaussian 
Mixtures, thus giving an approximate separation of the data 
as a starting point and reducing the noise present in the 
dataset (Shannon, 1948).   

A good cluster analysis is both efficient and effective, in 
that it uses as few clusters as possible while still capturing 
all statistically important clusters. Similarity in cluster 
analysis is usually taken as meaning ‘’proximity’’, and 
elements closer to one another in the input space are 
considered more similar. Different metrics can be used to 
calculate this similarity, the Euclidian distance 

 being the most common. Here c is the 
cluster center, x is the case it is compared to, i is the 
dimension of x (or c) being compared and k is the total 
number of dimensions. The Squared Euclidian distance 

, the Manhattan distance 
 or the Maximum distance between 

attributes of the vectors   can 
also be used. Of greater interest are the Mahalanobis 
distance , which accounts 
for the covariance between the vectors, and the Cosine 
similarity , which is a non-translation 
invariant version of the correlation. By translation invariant, 
we mean here that adding a constant to all elements of the 
vectors will not change the result of the correlation while it 
will change the result of the cosine similarity.1 Both the 
correlation and cosine similarity are invariant to scaling 
(multiplying all elements by a nonzero constant). As the k-
means algorithms try to minimize the sum of the variances 
within the clusters,  , where ni is 
the number of cases included in cluster k and , the 
k-means clustering technique is considered a variance 
minimization technique. 

Mathematically, the k-means technique is an 
approximation of a normal mixture model with an 
estimation of the mixtures by maximum likelihood. Mixture 
models consider cluster membership as a probability for 
each case, based on the means, covariances, and sampling 
probabilities of each cluster (Symons, 1981). They represent 
the data as a mixture of distributions (Gaussian, Poisson, 
etc.), where each distribution represents a sub-population 
(or cluster) of the data. The k-means technique is a sub case 
that assumes that the mixture components (here, clusters) all 
have spherical covariance matrices and equal sampling 
probabilities. I also consider the cluster membership for each 

                                                                 
1 The correlation is the cosine similarity of mean-centered, 
deviation-normalized data 

case a separate parameter to be estimated.   

K-means clustering 

We present three k-means clustering algorithms: the 
Forgy/Lloyd algorithm, the MacQueen algorithm and the 
Hartigan & Wong algorithm. We chose those three 
algorithms because they are the most widely used k-means 
clustering techniques and they all have slightly different 
goals and thus results. To be able to use any of the three, you 
first need to know how many clusters are present in your 
data. As this information is often unavailable, multiple trials 
will be necessary to find the best amount of clusters. As a 
starting point, it is often useful to standardize the data if the 
components of the cases are not in the same scale.  

There is no absolute best algorithm. The choice of the 
optimal algorithm depends on the characteristics of the 
dataset (size, number of variables in the cases). Jain, Duin & 
Mao (2000) even suggest trying several different clustering 
algorithms to gain the best understanding possible about the 
dataset.  

Forgy/Lloyd algorithm 

The Lloyd algorithm (1957, published 1982) and the 
Forgy’s algorithm (1965) are both batch (also called offline) 
centroid models. A centroid is the geometric center of a 
convex object and can be thought of as a generalisation of 
the mean. Batch algorithms are algorithms where a 
transformative step is applied to all cases at once. They are 
well suited to analyse large data sets, since the incremental 
k-means algorithms require to store the cluster membership 
of each case or to do two nearest-cluster computations as 
each case is processed, which is computationally expensive 
on large datasets. The difference between the Lloyd 
algorithm and the Forgy algorithm is that the Lloyd 
algorithm considers the data distribution discrete while the 
Forgy algorithm considers the distribution continuous. They 
have exactly the same procedure apart from that 
consideration. For a set of cases  , where 

 is the data space of d dimensions, the algorithm tries to 
find a set of k cluster centers  that is 
a solution to the minimization problem:  

 , discrete distribution 

 , continuous distribution 

where  is the probability density function and d is the 
distance function. Note here that if the probability density 
function is not known, it has to be deduced from the data 
available. 

The first step of the algorithm is to choose the k initial 
centroids. It can be done by assigning them based on 
previous empirical knowledge, if it is available, by using k 
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random observations from the data set, by using the k 
observations that are the farthest from one another in the 
data space or just by giving them random values within ��. 
Once the initial centroids have been chosen, iterations are 
done on the following two steps. In the first one, each case of 
the data set is assigned to a cluster based on its distance 
from the clusters centroids, using one of the metric 
previously presented. All cases assigned to a centroid are 
said to be part of the centroid’s subspace	�(��). The second 
step is to update the value of the centroid using the mean of 
the cases assigned to the centroid. Those iterations are 
repeated until the centroids stop changing, within a 
tolerance criterion decided by the researcher, or until no case 
changes cluster. 

