# Simulating the binary variates for the components of a socioeconomical system

# Ştefan V. Ştefănescu<sup>1\*</sup>

<sup>1</sup>Research Institute for Quality of Life, Romanian Academy; stefanst@fmi.unibuc.ro

#### Abstract

Often in practice the components  $W_j$  of a sociological or an economical system  $\underline{W}$  take discrete 0-1 values. We talk about how to generate arbitrary observations from a binary 0-1 system  $\underline{B}$  when is known the multidimensional distribution of the discrete random vector  $\underline{B}$ . We also simulated a simplified structure of B given by the marginal distributions together with the matrix of the correlation coefficients. Different properties of the systems  $\underline{W}$  are presented too.

Keywords: binary system, marginal distribution, Monte Carlo simulation, random variates, correlation coefficient.

## 1. Introduction

A general system  $\underline{W}$  with k components  $W_1, W_2, W_3, ..., W_k$  is characterized by the features  $\lambda_j$  of every variable  $W_j$  and the intensity  $c_{ij}$  of the relation between any two components  $W_i$  and  $W_j$ ,  $1 \le i, j \le k$ . Frequently in practice the relation among the elements of the subsystem  $\{W_i, W_j\}$  is a symmetric one, that is  $c_{ij} = c_{ji}$ .

The characteristic  $\lambda_j$  of the component  $W_j$  could be just the parameters which define the marginal distribution of the random variable  $W_j$ . In the following we will choose the Pearson correlation coefficient  $Cor(W_i, W_j)$  to measure the intensity  $c_{ij}$  of the relation which is present between the components  $W_i$  and  $W_j$  of the system  $\underline{W}$ . We mention here that in the literature there are known many other indicators to measure the ratio among the elements  $W_i$  and  $W_j$  from  $\underline{W}$  ([1], [2], [6]).

Figure 1 presents some kinds of systems  $\underline{W}$ .

Many times in practice the system  $\underline{W}$  has components  $W_j$  with a normal distribution. Such a system will be designated in the subsequent by  $\underline{X}$ . For this particular case the system components  $X_j$ ,  $1 \le j \le k$ , are dependent normal random variables characterized by their means  $\mu_j$  and their dispersions  $\sigma_j^2$ . So we will take  $\lambda_j = (\mu_j, \sigma_j)$  and  $c_{ij} = Cor(X_i, X_j)$ ,  $1 \le i, j \le k$ .

Another class from the systems  $\underline{W}$  are binary 0-1 systems designated by  $\underline{B}$ . The elements  $B_1, B_2, B_3, ..., B_k$  of the system  $\underline{B}$  are binary dependent variables which take only the values 0 and 1. To make a distinction between the systems  $\underline{B}$  and  $\underline{X}$  we will use the notation  $r_{ij} = Cor(B_i, B_j)$  in the discrete case and  $c_{ij} = Cor(X_i, X_j)$  for the continuous normal marginals variant.

We mention here that the normal type system  $\underline{X}$  is completely characterized by the set of the parameters  $\mu_i, \sigma_i, c_{ij}, 1 \le i < j \le k$ , that is k(k+3)/2 values ([3]).

<sup>\*</sup> Corresponding author: stefanst@fmi.unibuc.ro

But the multidimensional distribution of an arbitrary binary system <u>B</u> has more parameters. For this reason, in opposition with the normal distributions case, we can not define a general binary 0-1 system <u>B</u> by knowing only the values  $\mu_i, \sigma_i, r_{ij}, 1 \le i < j \le k$ . More, in the discrete case of <u>B</u>, the variance  $\sigma_j^2 = Var(B_j)$  depends on the mean  $\mu_j = Mean(B_j)$ . So, knowing only the marginals and the correlation matrix of <u>B</u> we lose a lot of information which define the real multivariate discrete distribution of the system <u>B</u>. Some details concerning the behavior of a binary system <u>B</u> will be given in the next section.



**Fig. 1**. A system  $\underline{W}$  with k components

We reveal a new other aspect which is present for sociological and economical systems too. So, the individuals of a given population estimate the behaviour of each component  $W_j$  from a continuous system  $\underline{W}$  by putting subjective marks.

practice, we often approximate a continuous system  $\underline{W}$  by a binary one, like  $\underline{B}$ . In this case we must evaluate

In this approach a binary system <u>B</u> results from <u>W</u> when the marks take only 0 and 1 values. Hence, in

## 2. The binary 0-1 systems

the discretization error.

