Simulating the binary variates for the components of a socioeconomical system

Ştefan V. Ştefănescu ${ }^{1 *}$
${ }^{1}$ Research Institute for Quality of Life, Romanian Academy; stefanst@fmi.unibuc.ro

Abstract

Often in practice the components $W j$ of a sociological or an economical system \underline{W} take discrete $0-1$ values. We talk about how to generate arbitrary observations from a binary $0-1$ system \underline{B} when is known the multidimensional distribution of the discrete random vector \underline{B}. We also simulated a simplified structure of B given by the marginal distributions together with the matrix of the correlation coefficients. Different properties of the systems \underline{W} are presented too.

Keywords: binary system, marginal distribution, Monte Carlo simulation, random variates, correlation coefficient.

1. Introduction

A general system \underline{W} with k components $W_{1}, W_{2}, W_{3}, \ldots, W_{k}$ is characterized by the features λ_{j} of every variable W_{j} and the intensity $c_{i j}$ of the relation between any two components W_{i} and $W_{j}, 1 \leq i, j \leq k$. Frequently in practice the relation among the elements of the subsystem $\left\{W_{i}, W_{j}\right\}$ is a symmetric one, that is $c_{i j}=c_{j i}$.

The characteristic λ_{j} of the component W_{j} could be just the parameters which define the marginal distribution of the random variable W_{j}. In the following we will choose the Pearson correlation coefficient $\operatorname{Cor}\left(W_{i}, W_{j}\right)$ to measure the intensity $c_{i j}$ of the relation which is present between the components W_{i} and W_{j} of the system \underline{W}. We mention here that in the literature there are known many other indicators to measure the ratio among the elements W_{i} and W_{j} from \underline{W} ([1], [2], [6]).

Figure 1 presents some kinds of systems \underline{W}.
Many times in practice the system \underline{W} has components W_{j} with a normal distribution. Such a system will be designated in the subsequent by \underline{X}. For this particular case the system components $X_{j}, 1 \leq j \leq k$, are dependent normal random variables characterized by their means μ_{j} and their dispersions σ_{j}^{2}. So we will take $\lambda_{j}=\left(\mu_{j}, \sigma_{j}\right)$ and $c_{i j}=\operatorname{Cor}\left(X_{i}, X_{j}\right), 1 \leq i, j \leq k$.

Another class from the systems \underline{W} are binary $0-1$ systems designated by \underline{B}. The elements $B_{1}, B_{2}, B_{3}, \ldots, B_{k}$ of the system \underline{B} are binary dependent variables which take only the values 0 and 1 . To make a distinction between the systems \underline{B} and \underline{X} we will use the notation $r_{i j}=\operatorname{Cor}\left(B_{i}, B_{j}\right)$ in the discrete case and $c_{i j}=\operatorname{Cor}\left(X_{i}, X_{j}\right)$ for the continuous normal marginals variant.

We mention here that the normal type system \underline{X} is completely characterized by the set of the parameters $\mu_{i}, \sigma_{i}, c_{i j}, 1 \leq i<j \leq k$, that is $k(k+3) / 2$ values ([3]).

[^0]But the multidimensional distribution of an arbitrary binary system \underline{B} has more parameters. For this reason, in opposition with the normal distributions case, we can not define a general binary $0-1$ system \underline{B} by knowing only the values $\mu_{i}, \sigma_{i}, r_{i j}, 1 \leq i<j \leq k$. More, in the discrete case of \underline{B}, the variance $\sigma_{j}^{2}=\operatorname{Var}\left(B_{j}\right)$ depends on the mean $\mu_{j}=\operatorname{Mean}\left(B_{j}\right)$. So, knowing only the marginals and the correlation matrix of \underline{B} we lose a lot of information which define the real multivariate discrete distribution of the system \underline{B}. Some details concerning the behavior of a binary system \underline{B} will be given in the next section.

Fig. 1. A system \underline{W} with k components
We reveal a new other aspect which is present for sociological and economical systems too. So, the individuals of a given population estimate the behaviour of each component W_{j} from a continuous system \underline{W} by putting subjective marks.

In this approach a binary system \underline{B} results from \underline{W} when the marks take only 0 and 1 values. Hence, in practice, we often approximate a continuous system \underline{W} by a binary one, like \underline{B}. In this case we must evaluate the discretization error.