Here is the pseudocode describing the iterations: 
 

1- Choose the number of clusters 
2- Choose the metric to use 
3- Choose the method to pick initial centroids 
4- Assign initial centroids 
5- While metric(centroids, cases)>threshold 

a. For i <= nb cases 
i. Assign case to closest cluster 

according to metric 
b. Recalculate centroids 

The k-means clustering technique can be seen as 
partitioning the space into Voronoi cells (Voronoi, 1907). For 
each two centroids, there is a line that connects them. 
Perpendicular to this line, there is a line, plane or 
hyperplane (depending on the dimensionality) that passes 
through the middle point of the connecting line and divides 
the space into two separate subspaces. The k-means 
clustering therefore partitions the space into k subspaces for 
which ci is the nearest centroid for all included elements of 
the subspace (Faber, 1994). 

MacQueen algorithm 

The MacQueen algorithm (1967) is an iterative (also 
called online or incremental) algorithm. The main difference 
with Forgy/Lloyd’s algorithm is that the centroids are 
recalculated every time a case change subspace and also 
after each pass through all cases. The centroids are 
initialized the same way as in the Forgy/Lloyd algorithm 
and the iterations are as follow. For each case in turn, if the 
centroid of the subspace it currently belongs to is the 
nearest, no change is made. If another centroid is the closest, 
the case is reassigned to the other centroid and the centroids 
for both the old and new subspaces are recalculated as the 
mean of the belonging cases. The algorithm is more efficient 
as it updates centroids more often and usually needs to 
perform one complete pass through the cases to converge on 

a solution. 
Here is the pseudocode describing the iterations: 
 

1- Choose the number of clusters 
2- Choose the metric to use 
3- Choose the method to pick initial centroids 
4- Assign initial centroids 
5- While metric(centroids, cases)>threshold 

a. For i <= cases 
i. Assign case i to closest cluster according 

to metric 
ii. Recalculate centroids for the two affected 

clusters 
b. Recalculate centroids 

Hartigan & Wong algorithm 

This algorithm searches for the partition of data space 
with locally optimal within-cluster sum of squares of errors 
(SSE). It means that it may assign a case to another subspace, 
even if it currently belong to the subspace of the closest 
centroid, if doing so minimizes the total within-cluster sum 
of square (see below). The cluster centers are initialized the 
same way as in the Forgy/Lloyd algorithm. The cases are 
then assigned to the centroid nearest them and the centroids 
are calculated as the mean of the assigned data points. The 
iterations are as follows. If the centroid has been updated in 
the last step, for each data point included, the within-cluster 
sum of squares for each data point if included in another 
cluster is calculated. If one of the cluster sum of square 
(SSE2 in the equation below, for all i ≠ 1) is smaller than the 
current one (SSE1), the case is assigned to this new cluster. 

  

The iterations continue until no case change cluster, 
meaning until a change would make the clusters more 
internally variable or more externally similar. 

Here is the pseudocode describing the iterations: 
 

1- Choose the number of clusters 
2- Choose the metric to use 
3- Choose the method to pick initial centroids 
4- Assign initial centroids  
5- Assign cases to closest centroid 
6- Calculate centroids 
7- For j <= nb clusters, if centroid j was updated last 

iteration 
a. Calculate SSE within cluster 
b. For i <= nb cases in cluster 

i. Compute SSE for cluster k != j if case included 
ii. If SSE cluster k < SSE cluster j, case change 

cluster 
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Quality of the solutions found 

There are two ways to evaluate a solution found by k-
means clustering. The first one is an internal criterion and is 
based solely on the dataset it was applied to, and the second 
one is an external criterion based on a comparison between 
the solution found and an available known class partition 
for the dataset.  

The Dunn index (Dunn, 1979) is an internal evaluation 
technique that can roughly be equated to the ratio of the 
inter-cluster similarity on the intra-cluster similarity: 

  

where  is the distance between cluster centroids and 
can be calculated with any of the previously presented 
metrics and  is the measure of inner cluster variation. As 
we are looking for compact clusters, the solution with the 
highest Dunn index is considered the best. 