The binary random vector  $\underline{B} = (B_1, B_2, B_3, ..., B_k)$  which takes only 0 and 1 values is completely characterized by the probabilities  $p_{i_1, i_2, i_3, ..., i_k}$ ,  $i_j \in \{0, 1\}$ ,  $1 \le j \le k$ , where

$$p_{i_1,i_2,i_3,\ldots,i_k} = Pr(B_1 = i_1, B_2 = i_2, B_3 = i_3, \ldots, B_k = i_k)$$

Obviously,  $p_{i_1,i_2,i_3,...,i_k} \ge 0$  for all indices  $i_j \in \{0,1\}$  and in addition

$$\sum_{i_1=0}^{i_1=1} \sum_{i_2=0}^{i_2=1} \sum_{i_3=0}^{i_3=1} \dots \sum_{i_k=0}^{i_k=1} p_{i_1,i_2,i_3,\dots,i_k} = 1$$
(1)

To simplify our expose, for any  $i_i \in \{0, 1\}$ , we will use the notation

 $p_{i_1,\ldots,i_{j-1},+,i_{j+1},\ldots,i_k} = p_{i_1,\ldots,i_{j-1},0,i_{j+1},\ldots,i_k} + p_{i_1,\ldots,i_{j-1},1,i_{j+1},\ldots,i_k}$ 

So, the equality (1) could be also written in a shorter form as  $p_{+,+,+,\dots,+} = 1$ .

The marginal distributions of the random vector  $\underline{B}$  are defined only by the probabilities  $q_j = Pr(B_j = 1)$ ,  $1 \le j \le k$ .

Choosing, for example, the component  $B_1$  we deduce

 $Pr(B_1 = 0) = p_{0,+,+,\dots,+} = 1 - p_{1,+,+,\dots,+} = 1 - Pr(B_1 = 1) = 1 - q_1$ 

**Remark 1.** Since the distribution of the system  $\underline{B} = (B_1, B_2, B_3, ..., B_k)$  is determined by the probabilities  $p_{i_1, i_2, i_3, ..., i_k}$  with the restriction (1) we conclude that a general binary 0-1 system  $\underline{B}$  with k components is defined by  $2^k - 1$  parameters.

Now we will enumerate some properties of a binary  $\underline{B} = (B_1, B_2)$  system which has only two components.

We remind that the distribution of an arbitrary 0-1 binary vector  $\underline{B} = (B_1, B_2)$  is given by the probabilities  $p_{i,j} = Pr(B_1 = i, B_2 = j)$  where  $i, j \in \{0, 1\}$  and  $p_{+,+} = 1$ 

In this case  $q_1 = p_{1,+} = Pr(B_1 = 1)$ ,  $q_2 = p_{+,1} = Pr(B_2 = 1)$ ,  $0 \le q_1, q_2 \le 1$  and therefore

$$p_{1,0} = q_1 - p_{1,1}$$
  $p_{0,1} = q_2 - p_{1,1}$   $p_{0,0} = 1 + p_{1,1} - q_1 - q_2$ 

Hence we have the inequalities

**P2.1.** 
$$max\{0, q_1 + q_2 - 1\} \le min\{q_1, q_2\}$$

After a straightforward calculus we obtain the relations

**P2.2.** 
$$Mean(B_j) = Mean(B_j^2) = q_j, Var(B_j) = q_j(1-q_j), j \in \{0,1\}$$
$$r_{12} = Cor(B_1, B_2) = \frac{p_{1,1} - q_1 q_2}{\sqrt{q_1(1-q_1)}\sqrt{q_2(1-q_2)}}, 0 < q_1, q_2 < 1$$

*Remark 2*. This expression of the correlation coefficient  $r_{12} = Cor(B_1, B_2)$  does not depend on the concrete values of the binary random variables  $B_1$  and  $B_2$ . For example, considering  $B_1 \in \{a_1, b_1\} \neq \{0, 1\}$ ,  $B_2 \in \{a_2, b_2\} \neq \{0, 1\}$  we obtain the same value for the indicator  $r_{12}$ .

Since  $q_1 = p_{1,0} + p_{1,1}$  and  $q_2 = p_{0,1} + p_{1,1}$  we prove easily

**P2.3.** If  $p_{1,1} = q_1q_2$  then we have also the following equalities

$$p_{0,1} = (1-q_1)q_2$$
  $p_{1,0} = q_1(1-q_2)$   $p_{0,0} = (1-q_1)(1-q_2)$ 

From P2.2 and P2.3 it results

**P2.4.** The binary 0-1 random variables  $B_1, B_2$  are independent if and only if  $r_{12} = Cor(B_1, B_2) = 0$ .

**Remark 3.** The property P2.4 is not always true for an arbitrary continuous two component system  $\underline{W} = (W_1, W_2)$ .

