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Abstract. In this study, we report results from scaling anal- this study we aim to investigate the presence of multiscaling
ysis of 2.5 m spatial and 1 s temporal resolution lidar-rainfall in rainfall at very small scales ranging from few meters to
data. The high resolution spatial and temporal data from the~1 km in space and few seconds~+@0 min in time using
same observing system allows us to investigate the variabilthe 2.5m and 1 s resolution rainfall data measured by lidar
ity of rainfall at very small scales ranging from few meters to over lowa City, lowa, USA (Lewandowski et al., 2009). Our
~1km in space and few secondst80 min in time. There-  study therefore contributes towards understanding the mul-
sults suggest multiscaling behaviour in the lidar-rainfall with tiscale statistical properties of rainfall at space-time scales
the scaling regime extending down to the resolution of thethat received little attention, as shown in the following brief
data. The results also indicate the existence of a space-timeview of the literature.

transformation of the form~L*? at very small scales, where A physical process is said to be scale-invariant or scal-
t is the time lag L is the spatial averaging scale ant the  ing, if large scale and small scale structures are related by
dynamic scaling exponent. a scale-changing operation that involves only the scale ratio
and an exponent (e.g., Schertzer and Lovejoy, 1987). If dif-
ferent exponents are required to describe the scaling behavior
of different moments, then the process is said to be multi-
scaling. Studies have shown that multiscaling behaviour is

Spatial and temporal variability of rainfall across multi- & result of multiplicative cascades, where large scale strL_Jc-
ple scales is of fundamental interest to meteorologists andUres feed small scale structures (e.g., Schertzer and Lovejoy,
hydrologists. In the last two decades, multiscaling-basedt987: Lovejoy etal., 1990). This results in higher and higher
framework has been increasingly used by researchers to stditensities being concentrated into smaller and smaller areas,
tistically characterize the rainfall variability over a range Which is true of rainfall process. In addition to understand-
of temporal and spatial scales (e.g., Schertzer and Lovejoyn9 rainfall processes across multiple scales, other attractive
1987; Tessier et al., 1993: Gupta and Waymire, 1993: Georfeatures of the multiscaling framework are that parsimonious
gakakos et al., 1994; Veneziano et al., 1996; Venugopal efnodels can be developed to (1) generate synthetic rainfall
al., 1999; Lilley et al., 2006; Lovejoy and Schertzer, 2006: fields at a given resolution, and (2) statistically downscale
Lovejoy et al., 2008). While the temporal scales varied from"ainfall fields to a desired resolution. o

few seconds to years (e.g., Georgakakos et al., 1994: Ols- The first step in the scaling analysis of rainfall is usually to
son et al., 1993), the spatial scales varied from few hundred&vestigate the presence of scale-invariance using the power

of meters to continental scales (e.g., Lovejoy and SchertzeSPECtrum analysis. After the power spectrum analysis, tools
2006; Lovejoy et al., 2008). Although rainfall is comprised such as moment scaling, structure functions, and probabil-

of individual rain drops, it is usually studied as a continu- 'Y distribution multiple scaling (e.g., Lovejoy and Schertzer,
ous field under the assumption of large numbéy ¢f drops. 1990; Nykanen and Harris, 2003) are applied to detect the

Lilley et al. (2006) showed evidence of multifractal nature Présence of multiscaling behaviour in the rainfall. Since

of this N-limit in rain based on the data collected during the W€ are interested in rainfall variability at smaller scales, we
HYDROP experiment (Desaulniers-Soucy et al., 2001). ipPresent here a short overview of the studies that employed
high resolution rainfall data (scales below 1 min in time and

1km in space). We follow this review with description of

Correspondence td?. V. Mandapaka our experimental setup and then describe our analysis and
BY (pmandapa@engineering.uiowa.edu) results.