2. The binary $\mathbf{0 - 1}$ systems

The binary random vector $\underline{B}=\left(B_{1}, B_{2}, B_{3}, \ldots, B_{k}\right)$ which takes only 0 and 1 values is completely characterized by the probabilities $p_{i_{1}, i_{2}, i_{3}, \ldots, i_{k}}, i_{j} \in\{0,1\}, 1 \leq j \leq k$, where

$$
p_{i_{1}, i_{2}, i_{3}, \ldots, i_{k}}=\operatorname{Pr}\left(B_{1}=i_{1}, B_{2}=i_{2}, B_{3}=i_{3}, \ldots, B_{k}=i_{k}\right)
$$

Obviously, $p_{i_{1}, i_{2}, i_{3}, \ldots, i_{k}} \geq 0$ for all indices $i_{j} \in\{0,1\}$ and in addition

$$
\begin{equation*}
\sum_{i_{1}=0}^{i_{1}=1} \sum_{i_{2}=0}^{i_{2}=1} \sum_{i_{3}=0}^{i_{3}=1} \ldots \sum_{i_{k}=0}^{i_{k}=1} p_{i_{1}, i_{2}, i_{3}, \ldots, i_{k}}=1 \tag{1}
\end{equation*}
$$

To simplify our expose, for any $i_{j} \in\{0,1\}$, we will use the notation

```
\(p_{i_{1}, \ldots, i_{j-1},+, i_{j+1}, \ldots, i_{k}}=p_{i_{1}, \ldots, i_{j-1}, 0, i_{j+1}, \ldots, i_{k}}+p_{i_{1}, \ldots, i_{j-1}, 1, i_{j+1}, \ldots, i_{k}}\)
```

So, the equality (1) could be also written in a shorter form as $p_{+,+,+, \ldots,+}=1$.
The marginal distributions of the random vector \underline{B} are defined only by the probabilities $q_{j}=\operatorname{Pr}\left(B_{j}=1\right)$, $1 \leq j \leq k$.

Choosing, for example, the component B_{1} we deduce

$$
\operatorname{Pr}\left(B_{1}=0\right)=p_{0,+,+, \ldots,+}=1-p_{1,+,+, \ldots,+}=1-\operatorname{Pr}\left(B_{1}=1\right)=1-q_{1}
$$

Remark 1. Since the distribution of the system $\underline{B}=\left(B_{1}, B_{2}, B_{3}, \ldots, B_{k}\right)$ is determined by the probabilities $p_{i_{1}, i_{2}, i_{3}, \ldots, i_{k}}$ with the restriction (1) we conclude that a general binary $0-1$ system \underline{B} with k components is defined by $2^{k}-1$ parameters.

Now we will enumerate some properties of a binary $\underline{B}=\left(B_{1}, B_{2}\right)$ system which has only two components.
We remind that the distribution of an arbitrary 0-1 binary vector $\underline{B}=\left(B_{1}, B_{2}\right)$ is given by the probabilities $p_{i, j}=\operatorname{Pr}\left(B_{1}=i, B_{2}=j\right)$ where $i, j \in\{0,1\}$ and $p_{+,+}=1$

In this case $q_{1}=p_{1,+}=\operatorname{Pr}\left(B_{1}=1\right), q_{2}=p_{+, 1}=\operatorname{Pr}\left(B_{2}=1\right), 0 \leq q_{1}, q_{2} \leq 1$ and therefore

$$
p_{1,0}=q_{1}-p_{1,1}, \quad p_{0,1}=q_{2}-p_{1,1}, \quad p_{0,0}=1+p_{1,1}-q_{1}-q_{2}
$$

Hence we have the inequalities
P2.1. $\max \left\{0, q_{1}+q_{2}-1\right\} \leq \min \left\{q_{1}, q_{2}\right\}$
After a straightforward calculus we obtain the relations
P2.2. $\operatorname{Mean}\left(B_{j}\right)=\operatorname{Mean}\left(B_{j}^{2}\right)=q_{j}, \operatorname{Var}\left(B_{j}\right)=q_{j}\left(1-q_{j}\right), j \in\{0,1\}$

$$
r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right)=\frac{p_{1,1}-q_{1} q_{2}}{\sqrt{q_{1}\left(1-q_{1}\right)} \sqrt{q_{2}\left(1-q_{2}\right)}}, 0<q_{1}, q_{2}<1
$$

Remark 2. This expression of the correlation coefficient $r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right)$ does not depend on the concrete values of the binary random variables B_{1} and B_{2}. For example, considering $B_{1} \in\left\{a_{1}, b_{1}\right\} \neq\{0,1\}$, $B_{2} \in\left\{a_{2}, b_{2}\right\} \neq\{0,1\}$ we obtain the same value for the indicator r_{12}.

