
Opuscula Mathematica • Vol. 27 • No. 2 • 2007

Volodymyr Denysenko

TRANSMISSION PROBLEMS
FOR THE HELMHOLTZ EQUATION

FOR A RECTILINEAR-CIRCULAR LUNE

Abstract. The question related to the construction of the solution of plane transmission
problem for the Helmholtz equation in a rectilinear-circular lune is considered. An approach
is proposed based on the method of partial domains and the principle of reflection for the
solutions of the Helmholtz equation through the segment.

Keywords: Helmholtz equation, transmission problem, infinite system of linear algebraic
equations.

Mathematics Subject Classification: Primary 65N38; Secondary 35J25.

1. INTRODUCTION

It is well known that numerous acoustic situations may be analysed with use of models
that lead to the solution of boundary-value problems for the Helmholtz equation (see,
e.g., [1]). The method of partial domains is extensively and successfully employed in
the investigation of various problems involving the emission and diffraction of acoustic
waves [1, 2]. In [3] a new approach was suggested for the construction of solutions of
various external and internal boundary-value problems for the Helmholtz equation in
domains whose boundaries consisted of rectilinear segments and arcs of circles. This
approach utilizes general ideas of the method of partial domains combined with the
classical principle of reflection through straight-line segments for the solution of the
Helmholtz equation. Note that the state of the problem of extension of wave fields,
including applied aspects pertaining to external problems of diffraction is surveyed
in [4]. In the present article the possibility of employing the principle of reflection
for the construction of the solution of plane transmission problem for the Helmholtz
equation [5] in a rectilinear-circular lune is analyzed. Problems of this were not
considered in [3].
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2. TRANSMISSION PROBLEM FOR THE HELMHOLTZ EQUATION

It is known (see [5], Ch. 3), that mathematical formulation of the transmission
problem of acoustic waves on the domain Ω with different acoustics properties in Ω
and D = R2 \ Ω leads to the following conjugate problem: find two functions u and
v which satisfy the Helmholtz equations

∆ u(x, y) + k2u0(x, y) = 0, (x, y) ∈ Ω, (1)

∆ v(x, y) + k2
1v (x, y) = 0, (x, y) ∈ D, (2)

and conjugate conditions

µu− v = f, on Γ, (3)
∂u

∂n
− ∂v

∂n
= g, on Γ, (4)

where Γ = ∂Ω, ∂/∂n is the normal derivative on Γ; f and g are the functions defined
on Γ, and k, k1, µ are positive numbers.

Here the boundary conditions given by (3), (4) are supplemented by the conditions
of emission at infinity

r1/2

{
∂v

∂r
− ikv

}
= o(1), r →∞. (5)

3. CONSTRUCTION OF A SOLUTION

We are here concerned with the formulation of an algorithm for solving
boundary-value problem (1)–(5) when the domain Ω is a rectilinear-circular lune.
Note that in this situation it is impossible to find a solution by a direct application of
the method of partial domains, in spite of the fact that the boundary of the domain
Ω consits of a combination of canonical coordinate curves (for details, see [3]).

Let (r, θ) be polar coordinates on the plane:

x = r cos θ, y = r sin θ.

In what follows, for convenience, in subsequent situations it will be assumed that the
angle θ ranges within the limits [0, 2π] or θ ∈ [−π, π]. For the specified numbers a > 0
and b ∈ (0, a) let us define the domain Ω as the intersection of circle r < a and half
plane x > b, and let D = R2 \ Ω be the exterior of Ω. Let Ω0 be the intersection
of the circle r < a and the domain D (or of the half plane x < b). Let the segment
x = b, |y| < d :=

√
a2 − b2 be denoted by γ and let the arcs be

γ1 : r = a, |θ| < θ0, γ0 : r = a, θ ∈ (θ0, 2π − θ0),

where the angle θ0 ∈ (0, π/2) is defined by the equation

cos θ0 = b/a.
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In what follows we denote by Γ the boundary of the domain Ω, and consequently
Γ = γ1 ∪ γ.

In the following we for simplicity suppose that f ≡ 0, g ≡ 0 on the segment γ and
that f , g are even functions in the variable y on γ1. So, the unknown functions u, v
will also be even functions on the variable y.

We shall represent the domain D as the closure of the union of the bounded domain
Ω0 and the unbounded domain r > a. In this connection we seek the function v in
the following form

v = v1, |r| > a, v = v0, (x, y) ∈ Ω0, (6)

where each of the functions v0, v1 is supposed to satisfy Helmholtz equation (2) in
the corresponding domain, and emission condition (5) is true for v1. Here the desired
function v1 out of the circle r ≤ a is represented in the form of series [1]

v1(r, θ) =
∞∑

m=0

Cm
H

(1)
m (k1r)

H
(1)
m (k1a)

cos(mθ), r > a, (7)

where H
(1)
m (·) is the Hankel function of the first kind and order m.