As an external evaluator, the Jaccard index (Jaccard, 
1901) is often used when a previous reliable classification of 
the data is available. It computes the similarity between the 
found solution and the benchmark as a percentage of correct 
classification. It calculates the size of the intersection (the 
cases present in the same clusters in both solutions) divided 
by the size of the union (all the cases from both datasets): 

  

Limitations of the technique 

The k-means clustering technique will always converge, 
but it is liable to find a local minimum solution instead of a 
global one, and as such may not find the optimal partition. 
The k-means algorithms are local search heuristics, and are 
therefore sensitive to the initial centroids chosen (Ayramo & 
Karkkainen, 2006). To counteract this limitation, it is 
recommended to do multiple applications of the technique, 
with different starting points, to obtain a more stable 
solution through the averaging of the solutions obtained.  

Also, to be able to use the technique, the number of 
clusters present in your data must be decided at the onset, 
even if such information is not available a priori. Therefore, 
multiple trials are necessary to find the best amount of 
clusters. Thirdly, it is possible to create empty clusters with 
the Forgy/Lloyd algorithm if all cases are moved at once 
from a centroid subspace. Fourthly, the MacQueen and 
Hartigan methods are sensitive to the order in which the 
points are relocated, yielding different solutions depending 
on the order. 

Fifthly, k-means clustering has a bias to create clusters of 
equal size, even if doing so doesn’t best represent the group 

distributions in the data. It thus works best for clusters that 
are globular in shape, have equivalent size and have 
equivalent data densities (Ayramo & Karkkainen, 2006). 
Even if the dataset contains clusters that are not 
equiprobable, the k-means technique will tend to produce 
clusters that are more equiprobable than the population 
clusters. Corrections for this bias can be done by maximizing 
the likelihood without the assumption of equal sampling 
probabilities (Symons, 1981).  

Finally, the technique has problems with outliers, as it is 
based on the mean, a descriptive statistic not robust to 
outliers. The outliers will tend to skew the centroid position 
toward them and have a disproportionate importance 
within the cluster. A solution to this was proposed by 
Ayramo & Karkkainen (2006). They suggested using the 
spatial median instead to get a more robust clustering. 

Alternate algorithms 

Optimisation of the algorithms usage 

While the algorithms presented are very efficient, since 
the technique is often used as a first classifier on large 
datasets, any optimisation that speeds the convergence of 
the clustering is useful. Bottou and Bengio (1995) have found 
that the fastest convergence on a solution is usually obtained 
by using an online algorithm for the first iteration through 
the entire dataset and an off-line algorithm subsequently as 
needed. This comes from the fact that online k-means 
benefits from the redundancies of the k training set and 
improve the centroids by going through a few cases 
(depending on the amount of redundancies) as much as 
would a full iteration through the offline algorithm (Bengio, 
1991). 

For very large datasets 

For very large datasets that would make the 
computation of the previous algorithms too computationally 
expensive, it is possible to choose a random sample from the 
whole population of cases and apply the algorithm on the 
sample. If the sample is sufficiently large, the distribution of 
these initial reference points should reflect the distribution 
of cases in the entire set. 

Fuzzy k-means clustering 

In fuzzy k-means clustering (Bezdek, 1981), each case has 
a set of degree of belonging relative to all clusters. It differs 
from previously presented k-means clustering where each 
case belongs only to one cluster at a time. In this algorithm, 
the centroid of a cluster (ck) is the mean of all cases in the 
dataset, weighted by their degree of belonging to the cluster 
(wk). 
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The degree of belonging is a function of the distance of 
the case from the centroid, which includes a parameter 
controlling for the highest weight given to the closest case. It 
iterates until a user-set criterion is reached. Like the k-means 
clustering technique, this technique is also sensitive to initial 
clusters and local minima. It is particularly useful for dataset 
coming from area of research where partial belonging to 
classes is supported by theory. 

Self-Organising Maps 

Self-Organizing Maps (Kohonen, 1982) are an artificial 
neural network algorithm that aims to extract attributes 
present in a dataset and transcribe them into an output 
space of lower dimensionality, while keeping the spatial 
structure of the data. Doing so clusters similar cases on the 
map, a process that can be likened to the k-means algorithm 
clustering centroids. This neural network has two layers, the 
input layer which is the initial dataset, and an output layer 
that is the self-organizing map, which is usually bi-
dimensional. There is a connection weight between each 
variable (or attribute) of a case and the map, thus making 
the connection weights matrix of the dimensionality of the 
input multiplied by the dimensionality of the map. It uses a 
Hebbian competitive learning algorithm. What is obtained at 
the end is a map where similar elements are contiguous, 
which also give a two dimensional representation of the 
data. It is therefore useful if a graphic representation of the 
data is advantageous to its comprehension. 