Since $q_{1}=p_{1,0}+p_{1,1}$ and $q_{2}=p_{0,1}+p_{1,1}$ we prove easily
P2.3. If $p_{1,1}=q_{1} q_{2}$ then we have also the following equalities
$p_{0,1}=\left(1-q_{1}\right) q_{2}, p_{1,0}=q_{1}\left(1-q_{2}\right), \quad p_{0,0}=\left(1-q_{1}\right)\left(1-q_{2}\right)$
From P2.2 and P2.3 it results
P2.4. The binary 0-1 random variables B_{1}, B_{2} are independent if and only if $r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right)=0$.
Remark 3. The property P2.4 is not always true for an arbitrary continuous two component system $\underline{W}=\left(W_{1}, W_{2}\right)$.

Applying the propositions P2.1 and P2.2 we deduce the inequalities
P2.5. $\operatorname{Cor}\left(B_{1}, B_{2}\right) \geq \frac{\max \left\{0, q_{1}+q_{2}-1\right\}-q_{1} q_{2}}{\sqrt{q_{1}\left(1-q_{1}\right)} \sqrt{q_{2}\left(1-q_{2}\right)}}, 0<q_{1}, q_{2}<1$
$\operatorname{Cor}\left(B_{1}, B_{2}\right) \leq \frac{\min \left\{q_{1}, q_{2}\right\}-q_{1} q_{2}}{\sqrt{q_{1}\left(1-q_{1}\right)} \sqrt{q_{2}\left(1-q_{2}\right)}}, 0<q_{1}, q_{2}<1$
The following properties are particular cases of the proposition P2.5.
P2.6. If $q_{1}=q_{2}$ then $\operatorname{Cor}\left(B_{1}, B_{2}\right) \leq 1$

$$
\text { If } q_{1}=1-q_{2} \text { then } \operatorname{Cor}\left(B_{1}, B_{2}\right) \geq-1
$$

Using the formulas

$$
\operatorname{Cov}\left(1-B_{1}, B_{2}\right)=-\operatorname{Cov}\left(B_{1}, B_{2}\right), \operatorname{Var}\left(1-B_{1}, B_{2}\right)=\operatorname{Var}\left(B_{1}, B_{2}\right)
$$

we can prove directly the equalities
P2.7. $\operatorname{Cor}\left(1-B_{1}, B_{2}\right)=\operatorname{Cor}\left(B_{1}, 1-B_{2}\right)=-\operatorname{Cor}\left(B_{1}, B_{2}\right)$
Graphic 1 presents us a suggestive image of the variation for the lower and upper bounds of $r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right)$ index depending on the marginal distributions indicators $0<q_{1}, q_{2}<1$.

Remark 4. From the propositions P2.1-P2.7 we conclude that the discrete distribution of the system $\underline{B}=\left(B_{1}, B_{2}\right)$ is completely determined by the indices $0<q_{1}, q_{2}<1$ which characterize the marginal distributions of \underline{B} together with the correlation coefficient $r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right),-1 \leq r_{12} \leq 1$. But the parameters q_{1}, q_{2}, r_{12} are mutually dependent (see the properties P2.1 and P2.5 or Graphic 1).

Graphic 1. The lower and upper bounds of $r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right)$

3. Generate random observations from a binary system

Leisch, Weingessel and Hornik suggested in [5] the application of the general inverse method for discrete random vectors ([3], [4]) to generate arbitrary observations ($b_{1}, b_{2}, b_{3}, \ldots, b_{k}$), $b_{j} \in\{0,1\}$, for the system $\underline{B}=\left(B_{1}, B_{2}, B_{3}, \ldots, B_{k}\right)$.

The following algorithm $G D R V$ produces ($b_{1}, b_{2}, b_{3}, \ldots, b_{k}$) vectors, $b_{j} \in\{0,1\}$, such that
$\operatorname{Pr}\left(B_{1}=b_{1}, B_{2}=b_{2}, B_{3}=b_{3}, \ldots, B_{k}=b_{k}\right)=p_{b_{1}, b_{2}, b_{3}, \ldots, b_{k}}$
where the probabilities $p_{i_{1}, i_{2}, i_{3}}, \ldots, i_{k}, i_{j} \in\{0,1\}, 1 \leq j \leq k$, define the binary $0-1$ system \underline{B}.