1 Introduction
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1.1 Brief review of temporal analyses non-negativity and multiplicative structure observed in the
rainfall records. Menabde et al. (1997b) analyzed 15s res-
Scaling analysis of rainfall in time has been most of- olution rainfall data of length 17 h measured by electronic
ten performed using the rainfall measured by rain gaugesrain gauges over Norfolk Island and Matawai regions in New
Crane (1990) analyzed the 30-s rain gauge time series ofealand. They reported a scaling behavior in the spectrum
a rain storm in Germany and reported the spectral slopefrom the scales of 17 h down to approximately 4 min. They
closer to turbulence spectral slopes of 5/3, and 3. Olssonlid not consider smaller scales to avoid possible instrumenta-
et al. (1993) analyzed two years of 1-min resolution rain-tion effects on the spectrum. Nikolopoulos et al. (2008) com-
fall data collected at 12 locations in the city of Lund, Swe- pared the power spectra of stratiform and convective rainfall
den. They reported that the power spectrum is scale-invarianteasured by two vertically pointing radars (S-band and X-
from 40 min to approximately 5000 min with an exponent of band) at three different heights. The resolution and the length
5/3. They also reported a break in scaling of power spectrunof the rainfall data were 9s and 1day, respectively. The
at 40-50 min, which corresponds to average rainfall eventpectra from both the radars displayed scaling behaviour for
duration. The scale break was also noticed in their box di-both the storms with spectral exponents ranging from 1.36
mension analysis around 20 min to one hour depending ono 3.34. In general, they have reported a scaling regime ex-
the low rainfall threshold. Georgakakos et al. (1994) ana-tending from about 20 s to approximately an hour. However,
lyzed the 5 s resolution rainfall time series of seven stormsthe scaling regimes changed with the type of the storm and
that occurred between May 1990 and April 1991. Based oralso with the altitude. Though they noticed a white noise like
the power spectrum analysis, they reported a scaling regimeehaviour in the spectrum at higher frequencies (similar to
from 10 s to 20 s for all the storms except one storm for whichFabry, 1996) for the stratiform rainfall, the power spectrum
they reported a regime from 20s to 10 min. They have alsoof convective rainfall did not present such behaviour.
suggested of a possibility that for a considerably larger sam-
ple size (longer duration events), the scaling regime mightin-1.2  Brief review of spatial analyses
crease. The scaling exponents estimated in that study ranged
from 1.2 to 1.4. Fabry (1996) analyzed data measured by d&he spatial multiscaling analyses were usually carried out
sonic gauge, rain gauge and vertically pointed radar to deterwith the data provided by ground-based and space-based
mine the scale regimes for the precipitation fields. The sonicemote sensing platforms, although there were few studies
gauge had a resolution of 0.1 s, whereas the rain gauge datehich converted temporal rainfall data from rain gauges into
was at daily scale. The spatial data from the radar was conspatial data from Taylor’s hypothesis. In this section, we only
verted to equivalent time data using an echo speed of 25 m/gresent a short review of studies that used high resolution
From the power spectra of the sonic gauge data and convertggess than or equal to 1 km) spatial data.
radar data, he reported a scaling range extending from ap- Tessier et al. (1993) analyzed the scaling properties of hor-
proximately an hour to a few seconds with a scale break andzontal cloud radiances obtained from satellites in different
near white noise like behaviour in the spectrum after that.frequency bands, and horizontal and vertical radar reflectiv-
The slope of the power spectrum in this regime was estimatedty fields. From the power spectrum of the fields, they con-
to be 1.40. He further argued inertia and fall speeds of thecluded that the horizontal cloud radiances scale over a wide
hydrometeors resulted in the scale break in the precipitatiomange of approximately 200 m to 2000km and horizontal
field and the white noise spectrum at higher frequencies.  radar reflectivity fields display scaling from approximately
Harris et al. (1996) investigated the orographic influence75m to 10 km. For the vertical radar reflectivity fields, the
on the multiscaling properties of the 15-s resolution rainfall one-dimensional spatial power spectrum averaged in time
time series collected by rain gauges during June 1993, Maylisplayed scaling down to 100m. Menabde et al. (1997a)
1994, and November 1994 in Southern Alps, New Zealandanalyzed 50 two-dimensional rainfall fields obtained from
They reported that the power spectrum scaling regime and mobile X-band radar in New Zealand at a resolution of
the exponent depended on the elevation of the rain gaugel20 min. The individual as well as ensemble averaged power
The scaling regime was longer and the exponent decreasespectra displayed a good scaling regime from 30 km down
(from ~1.5t0~0.9) as one moved to higher elevations. From to 240 m. The scaling exponent of ensemble averaged spec-
the moment scaling analysis, they noticed that the intermittrum was estimated to be 2.38. Nykanen and Harris (2003)
tency in the rainfall decreased with the increase in elevationanalyzed the orographic effects on multiscaling characteris-
Veneziano et al. (1996) analyzed the same data as in Geotics of three storms in the Blue Ridge Mountains of Virginia.
gakakos et al. (1994) and showed that the power spectrurithe power spectrum exponents for the three storms respec-
of the logarithm of the rainfall time series has a segmentedively were 2.29, 2.58, and 2.69. Though the upper limit of
form with four distinct scaling regimes with exponents of the scaling regime varied from storm to storm, they reported
1.6, 2.7, 0.7, and 1.9 in the order of increasing frequencythat all the spectra were scaling down to 1 km. They have re-
However, they argued that the rainfall is not multiscaling andported a decreasing trend of scaling range of power spectrum
proposed a model that satisfies the conditions of stationarityyith increasing topographic elevation. However, they have

Nonlin. Processes Geophys., 16, 5386 2009 www.nonlin-processes-geophys.net/16/579/2009/