Gaussian-expectation maximization (GEM) 

This algorithm was first explained by Dempster, Laird & 
Rubin (1977).  It uses a linear combination of d-dimensional 
Gaussian distributions as the cluster centers. It aims to 
minimize 

  

where ��	
��
� is the probability of xi (the case), given that it 
is generated by a Gaussian distribution that has cj as its 
center, and �(�
) is the prior probability of said center. It also 
computes a soft membership for each center through Bayes 
rule:  

 . 

The Mathematica Notebook 

There exists a function in Mathematica, ‘’FindClusters’’, 

that implements the k-means clustering technique with an 
alternative algorithm called k-medoids. This algorithm is 
equivalent to the Forgy/Lloyd algorithm but it uses cases 
from the datasets as centroids instead of the arithmetical 
mean. The implementation of the algorithm in Mathematica 
allows for the use of different metrics. There is also a 
function in Matlab called “kmeans” that implements the k-

means clustering technique. It uses a batch algorithm in a 
first phase, then an iterative algorithm in a second phase. 
Finally, there is no implementation of the k-means technique 
in SPSS, but an implementation of hierarchical clustering is 
available. As the goals of this tutorial are to showcase the 
workings of the k-means clustering technique and to help 
understand said technique better, we created a Mathematica 
Notebook where the inner workings of all three algorithms 
are open to view (available on the TQMP website). 

The Notebook has clearly labeled sections. The initial 
section contains all of the modules used in the Notebook. 
This is where you can see the inner workings of the 
algorithms. In the section of the Notebook where user 
changes are allowed, you find various subsections that 
explicit the parameters the user needs to input. The first one 
is used to import the data, which should be in a database 
format (.txt, .dat, etc.), and should not include the variable 
names. The second section allows to standardize the dataset 
variables if need be. The third section put a label on each 
case to keep track of cases as they are clustered. The next 
sections allows to choose the number of clusters, the stop 
criterion on the number of iterations, the tolerance level 
between the cluster solutions, the metric to be used (between 
Euclidian distance, Squared Euclidian distance, Manhattan 
distance, Maximum distance, Mahalanobis distance and 
Cosine similarity) and the starting centroids. To choose the 
centroids, random assignation or farthest vectors assignation 
are available. The following section is the heart of the 
Notebook. Here you can choose to use the Forgy/Lloyd, 
MacQueen or Hartigan & Wang algorithm. The algorithms 
iterate until the user-inputted criterion on the number of 
iterations or centroid change is reached. For each algorithm, 
you obtain the number of iterations through the whole 
dataset needed for the solution to converge, the centroids 
vectors and the cases belonging to each cluster. The next 
section implements the Dunn index, which evaluates the 
internal quality of the solution and outputs the Dunn index. 
Next is a visualisation of the cases and their centroids for 
bidimensionnal or tridimensional datasets. The next section 
calculates the equation of the vector/plan that separates two 
centroids subspaces. Finally, the last section uses 
Mathematica’s implementation of the ANOVA to allow the 
user to compare clusters to see for which variables the 
clusters are significantly different from one another. 
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Example 

1a. Let’s take a toy example and use our Mathematica 
notebook to find a clustering solution.  The first thing that 
we need to do is activate the initialisation cells that contain 
the modules. We’ll use a dataset (at the beginning of the 
Mathematica Notebook) that has four dimensions and nine 
cases. Please activate only the dataset needed. As the 
variables are not on the same scale, we start by 
standardizing the data, as seen in Table 1. 

Now, as we have no prior information on the dataset, we 
chose to pick three clusters and to choose the cases that are 
the furthest from one another, as seen in Table 2.  

We chose the Lloyd method to find the clusters with a 
Euclidian distance metric. We then run the main program, 
which iterates in turn to assign cases to centroids and move 
the centroids. After 2 iterations, the centroids have attained 
their final position and the cases have changed clusters to 
their final position. The solution found has one cluster 
containing cases 1, 6 and 8, one cluster containing case 4 and 
one cluster containing the remaining cases (2,3,5 and 7). This 
is illustrated in Figure 1. 