Algorithm GDRV (Generating Discrete Random Vectors).
Step 0. Input : the probabilities $p_{i_{1}, i_{2}, i_{3}, \ldots, i_{k}}, i_{j} \in\{0,1\}, 1 \leq j \leq k$, with $p_{+,+,+, \ldots,+}=1$.
Step 1. Establish a one to function $h:\left\{1,2,3, \ldots, 2^{k}\right\} \rightarrow\{0,1\}^{k}$
Step 2. Compute recurrently the sums
$s_{0}=0$
$s_{t}=s_{t-1}+p_{h(t)}, \quad 1 \leq t \leq 2^{k}$
Step 3. Generate a random variate u uniformly distributed on the interval $(0,1]$
Step 4. Find the index $1 \leq t \leq 2^{k}$ such that $u \in\left(s_{t-1}, s_{t}\right]$
Step 5. $b=h(t)$
Step 6. Output : b

Details regarding the theoretical justification of the generating procedure $G D R V$ can be found in the books [3] and [4].

Remark 5. Applying algorithm $G D R V$ we generated $n=10^{6}$ random variates (b_{1}, b_{2}, b_{3}) from the binary system $\underline{B}=\left(B_{1}, B_{2}, B_{3}\right)$ defined by Table 1 . For this case the frequences of the categories (i_{1}, i_{2}, i_{3}), $i_{j} \in\{0,1\}$, $1 \leq j \leq 3$, are given in Table 2. The validity of the algorithm $G D R V$ is proved in part since the theoretical values and the empirical estimations of the probabilities $p_{i_{1}, i_{2}, i_{3}}$ are very closed (compare the results from Tables 1-2).

Table 1. The theoretical distribution of the binary 0-1 system $\underline{B}=\left(B_{1}, B_{2}, B_{3}\right)$

$p_{0,0,0}$	$p_{0,0,1}$	$p_{0,1,0}$	$p_{0,1,1}$	$p_{1,0,0}$	$p_{1,0,1}$	$p_{1,1,0}$	$p_{1.1 .1}$
0.050	0.200	0.100	0.150	0.100	0.050	0.050	0.300

Table 2. The frequences for the variates $\left(b_{1}, b_{2}, b_{3}\right)$ obtained after 10^{6} simulations with algorithm GDRV

$(0,0,0)$	$(0,0,1)$	$(0,1,0)$	$(0,1,1)$	$(1,0,0)$	$(1,0,1)$	$(1,1,0)$	$(1,1,1)$
49763	200067	99951	149842	99672	49832	50332	300541

4. Systems with normal distributed components

Now we will discuss the case of a system $\underline{X}=\left(X_{1}, X_{2}, X_{3}, \ldots, X_{k}\right)$ where its components $X_{j}, 1 \leq j \leq k$, are random variables with normal distributions.

By $X \sim \operatorname{Norm}\left(\mu, \sigma^{2}\right)$ with $\mu \in R, \sigma>0$, we understand that the random variable X is normal distributed where $\operatorname{Mean}(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$. We denote by $\Phi(x)$ the Laplace function, that is the cumulative distribution function for the random variable $Z \sim \operatorname{Norm}(0,1)$.

Remind some properties which will be applied in the subsequent.
P4.1. If $Z \sim \operatorname{Norm}(0,1)$ and ${ }^{X=\mu+\sigma Z}$ with $\mu \in R, \sigma>0$ then we have $X \sim \operatorname{Norm}\left(\mu, \sigma^{2}\right)$.
P4.2 (Inverse method, [3], [4]). If the random variable U is uniformly distributed on the interval [0,1] and $Z=\Phi^{-1}(U)$ then $Z \sim \operatorname{Norm}(0,1)$.

P4.3. For any $\mu_{i} \in R, \sigma_{i}>0$, if $X_{i} \sim \operatorname{Norm}\left(\mu_{i}, \sigma_{i}^{2}\right)$ and $Y=X_{1}+X_{2}$ then $Y \sim \operatorname{Norm}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
Discretization procedure DP. For any $a \in R, \mu \in R, \sigma>0$ and $X \sim \operatorname{Norm}\left(\mu, \sigma^{2}\right)$ we designate by $B_{X, a}$ the following binary 0-1 random variable

$$
B_{X, a}= \begin{cases}0, & \text { when } X<a \\ 1, & \text { when } X \geq a\end{cases}
$$