P. V. Mandapaka et al.: Multiscaling of lidar-rainfall 581

also indicated that the relation of multiscaling characteristics2 Data
with rainfall is not universal and depends on the surrounding

meteorology. Lidar (Light Detection and Rangingis an active remote
sensing instrument primarily used in atmospheric applica-
1.3 Brief review of spatio-temporal analyses tions (planetary boundary layer, aerosols, water vapour stud-

ies, etc.). Its design is based on the same principles as radars

The studies discussed so far have analyzed the spatiabith the exception that lidar uses a laser as its source of elec-
and temporal variability of rainfall independently. How- tromagnetic radiation. After emitting a very short pulse of
ever, some studies have performed simultaneous multiscalaser light ¢-10ns), lidar measures the amount of light re-
ing analysis of spatially variable rainfall field that evolves turning to its detector as a function of time (or distance be-
over time (e.g., Marsan et al., 1996; Venugopal et al., 1999)cause the speed of light is fixed). A single lidar profile con-
Marsan et al. (1996) proposed a space-time rainfall modetains information about the amount of energy that was scat-
based on three-dimensional anisotropic multiplicative castered from the pulse by hydrometeors at various ranges along
cades taking into account scaling anisotropy between spacthe path. Lidar does not provide a direct measurement of
and time characterized by exponeiitand causality. The rainfall intensity. A complicated data processing is required
value of H was found to be —0.11 and —0.09 for x-t and y-t in order to invert the raw lidar data to rain intensities. The
sections of NEXRAD radar-rainfall datasets of 8-km resolu- lidar data processing involves two major steps of inversion:
tion in space and 15-min resolution in time. Based on the(i) determination of extinction coefficients from the raw lidar
analysis of convective storms in Darwin, Australia, Venu- data and (ii) calculating corresponding rain rates.
gopal et al. (1999) reported an existence of a power-law The lidar data used in this scaling study was originally
space-time transformation of the formL* (¢ is the time  taken on 20 September 2002 in lowa City, IA. The lidar
lag, andL is the spatial averaging scale) such that rainfall system was equipped with a 1.064 micron Nd:YAG laser, at-
evolution remains invariant over a range of scales (2 km totached to a Cassagrain telescope with a primary mirror win-
20km in space and 10 min to several hours in time). Thedow of 25cm and focal length of 2.5m. The laser pulsed
exponent; called the Dynamic scaling exponent was found at 50 Hz with 25 mJ of energy per pulse. The signal on the
to vary between 0.6 and 1.2. In this study we employ thedetector was digitized and consecutive profiles were aver-
methodology proposed by Venugopal et al. (1999) to investi-aged, resulting in 2.5 m spatial and 1 s temporal resolution.
gate the presence of power-law space-time transformation. The length of the dataset used in this study is approximately

From the above discussion it is clear that the scaling ex-75 min and the maximum distance for which the data is avail-
ponents and the regimes not only depend on natural causexble at each time step is approximately 3km. To avoid any
such as orographic forcing and type of rainfall but also on ar-corrupted data due to the lidar signal attenuation by the heavy
tificial aspects such as the type of the measuring device, anthinfall, we only considered the data up to a distance at which
the resolution of the data. According to Tessier et al. (1993) the rainfall rate was less than 50 mm/h. We also did not in-
if rainfall is related to atmospheric turbulence, any break include the first 150 m of data due to the instrumentation is-
rainfall scaling could be due to a break in the scaling of at-sues. Therefore, the spatial range varied at each time step
mospheric turbulence. While some studies confirmed that thavith the shortest distance range of 760 m and longest range
power spectrum scales up to the resolution of the instrumentpf approximately 2350 m. A detailed description of the lidar
there were some studies which reported that beyond a certaidata processing performed on the lidar data for this study is
scale, the small scale structure of the rainfall is lost resultingpresented in Lewandowski et al. (2009).
in the white noise like spectrum. From the brief literature
review, it is also clear that the highest temporal resolution of
the rainfall analyzed was about 0.1s (Fabry, 1996) and the3 Analysis tools

highest spatial resolution was approximately 75 m (Tessier et .
al., 1993). 3.1 Power spectrum analysis

Our main intention behind this study is to introduce the . .
) . . . . : We have seen in the Sect. 1 that the Fourier power spectrum
unigue high-resolution space-time lidar-rainfall dataset, per- :
A . : ) was one of the most widely used tools to detect the presence
form preliminary multiscaling analysis at the range of scales

rarely (if ever) analyzed. The results from this study would lavs loa-log linearity within a certain ranae of frequencies
therefore help us better understand the scaling properties dprays log-og Y . 9 q i
can be represented by a simple power law of the form:

rainfall at very small scales. The paper is organized as fol-
lows. Following the Introduction, Sect. 2 describes the datag (f) — ¢# (1)

and Sect. 3 gives a short description of the multiscaling anal-

ysis tools employed in this study. The results are discussedvhere f is the frequency and exponent is the slgpeThe