1b. It is often interesting to see which variables 
contributed to the clustering the most. While not strictly part 
of the k-means clustering technique, it is a useful step when 
the variables have meaning assigned to them. To do so, we 
use the ANOVA with post-hoc test found at the end of the 
Notebook. We find that cluster 1 contain cases with a higher 
age than cluster 3 (F(2,6) = 14.11, p < .01) and that cluster 2 is 
higher than both the other two clusters on the information 
variable (F(2,6) = 5.77, p < .05). No clusters differ significantly 
on the verbal expression and performance variables. 

1c. It is also possible to obtain the equation of the 
boundary between the clusters’ neighborhood. To do so, use 

the ‘’Finding the equation’’ section of the Notebook. The 
output obtained is shown in Table 3. 

If we read this output, we find that the equation of the 
vector that separates cluster 1 form cluster 2 is -2.28 -1.37p -
2.77i -2.33ve -.79a, where p is performance, i is information, 
ve is verbal expression and a is age. So any new cases within 
each of the boundaries could be classified as belonging to 
the corresponding centroid. 

2a. Let’s briefly present a visual example of clusters 
centers moving. To do so, we used a dataset with 2 
attributes (named xp1-xp3.dat in the Notebook). The dataset 
is very asymmetrical and as such would not be an ideal case 
to apply the algorithm on (since the distribution of the 
clusters is unlikely to be spherical), but it will show the 
moving of the clusters effectively. We chose a four clusters 
solution and used the Forgy/Lloyd algorithm with Euclidian 
distance again. 

We can see in Figure 2 that the densest area of the 
dataset has two clusters, as the algorithm tries to form 
equiprobable clusters. The data that is really high on the first 
variable belong to a cluster while the data that is really high 
on the second variable belong to a fourth cluster.  

2b. The next simulation compares the different metrics 
for the same algorithm. We used the Forgy/Lloyd algorithm 
with random starting clusters.  

     

Table 1. Data used left) non standardised right) standardised 

 

 
Table 2. Farthest cases 
 

 

 

Figure 1. Upper section) Cases assignation to clusters  
Lower section) Output from the Notebook giving the 
number of iterations, the final centroids and the cases 
belonging to each clusters 
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We can see in Figure 3 that depending on what we want 
to prioritize in the data, the different metrics can be used to 
reach different goals. The Euclidian distance prioritizes the 
minimisation of all differences within the cluster while the 
cosine similarity prioritizes the maximization of all the 
similarities. Finally, the maximum distance prioritizes the 
minimisation of the distance of the most extreme elements of 
each case within the cluster. 

3a. This example demonstrates the influence of using 
different algorithms. We used the very well-known iris 
flower dataset (Fisher, 1936). The dataset (named iris.dat in 
the Notebook) consists of 150 cases and there are three 
classes present in the data. Cases are split into equiprobable 
groups (group 1 is from cases 1 to 50, group 2 is from 51 to 
100 and group 3 is from 101 to 150). Each iris is described by 
three attributes (sepal length, sepal width and petal length). 

We chose random starting vectors from the dataset for the 
simulations centroids and used the same for all three 
algorithms:  

 .  

We also used the Euclidian metric to calculate the 
distance between cases and centroids. Table 4 summarizes 
the results. 

We can see that all algorithms make mistakes in the 
classification of the irises (as was expected from the 
characteristics of the data). For each, the greyed out cases are 
misclassified. We find that the Forgy/Lloyd algorithm is the 
one making the fewer mistakes, as indicated here by the 
Dunn and Jaccard indexes, but the graphs of Figure 4 shows 
that the best visual fit comes from the MacQueen algorithm.  

 
Table 3. Plans defining the limits of each centroid subspace 
 

Initial partition 1st iteration 2nd iteration 

   
3rd iteration 4th iteration 5th iteration 

Figure 2. Cases assignation changes during iterations 

Figure 3. Effect of metric in the Forgy/Lloyd algorithm 

Max Cosine Euclidian/Manhattan 
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Mathematica K-medoid algorithm 

Mathematica’s implementation gives the clustering of 
the cases, but not the cluster centers or the tag of the cases. It 
makes it quite confusing to actually keep track of individual 
cases. Here is the graphical solution obtained, which is very 

similar to the MacQueen solution (Figure 5). 