Applying the propositions P2.1 and P2.2 we deduce the inequalities

P2.5. 
$$Cor(B_1, B_2) \ge \frac{max\{0, q_1 + q_2 - 1\} - q_1 q_2}{\sqrt{q_1(1 - q_1)}\sqrt{q_2(1 - q_2)}}, \ 0 < q_1, q_2 < 1$$

$$Cor(B_1, B_2) \le \frac{\min\{q_1, q_2\} - q_1 q_2}{\sqrt{q_1(1-q_1)}\sqrt{q_2(1-q_2)}}, \ 0 < q_1, q_2 < 1$$

The following properties are particular cases of the proposition P2.5.

**P2.6.** If  $q_1 = q_2$  then  $Cor(B_1, B_2) \le 1$ 

If 
$$q_1 = 1 - q_2$$
 then  $Cor(B_1, B_2) \ge -1$ 

Using the formulas

 $Cov(1-B_1, B_2) = -Cov(B_1, B_2), Var(1-B_1, B_2) = Var(B_1, B_2)$ 

we can prove directly the equalities

**P2.7.** 
$$Cor(1-B_1, B_2) = Cor(B_1, 1-B_2) = -Cor(B_1, B_2)$$

*Graphic 1* presents us a suggestive image of the variation for the lower and upper bounds of  $r_{12} = Cor(B_1, B_2)$  index depending on the marginal distributions indicators  $0 < q_1, q_2 < 1$ .

**Remark 4.** From the propositions P2.1-P2.7 we conclude that the discrete distribution of the system  $\underline{B} = (B_1, B_2)$  is completely determined by the indices  $0 < q_1, q_2 < 1$  which characterize the marginal distributions of  $\underline{B}$  together with the correlation coefficient  $r_{12} = Cor(B_1, B_2)$ ,  $-1 \le r_{12} \le 1$ . But the parameters  $q_1, q_2, r_{12}$  are mutually dependent (see the properties P2.1 and P2.5 or *Graphic 1*).



**Graphic 1**. The lower and upper bounds of  $r_{12} = Cor(B_1, B_2)$ 

## 3. Generate random observations from a binary system

Leisch, Weingessel and Hornik suggested in [5] the application of the general inverse method for discrete random vectors ([3], [4]) to generate arbitrary observations  $(b_1, b_2, b_3, ..., b_k)$ ,  $b_j \in \{0, 1\}$ , for the system  $\underline{B} = (B_1, B_2, B_3, ..., B_k)$ .

The following algorithm *GDRV* produces  $(b_1, b_2, b_3, ..., b_k)$  vectors,  $b_i \in \{0, 1\}$ , such that

$$Pr(B_1 = b_1, B_2 = b_2, B_3 = b_3, \dots, B_k = b_k) = p_{b_1, b_2, b_3, \dots, b_k}$$

where the probabilities  $p_{i_1,i_2,i_3,...,i_k}$ ,  $i_j \in \{0,1\}$ ,  $1 \le j \le k$ , define the binary 0-1 system <u>B</u>.

#### Algorithm GDRV (Generating Discrete Random Vectors).

Step 0. Input : the probabilities  $p_{i_1,i_2,i_3,...,i_k}$ ,  $i_j \in \{0,1\}$ ,  $1 \le j \le k$ , with  $p_{+,+,+,...,+} = 1$ .

- Step 1. Establish a one to function  $h: \{1, 2, 3, \dots, 2^k\} \rightarrow \{0, 1\}^k$
- Step 2. Compute recurrently the sums

 $s_0 = 0$ 

 $s_t = s_{t-1} + p_{h(t)}, \quad 1 \le t \le 2^k$ 

- Step 3. Generate a random variate u uniformly distributed on the interval (0,1]
- Step 4. Find the index  $1 \le t \le 2^k$  such that  $u \in (s_{t-1}, s_t]$
- Step 5. b = h(t)
- Step 6. Output : b

Details regarding the theoretical justification of the generating procedure *GDRV* can be found in the books [3] and [4].