Let us consider the question of appropriate representation of the function v = v0

in the domain Ω0. Let us introduce into consideration the unknown even function

w(y) =
∂v

∂x

∣∣∣∣
x=b

, |y| < d, (8)

with the expansion into a Fourier series

w(y) =
∞∑

m=1

Bm cos βmy, βm =
π(2m− 1)

2d
. (9)

We for simplicity suppose that β2
m 6= k2

1, m = 1, 2, . . . . Let, according to (8), (9), the
function w0 be given as

w0(x, y) =
∞∑

m=1

Bm√
β2

m − k2
1

e
√

β2
m−k2

1(x−b) cos βmy, x < b, −∞ < y < ∞. (10)

The function w0(x, y) is a y-periodic (with the period T = d) solution of equation (2)
in the half-plane x < b (in particular, w is a solution of (2) in the domain Ω0) and
satisfies the boundary condition

∂w0

∂x
= w(y), |y| < d, x = b. (11)

We seek the solution v0 in the form

v0 = w0 + w1, w1 = v0 − w0. (12)
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The functions w0, w1 satisfy Helmholtz equation (2) in the domain Ω0. The satis-
faction of boundary conditions (3), (4) on the segment γ yields the equations (see
(11)):

µu− (w0 + w1) = 0, x = b, |y| < d, (13)
∂w1

∂x
= 0, x = b, |y| < d, (14)

∂u

∂x
− w(y) = 0, x = b, |y| < d. (15)

Notice that for b > 0 the domain Ω0 contains the semi-circle r < a, θ ∈ (π/2, 3π/2),
which makes the direct application of the method of partial domains impossible (see
[3]). On the other hand, since homogeneous boundary condition (14) for the function
w1 is satisfied on the boundary segment γ, then according to the reflection principle,
the function w1 is reflected symmetrically into the domain

Ω∗ = {(x, y) : (−x + 2b, y) ∈ Ω},

according to the rule

w1(x, y) = w1(−x + 2b, y), (x, y) ∈ Ω∗. (16)

Here the closure of the combined domains Ω and Ω∗ contains the circle r ≤ a and
hence the solution w1 of Helmholtz equation (2) continues into this circle as the
solution of equation (2). Therefore, the function w1 can be sought as the series [1]

w1 =
∞∑

n=0

An
Jn(k1r)
Jn(k1a)

cos(nθ), r < a, θ ∈ [0, 2π], (17)

where Jn(·) are Bessel functions, whereas An are unknown coefficients (here it is
assumed that Jn(ka) 6= 0, n = 0, 1, . . . ).

Let us consider the appropriate representation for the function u in Ω. We shall
represent the domain Ω as the intersection of the sector {(r, φ) : 0 < r < a, |θ| < θ0}
and the half-strip {(x, y) : x > b, |y| < d}. This means that we seek the solution u in
the form [1]:

u =
∞∑

n=1

En
Jαn

(kr)
Jαn(ka)

cos(αnθ) +
∞∑

m=1

Dm√
β2

m − k2
e
√

β2
m−k2(b−x) cos βmy,

r < a, |θ| ≤ θ0, (18)

where αn = (2n − 1)π/(2θ0), and it is assumed that β2
m 6= k2, m = 1, 2, . . . , and

Jαn
(ka) 6= 0, n = 1, 2, . . . .
For the determination of the coefficients An in Eqs. (17), we have the conjugate

boundary conditions on the arc γ0

w1 = v1, r = a, θ ∈ (θ0, 2π − θ0), (19)
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∂w1

∂r
=

∂v1

∂r
, r = a, θ ∈ (θ0, 2π − θ0) (20)

So, we must find the condition at the remaining arc |θ| < θ0. The idea [3] consists
in taking this condition from Eqs. (16) and formulating it in terms of the same
unknown coefficients An. Proceeding in this manner and utilizing the fact that the
trigonometric functions in Eqs. (17) are orthogonal, we may obtain an infinite set of
linear algebraic equations for An. The implementation of this idea is described below.

If the point (r, θ) ∈ Ω∗0, then its inverse image in reflection (16) is the point with
polar coordinates r̂, θ̂ such that

r̂ sin θ̂ = r sin θ, r̂ cos θ̂ = r cos θ + 2b.