Conclusion 

We have shown that k-means clustering is a very simple 
and elegant way to partition datasets. Researchers from all 
fields would gain to know how to use the technique, even if 

Table 4. Summary of the results 

Technique 
(iterations) 

Cluster Cases included Dunn 
index 

Jaccard 
index 

Forgy/Lloyd 
 
(2) 

 

51, 52, 53, 55, 57, 59, 66, 71, 75, 76, 77, 78, 86, 
87, 92, 101, 103, 104, 105, 106, 108, 109, 110, 
111, 112, 113, 116, 117, 118, 119, 121, 123, 125, 
126, 128, 129, 130, 131, 132, 133, 134, 136, 137, 
138, 140, 141, 142, 144, 145, 146, 148, 149 

.042 .813 

42, 54, 56, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 
70, 72, 73, 74, 79, 80, 81, 82, 83, 84, 85, 88, 89, 
90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 102, 107, 
114, 115, 120, 122, 124, 127, 135, 139, 143, 147, 
150 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 
44, 45, 46, 47, 48, 49, 50 

MacQueen 
 
(15) 

 
54, 56, 58, 60, 61, 63, 65, 68, 69, 70, 73, 74, 76, 
77, 79, 80, 81, 82, 83, 84, 86, 88, 90, 91, 93, 94, 
95, 96, 97, 98, 99, 100, 102, 107, 109, 112, 114, 
115, 120, 127, 128, 134, 135, 143, 147 

.033 .787 

51, 52, 53, 55, 57, 59, 62, 64, 66, 67, 71, 72, 75, 
78, 85, 87, 89, 92, 101, 103, 104, 105, 106, 108, 
110, 111, 113, 116, 117, 118, 119, 121, 122, 123, 
124, 125, 126, 129, 130, 131, 132, 133, 136, 137, 
138, 139, 140, 141, 142, 144, 145, 146, 148, 149, 
150 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 
43, 44, 45, 46, 47, 48, 49, 50 

Hartigan 
 
(6) 

 

51, 52, 53, 55, 57, 59, 62, 64, 66, 71, 72, 73, 74, 
75, 76, 77, 78, 79, 84, 86, 87, 92, 98, 101, 103, 
104, 105, 106, 108, 109, 110, 111, 112, 113, 115, 
116, 117, 118, 119, 121, 123, 124, 125, 126, 127, 
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 
138, 139, 140, 141, 142, 144, 145, 146, 147, 148, 
149, 150 

.036 .72 

2, 4, 9, 10, 13, 14, 26, 31, 35, 38, 39, 42, 46, 54, 
56, 58, 60, 61, 63, 65, 67, 68, 69, 70, 80, 81, 82, 
83, 85, 88, 89, 90, 91, 93, 94, 95, 96, 97, 99, 100, 
102, 107, 114, 120, 122, 143 
1, 3, 5, 6, 7, 8, 11, 12, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 36, 37, 
40, 41, 43, 44, 45, 47, 48, 49, 50 
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it’s only for preliminary analyses. The three algorithms 
combined with the six different metrics available should 
allow tailoring the analysis based on the characteristics of 
the dataset and depending on the goals to be achieved by 
the clustering (maximizing similarities or reducing 
differences). We present in Table 5 a summary of each 
algorithm. 

As it’s not implemented in regular statistics package 
software like SPSS, we presented a Mathematica notebook 
that should allow any researcher to use the technique on 
their data easily.  
 
(References follow) 
 
 
 
 
 
 
 
 
 
 

 
 

Correct classification (Fisher) Forgy/Lloyd 

 
 

MacQueen Hartigan 

 
 

Figure 4. Final classification of different algorithms 

 

Figure 5. K-medoid clustering solution 
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Table 5: Summary of the algorithms for k-means clustering 

 

Algorithm Advantages Disadvantages 
Lloyd - For large data sets 

- Discrete data distribution 
- Optimize total sum of squares 

- Slower convergence 
-  Possible to create empty clusters 

Forgy’s - For large data sets 
- Continuous data distribution 
- Optimize total sum of squares 

- Slower convergence 
- Possible to create empty clusters 

McQueen - Fast initial convergence 
- Optimize total sum of squares 

- Need to store the two nearest-cluster 
computations for each case 
- Sensitive to the order the algorithm is applied to 
the cases 

Hartigan - Fast initial convergence 
- Optimize within-cluster sum of 
squares 

- Need to store the two nearest-cluster 
computations for each case  
- Sensitive to the order the algorithm is applied to 
the cases 