**Remark 5.** Applying algorithm *GDRV* we generated  $n = 10^6$  random variates  $(b_1, b_2, b_3)$  from the binary system  $\underline{B} = (B_1, B_2, B_3)$  defined by *Table 1*. For this case the frequences of the categories  $(i_1, i_2, i_3)$ ,  $i_j \in \{0, 1\}$ ,  $1 \le j \le 3$ , are given in *Table 2*. The validity of the algorithm *GDRV* is proved in part since the theoretical values and the empirical estimations of the probabilities  $p_{i_1, i_2, i_3}$  are very closed ( compare the results from *Tables 1-2* ).

Table 1. The theoretical distribution of the binary 0-1 system  $\underline{B} = (B_1, B_2, B_3)$ 

| <i>P</i> 0,0,0 | P0,0,1 | <i>P</i> 0,1,0 | <i>p</i> <sub>0,1,1</sub> | <i>p</i> <sub>1,0,0</sub> | <i>p</i> <sub>1,0,1</sub> | <i>p</i> <sub>1,1,0</sub> | <i>p</i> <sub>1.1.1</sub> |
|----------------|--------|----------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| 0.050          | 0.200  | 0.100          | 0.150                     | 0.100                     | 0.050                     | 0.050                     | 0.300                     |

Table 2. The frequences for the variates  $(b_1, b_2, b_3)$  obtained after  $10^6$  simulations with algorithm GDRV

| (0, 0, 0) | (0,0,1) | (0,1,0) | (0,1,1) | (1,0,0) | (1,0,1) | (1,1,0) | (1,1,1) |
|-----------|---------|---------|---------|---------|---------|---------|---------|
| 49763     | 200067  | 99951   | 149842  | 99672   | 49832   | 50332   | 300541  |

#### 4. Systems with normal distributed components

Now we will discuss the case of a system  $\underline{X} = (X_1, X_2, X_3, ..., X_k)$  where its components  $X_j$ ,  $1 \le j \le k$ , are random variables with normal distributions.

By  $X \sim Norm(\mu, \sigma^2)$  with  $\mu \in R$ ,  $\sigma > 0$ , we understand that the random variable X is normal distributed where  $Mean(X) = \mu$  and  $Var(X) = \sigma^2$ . We denote by  $\Phi(x)$  the Laplace function, that is the cumulative distribution function for the random variable  $Z \sim Norm(0, 1)$ .

Remind some properties which will be applied in the subsequent.

**P4.1.** If  $Z \sim Norm(0,1)$  and  $X = \mu + \sigma Z$  with  $\mu \in R$ ,  $\sigma > 0$  then we have  $X \sim Norm(\mu, \sigma^2)$ .

**P4.2** (Inverse method, [3], [4]). If the random variable U is uniformly distributed on the interval [0,1] and  $Z = \Phi^{-1}(U)$  then  $Z \sim Norm(0,1)$ .

**P4.3.** For any  $\mu_i \in R$ ,  $\sigma_i > 0$ , if  $X_i \sim Norm(\mu_i, \sigma_i^2)$  and  $Y = X_1 + X_2$  then  $Y \sim Norm(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$ .

**Discretization procedure** *DP*. For any  $a \in R$ ,  $\mu \in R$ ,  $\sigma > 0$  and  $X \sim Norm(\mu, \sigma^2)$  we designate by  $B_{X,a}$  the following binary 0-1 random variable

$$B_{X,a} = \begin{cases} 0 & , & when \ X < a \\ 1 & , & when \ X \ge a \end{cases}$$

Using the procedure DP we deduce by a direct calculus

**P4.4.** For any  $X \sim Norm(\mu, \sigma^2)$  we have  $\Pr(B_{X,a} = 1) = 1 - \Phi((a - \mu)/\sigma)$ 

**P4.5.** For any  $-1 \le c \le 1$ ,  $Z_i \sim Norm(0,1)$ , the standard normal random variables  $Z_1, Z_2$  being independent, if

$$X = Z_1$$

 $Y = c Z_1 + \sqrt{1 - c^2} Z_2$ 

then  $X \sim Norm(0,1)$ ,  $Y \sim Norm(0,1)$  and more Cor(X,Y) = c.

**Remark 6.** By using a normal random variable  $X \sim Norm(\mu, \sigma^2)$  and a given bound  $a \in R$  we build a binary 0-1 random variable  $B_{X,a}$  such that

 $q = \Pr(B_{X.a} = 1) = 1 - \Phi((a - \mu) / \sigma)$ 

(see the discretization procedure *DP* and *Proposition P4.4*). When  $\mu = 0$  and  $\sigma = 1$ , the threshold  $a \in R$  determine effectively the distribution of the discrete 0-1 random variable  $B_{X,a}$ .