Solving this equations, we get

r̂(r, θ) =
√

r2 − 4rb cos θ + 4b2, θ̂(r, θ) = arcsin
(

r sin θ

r̂(r, θ)

)
.

Thus, from Eqs. (16) and (17), we have obtained the following expression for the
unknown function w1 in the domain Ω∗0, and hence in the domain Ω ⊂ Ω∗0:

w1(r cos θ, r sin θ) =
∞∑

n=0

An
Jn(k1r̂)
Jn(k1a)

cos(nθ̂), (r, θ) ∈ Ω∗0.

In particular,

w1(a cos θ, a sin θ) =
∞∑

n=0

An
Jn(k̂1r

∗)

Jn(k̂1)
cos(nθ∗), |θ| < θ0, (21)

where

r∗(θ) = a−1r̂(a, θ) =
√

1 + 4 cos2 θ0 − 4 cos θ0 cos θ,

θ∗(θ) = θ̂(a, θ) = arcsin
(

sin θ

r∗(θ)

)
, k̂1 = k1a.

Then, using (7), (19) and (21), we obtain the following functional equations for
the unknown coefficients An:

∞∑
n=0

An cos(nθ) =


∑∞

m=0 Am
Jm(k̂1r∗)

Jm(k̂1)
cos(mθ∗), θ ∈ (0, θ0),

∑∞
m=0 Cm cos(mθ), θ ∈ (θ0, π).

(22)

On the other hand, from (13), (15) we derive the functional equations
∞∑

m=1

(
µDm√
β2

m − k2
− Bm√

β2
m − k2

1

)
cos(βmy) =

=

{ ∞∑
n=0

An
Jn(k1r)

Jn(k̂1)
cos(nθ)−

∞∑
n=1

µEn
Jαn(kr)

Jαn
(k̂)

cos(αnθ)

}∣∣∣∣∣
x=b

, |y| < d, (23)
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∞∑
m=1

(Bm + Dm) cos(βmy) =
∂

∂x

{ ∞∑
=1

En
Jαn

(kr)

Jαn(k̂)
cos(αnθ)

}∣∣∣∣∣
x=b

, |y| < d. (24)

Conjugate condition (20) on the arc γ0 and conjugate conditions (3), (4) on the arc
γ1 lead to the equations

∞∑
m=0

Cm
k1H

(1)′

m (k̂1)

H
(1)
m (k̂1)

cos(mθ) =

=



k
∑∞

n=1 En
J
′
αn

(k̂)

Jαn (k̂)
cos(αnθ)+ ∂

∂r

{∑∞
m=1 Dm

e

√
β2

m−k2(b−x)
√

β2
m−k2

cos(βmy)
}∣∣∣∣

r=a

−

− g(θ), θ ∈ (0, θ0),

∑∞
n=0 k1An

J
′
n(k̂1)

Jn(k̂1)
cos(nθ), θ ∈ (θ0, π),

(25)

µ
∞∑

n=1

En cos(αnθ) =
∞∑

m=0

Cm cos(mθ)−

− µ
∞∑

m=1

Dm
e
√

β2
m−k2(b−x)√
β2

m − k2
cos(βmy)

∣∣∣∣∣
r=a

+ f(θ) θ ∈ (0, θ0).

(26)

From Eqs. (22)–(26) we can easily obtain an infinite set of linear algebraic
equations for the determination of the unknown coefficients An, Bm, Cn, Dm, En,
n = 0, 1, 2, . . . , m = 1, 2, . . . (for details, see [3]). For example, from (22), employing
the orthogonality equations

2
π

∫ π

0

cos(nθ) cos(mθ) dθ = δnm(1 + δn0), n, m = 0, 1 . . . ,

we obtain the set of linear algebraic equations,

An
(1 + δn0)π

2
=

∞∑
m=0

Am

∫ θ0

0

Jm(k̂r∗)

Jm(k̂)
cos(mθ∗) cos(nθ)dθ +

∞∑
m=0

CmLm,n,

where n = 0, 1, 2, . . . and the coefficients

Lm,n =
∫ π

θ0

cos(mθ) cos(nθ)dθ = − sin(n−m)θ0

2(n−m)
− sin(n + m)θ0

2(n + m)
, n 6= m,

Ln,n =
∫ π

θ0

cos2(nθ)dθ =
π − θ0

2
− sin(2nθ0)

4n
, n ≥ 1,

L0,0 =
∫ π

θ0

dθ = π − θ0.

In an analogous way we can obtain the other four sets of linear algebraic equations
for the unknown coefficients in representations (7), (10), (17) and (18).
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