Using the procedure $D P$ we deduce by a direct calculus
P4.4. For any $X \sim \operatorname{Norm}\left(\mu, \sigma^{2}\right)$ we have $\operatorname{Pr}\left(B_{X . a}=1\right)=1-\Phi((a-\mu) / \sigma)$
P4.5. For any $-1 \leq c \leq 1, Z_{i} \sim \operatorname{Norm}(0,1)$, the standard normal random variables Z_{1}, Z_{2} being independent, if

$$
\begin{aligned}
& X=Z_{1} \\
& Y=c Z_{1}+\sqrt{1-c^{2}} Z_{2} \\
& \text { then } X \sim \operatorname{Norm}(0,1), Y \sim \operatorname{Norm}(0,1) \text { and more } \operatorname{Cor}(X, Y)=c .
\end{aligned}
$$

Remark 6. By using a normal random variable $X \sim \operatorname{Norm}\left(\mu, \sigma^{2}\right)$ and a given bound $a \in R$ we build a binary 0-1 random variable $B_{X, a}$ such that

$$
q=\operatorname{Pr}\left(B_{X . a}=1\right)=1-\Phi((a-\mu) / \sigma)
$$

(see the discretization procedure DP and Proposition P4.4). When $\mu=0$ and $\sigma=1$, the threshold $a \in R$ determine effectively the distribution of the discrete 0-1 random variable $B_{X, a}$.

5. A discretization process

Having a continuous normal distributed system $\underline{X}=\left(X_{1}, X_{2}, X_{3}, \ldots, X_{k}\right)$ and fixing some arbitrary thresholds $a_{1}, a_{2}, a_{3}, \ldots, a_{k} \in R$ we can obtain a binary $0-1$ system $\underline{B}=\left(B_{1}, B_{2}, B_{3}, \ldots, B_{k}\right)$ with $B_{j}=B_{X_{j}}, a_{j}$, $1 \leq j \leq k$ (apply the procedure $D P$).

More, when $X_{j} \sim \operatorname{Norm}(0,1), 1 \leq j \leq k$, then $q_{j}=\operatorname{Pr}\left(B_{j}=1\right)=1-\Phi\left(a_{j}\right)$.

Obviously, in this last case, the correlation indicators $r_{i j}=\operatorname{Cor}\left(B_{i}, B_{j}\right)$ and $c_{i j}=\operatorname{Cor}\left(X_{i}, X_{j}\right), 1 \leq i, j \leq k$, have not equal values. More precisely, a correlation coefficient $r_{i j}$ depends on the quantities $c_{i j}, q_{i}, q_{j}$. The effective relation between $r_{i j}$ and $c_{i j}$ indices will be established in the subsequent by applying a stochastic Monte Carlo simulation.

Remark 7. For an arbitrary $-1 \leq c \leq 1$, propositions $P 4.2$ and $P 4.5$ permit us to generate two dependent standard normal random variables X, Y having just the Pearson correlation coefficient $\operatorname{Cor}(X, Y)=c$. We can apply Proposition P4.2 (the inverse method, [3], [4]) to generate independent $Z_{i} \sim \operatorname{Norm}(0,1)$ random variables which are used by Proposition P4.5.

Now, keeping all the previous notations, we will suggest a Monte Carlo procedure MCRCC to establish the real ratios between he correlation coefficients $c_{i j}=\operatorname{Cor}\left(X_{i}, X_{j}\right)$ and $r_{i j}=\operatorname{Cor}\left(B_{i}, B_{j}\right)$.

Procedure MCRCC.
Step 1. We generate random variates of volume n for a bidimensional random vector (X_{1}, X_{2}) with standard normal dependent marginals and $c_{12}=\operatorname{Cor}\left(X_{1}, X_{2}\right),-1 \leq c_{12} \leq 1$ (more details in Remark 7).

Step 2. Knowing the marginal probabilities $-1 \leq q_{1}, q_{2} \leq 1$, we specify the discretization thresholds, that is $a_{1}=\Phi^{-1}\left(1-q_{1}\right), a_{2}=\Phi^{-1}\left(1-q_{2}\right)$.

Step 3. We obtain $0-1$ binary samples $\left(b_{1}, b_{2}\right)$ from the random vector $\underline{B}=\left(B_{i}, B_{j}\right)$ considering the discretization procedure $B_{1}=B_{X_{1}, a_{1}}, B_{2}=B_{X_{2}, a_{2}}$ (algorithm $\left.D P\right)$.

Step 4. Using the samples resulted for $\underline{B}=\left(B_{i}, B_{j}\right)$ we estimate the correlation coefficient $r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right)$.

The correlation values r_{12} from Tables 3-5 were deduced by running the Monte Carlo algorithm MCRCC for samples having the volume $n=10^{7}$.