#### 5. A discretization process

Having a continuous normal distributed system  $\underline{X} = (X_1, X_2, X_3, ..., X_k)$  and fixing some arbitrary thresholds  $a_1, a_2, a_3, ..., a_k \in R$  we can obtain a binary 0-1 system  $\underline{B} = (B_1, B_2, B_3, ..., B_k)$  with  $B_j = B_{X_j, a_j}$ ,  $1 \le j \le k$  (apply the procedure *DP*).

More, when  $X_j \sim Norm(0,1), 1 \le j \le k$ , then  $q_j = \Pr(B_j = 1) = 1 - \Phi(a_j)$ .

Obviously, in this last case, the correlation indicators  $r_{ij} = Cor(B_i, B_j)$  and  $c_{ij} = Cor(X_i, X_j)$ ,  $1 \le i, j \le k$ , have not equal values. More precisely, a correlation coefficient  $r_{ij}$  depends on the quantities  $c_{ij}, q_i, q_j$ . The effective relation between  $r_{ij}$  and  $c_{ij}$  indices will be established in the subsequent by applying a stochastic Monte Carlo simulation.

**Remark 7.** For an arbitrary  $-1 \le c \le 1$ , propositions *P4.2* and *P4.5* permit us to generate two dependent standard normal random variables *X*, *Y* having just the Pearson correlation coefficient Cor(X,Y) = c. We can apply *Proposition P4.2* ( the inverse method, [3], [4] ) to generate independent  $Z_i \sim Norm(0, 1)$  random variables which are used by *Proposition P4.5*.

Now, keeping all the previous notations, we will suggest a Monte Carlo procedure *MCRCC* to establish the real ratios between he correlation coefficients  $c_{ij} = Cor(X_i, X_j)$  and  $r_{ij} = Cor(B_i, B_j)$ .

Procedure MCRCC.

Step 1. We generate random variates of volume *n* for a bidimensional random vector  $(X_1, X_2)$  with standard normal dependent marginals and  $c_{12} = Cor(X_1, X_2), -1 \le c_{12} \le 1$  (more details in *Remark* 7).

Step 2. Knowing the marginal probabilities  $-1 \le q_1, q_2 \le 1$ , we specify the discretization thresholds, that is  $a_1 = \Phi^{-1}(1-q_1)$ ,  $a_2 = \Phi^{-1}(1-q_2)$ .

*Step 3.* We obtain 0-1 binary samples  $(b_1, b_2)$  from the random vector  $\underline{B} = (B_i, B_j)$  considering the discretization procedure  $B_1 = B_{X_1, a_1}$ ,  $B_2 = B_{X_2, a_2}$  (algorithm *DP*).

Step 4. Using the samples resulted for  $\underline{B} = (B_i, B_j)$  we estimate the correlation coefficient  $r_{12} = Cor(B_1, B_2)$ .

The correlation values  $r_{12}$  from *Tables 3-5* were deduced by running the Monte Carlo algorithm *MCRCC* for samples having the volume  $n = 10^7$ .

| <i>c</i> <sub>12</sub> | -0.999  | -0.9    | -0.8    | -0.7    | -0.6    | -0.5    | -0.4    |
|------------------------|---------|---------|---------|---------|---------|---------|---------|
| $r_{12}$               | -0.9714 | -0.7129 | -0.5906 | -0.4938 | -0.4099 | -0.3335 | -0.2621 |
| <i>c</i> <sub>12</sub> | -0.3    | -0.2    | -0.1    | 0       | 0.1     | 0.2     | 0.3     |
| $r_{12}$               | -0.1940 | -0.1282 | -0.0637 | 0.0001  | 0.0638  | 0.1284  | 0.1943  |
| <i>c</i> <sub>12</sub> | 0.4     | 0.5     | 0.6     | 0.7     | 0.8     | 0.9     | 0.999   |
| $r_{12}$               | 0.2622  | 0.3333  | 0.4096  | 0.4937  | 0.5904  | 0.7129  | 0.9714  |