Table 3. $q_{1}=q_{2}=0.5, n=10^{7}$ Monte Carlo simulations with MCRCC

c_{12}	-0.999	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4
r_{12}	-0.9714	-0.7129	-0.5906	-0.4938	-0.4099	-0.3335	-0.2621
c_{12}	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
r_{12}	-0.1940	-0.1282	-0.0637	0.0001	0.0638	0.1284	0.1943
c_{12}	0.4	0.5	0.6	0.7	0.8	0.9	0.999
r_{12}	0.2622	0.3333	0.4096	0.4937	0.5904	0.7129	0.9714

Table 4. $q_{1}=0.4, q_{2}=0.6, n=10^{7}$ simulations with MCRCC

c_{12}	-0.999	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4
r_{12}	-0.9713	-0.7106	-0.5872	-0.4902	-0.4060	-0.3298	-0.2588
c_{12}	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
r_{12}	-0.1912	-0.1261	-0.0628	-0.0004	0.0616	0.1240	0.1869
c_{12}	0.4	0.5	0.6	0.7	0.8	0.9	0.999
r_{12}	0.2512	0.3173	0.3861	0.4589	0.5364	0.6181	0.6667

Table 5. $q_{1}=0.5, q_{2}=0.7, n=10^{7}$ simulations with MCRCC

c_{12}	-0.999	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4
r_{12}	-0.6546	-0.6091	-0.5293	-0.4529	-0.3809	-0.3125	-0.2472
c_{12}	-0.3	-0.2	-0.1	0	0.1	0.2	0.3
r_{12}	-0.1838	-0.1219	-0.0608	-0.0002	0.0605	0.1214	0.1834
c_{12}	0.4	0.5	0.6	0.7	0.8	0.9	0.999
r_{12}	0.2469	0.3124	0.3808	0.4530	0.5297	0.6091	0.6546

Remark 8. The differences between the correlation values $r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right)$ and $c_{12}=\operatorname{Cor}\left(X_{1}, X_{2}\right)$ are sometimes considerable. Graphic 2 gives us a suggestive illustration of this aspect (compare the differences between the continuous and dotted curves).

Graphic 2. The ratio between the correlation indices r_{12} and c_{12}
Remark 9. We can use successively Proposition P4.5 and the discretization procedure $D P$ to simulate directly samples from a tree type binary systems. See, for example, the one level tree system depicted in Figure 1, case 1.3.

6. Concluding remarks

We discussed two algorithms to generate random variates for a binary system $\underline{B}=\left(B_{1}, B_{2}, B_{3}, \ldots, B_{k}\right)$ with k components.

The algorithm GDRV uses as inputs all the probabilities $p_{i_{1}, i_{2}, i_{3}, \ldots, i_{k}}, i_{j} \in\{0,1\}, 1 \leq j \leq k$, which characterize the binary system \underline{B}. It is not so easy to apply practically the procedure $G D R V$ for systems \underline{B} which have a lot of components. In this case the quantity $2^{k}-1$ of the input data for $G D R V$ algorithm becomes extremely large.

For this reason is suggested a new other algorithm based on the discretization procedure $D P$ to obtain arbitrary observations from \underline{B}. This procedure simulate better the real aspects. The correlation structure of a continuous system \underline{X} is inherited by the binary system \underline{B} resulted after a discretization process. The relation between the correlation coefficients $c_{12}=\operatorname{Cor}\left(X_{1}, X_{2}\right)$ and $r_{12}=\operatorname{Cor}\left(B_{1}, B_{2}\right)$ can be determined by applying MCRCC algorithm (see also Graphic 2).

References

[1] Agresti, A., An introduction to categorical data analysis, John Wiley and Sons, New York, 1996.
[2] Andersen, E.B., Introduction to the statistical analysis of categorical data, Springer, New York, 1997.
[3] Devroye, L., Non-uniform random variate generation, Springer-Verlag, New York, 1986.
[4] James E. Gentle, J.E., Random number generation and Monte Carlo methods, Springer - Statistics and Computing, New York, (second edition), 2003.
[5] Leisch, F., Weingessel, A., Hornik, K., "On the generation of correlated artificial binary data", Adaptive Information Systems and Modelling in Economics and Management Science, Working Paper Series SFD, no. 13, Vienna University of Economics, 1998.
[6] Wasserman, S., Faust, K., Social network analysis: Methods and applications, Cambridge University Press, New York, 1998.

[^0]: * Corresponding author: stefanst@fmi.unibuc.ro