**Table 3.**  $q_1 = q_2 = 0.5$ ,  $n = 10^7$  Monte Carlo simulations with MCRCC

**Table 4.**  $q_1 = 0.4$ ,  $q_2 = 0.6$ ,  $n = 10^7$  simulations with MCRCC

| <i>c</i> <sub>12</sub> | -0.999  | -0.9    | -0.8    | -0.7    | -0.6    | -0.5    | -0.4    |
|------------------------|---------|---------|---------|---------|---------|---------|---------|
| $\eta_2$               | -0.9713 | -0.7106 | -0.5872 | -0.4902 | -0.4060 | -0.3298 | -0.2588 |
| $c_{12}$               | -0.3    | -0.2    | -0.1    | 0       | 0.1     | 0.2     | 0.3     |
| $\eta_2$               | -0.1912 | -0.1261 | -0.0628 | -0.0004 | 0.0616  | 0.1240  | 0.1869  |
| <i>c</i> <sub>12</sub> | 0.4     | 0.5     | 0.6     | 0.7     | 0.8     | 0.9     | 0.999   |
| $r_{12}$               | 0.2512  | 0.3173  | 0.3861  | 0.4589  | 0.5364  | 0.6181  | 0.6667  |

| $c_{12}$ | -0.999  | -0.9    | -0.8    | -0.7    | -0.6    | -0.5    | -0.4    |
|----------|---------|---------|---------|---------|---------|---------|---------|
| $r_{12}$ | -0.6546 | -0.6091 | -0.5293 | -0.4529 | -0.3809 | -0.3125 | -0.2472 |
| $c_{12}$ | -0.3    | -0.2    | -0.1    | 0       | 0.1     | 0.2     | 0.3     |
| $r_{12}$ | -0.1838 | -0.1219 | -0.0608 | -0.0002 | 0.0605  | 0.1214  | 0.1834  |
| $c_{12}$ | 0.4     | 0.5     | 0.6     | 0.7     | 0.8     | 0.9     | 0.999   |
| $r_{12}$ | 0.2469  | 0.3124  | 0.3808  | 0.4530  | 0.5297  | 0.6091  | 0.6546  |

**Table 5.**  $q_1 = 0.5, q_2 = 0.7$ ,  $n = 10^7$  simulations with MCRCC

**Remark 8.** The differences between the correlation values  $r_{12} = Cor(B_1, B_2)$  and  $c_{12} = Cor(X_1, X_2)$  are sometimes considerable. *Graphic 2* gives us a suggestive illustration of this aspect ( compare the differences between the continuous and dotted curves ).



**Graphic 2.** The ratio between the correlation indices  $r_{12}$  and  $c_{12}$ 

**Remark 9.** We can use successively *Proposition P4.5* and the discretization procedure *DP* to simulate directly samples from a tree type binary systems. See, for example, the one level tree system depicted in *Figure 1, case 1.3.* 

## 6. Concluding remarks

We discussed two algorithms to generate random variates for a binary system  $\underline{B} = (B_1, B_2, B_3, ..., B_k)$  with *k* components.

The algorithm *GDRV* uses as inputs all the probabilities  $p_{i_1,i_2,i_3,...,i_k}$ ,  $i_j \in \{0,1\}$ ,  $1 \le j \le k$ , which characterize the binary system <u>B</u>. It is not so easy to apply practically the procedure *GDRV* for systems <u>B</u> which have a lot of components. In this case the quantity  $2^k - 1$  of the input data for *GDRV* algorithm becomes extremely large.

For this reason is suggested a new other algorithm based on the discretization procedure *DP* to obtain arbitrary observations from <u>B</u>. This procedure simulate better the real aspects. The correlation structure of a continuous system <u>X</u> is inherited by the binary system <u>B</u> resulted after a discretization process. The relation between the correlation coefficients  $c_{12} = Cor(X_1, X_2)$  and  $r_{12} = Cor(B_1, B_2)$  can be determined by applying *MCRCC* algorithm (see also *Graphic 2*).

# References

- [1] Agresti, A., *An introduction to categorical data analysis*, John Wiley and Sons, New York, 1996.
- [2] Andersen, E.B., Introduction to the statistical analysis of categorical data, Springer, New York, 1997.
- [3] Devroye, L., Non-uniform random variate generation, Springer-Verlag, New York, 1986.
- [4] James E. Gentle, J.E., *Random number generation and Monte Carlo methods*, Springer Statistics and Computing, New York, (second edition), 2003.
- [5] Leisch, F., Weingessel, A., Hornik, K., "On the generation of correlated artificial binary data", Adaptive Information Systems and Modelling in Economics and Management Science, Working Paper Series SFD, no. 13, Vienna University of Economics, 1998.
- [6] Wasserman, S., Faust, K., Social network analysis: Methods and applications, Cambridge University Press, New York, 1998.