in the Sect. 4 followed by the summary and conclusions inprocess is then scale-invariant in nature. The power spectrum
Sect. 5. should display log-log linearity as represented by Eq. (1) for

of scale-invariance in rainfall. A power spectrum that dis-
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arange of scales. However, there is no definite rule that givefluctuation fields. However, Tessier et al. (1993) proposed
the minimum range for which the spectrum should be log-loga universal multifractal model for th& (¢) based on multi-
linear. The log-log linearity can be checked by performing plicative cascades consisting of parameterandCj.
local linear analysis and also based on Efevalue in linear c

regression. The corresponding scaling regime should be af (@) = 321 (¢* —¢) 0<a <1 and l<a <2
least of such a length that there are negligible sampling ef-x (4) = C1glogg o« =1

fects in the regression analysis. Steeper the power spectrum

smoother and more organized the rainfall field, as in the casd he parametew is the Levy-stable (or multifractality) in-

®)

of convective storms (e.g., Nykanen and Harris, 2003). dex and indicates the probability distribution from which the
weights are generated in the cascading process. The case
3.2 Moment scaling analysis O<a<2 (x#1) corresponds to log(Levy) multifractals, and

if =1 the multifractal process is log(Cauchy) (e.g., Tessier

The next tool we used in this study is the moment scalinget al., 1993). The case wit=2 corresponds to lognormal
analysis to investigate the presence of multifractality. For amultifractals. C is the intermittency parameter that charac-
multifractal process, it has been shown (e.g., Menabde et alterizes the sparseness of the mean.
1997a) that the spectral slogeis always less than dimen-  |n this study, the paramete€g ando were obtained using
sion D of the field. 1fg>D, which is often the case with the double trace moments (DTM) technique (e.g., Tessier et
geophysical phenomena including rainfall, moment scalingal., 1993). In the DTM technique, we take various powers
analysis is performed on their fluctuations. These can be; of the rainfall fluctuations at their highest resolution, then
obtained either by fractional differentiation (e.g., Schertzerayerage the powered fluctuations to various spatial and tem-
and Lovejoy, 1987; Nykanen and Harris, 2003) or by taking poral scales (with scale ratic), and estimate the statistical
small-scale fluctuations of the original field (e.g., Tessier eétmoments of various ordetgs
al., 1993; Menabde et al., 1997a). In this study, we adopted
the latter approach. My q (0 = ([¢" (x.1;)]]) forall ¢ (6)

In the spatial moment scaling analysis, we obtained th

rainfall fluctuations in space (x:, 1) at each time instan €in case of universality, the statistical moments will depend

on scale ratio as:

as
M, , (L) ~ 1 K(@.m—(-1D 7
@(xi, tj) = |R(xi41,1;) — R(xi, 1)) 2 " @
. . . . . and
whereR (x;, t;) is the lidar-rainfall value at pixet; for time
instantz;. The fluctuations were averaged over a range ofx (¢, n) = n% - K(q) (8)

spatial scaleg, (Scale Ratio. = Total Spatial Distancé/) to _ .
obtaing; (x,7;). Theg; (x,;) values for all time steps Thereforex is the slope oK (g, n) versus in a double log-
were pooled together and the statistical momeuigs(x) of ~ arithmic plot for a fixed;. The value ofC; can be obtained

various moment orders were estimated for each scale ratio Py plugginge in Eq. (5) for a fixed;. For a detailed descrip-
A tion of the DTM technique, the reader is referred to Tessier

etal. (1993).
My (W) = (g5 (x,1;)7) forall ¢ (3)

3.3 Dynamic scaling analysis
where,(-) denotes the ensemble average. The procedure for

the temporal moment scaling analysis was similar to that ofSo far we have analyzed spatial and temporal components of
spatial analysis. Here, we fixed the spatial location and obrainfall independent of each other. Since rainfall is a time-

tained rainfall fluctuations in time. The fluctuations were evolving process, the spatial and temporal variability are not
then averaged over a range of temporal scales and the stindependent of each other. Simultaneous multifractal analy-

tistical moments of various orders were estimated. ses allow studying the temporal evolution of rainfall at mul-
The rainfall fluctuations are said to be multifractal if there tiple spatial scales. In this study we adopted the framework
exists a scaling relationship of the form: proposed by Venugopal et al. (1999), which consists of esti-
K@) mating the probability density function (PDF) of the follow-
My (2) ~ A (4)  ing statistic:
and if K (¢) (slope ofM, (1) versush in the logarithmic do- A | Lic(L,t)=In IiL (t+1)—In I[L () 9)

main) is a nonlinear function af. The nonlinear function

is called moment scaling function or simplg(¢) function ~ where X () is the nonzero rainfall intensity at locatian

and the exponerk (¢) is referred to as moment scaling ex- time instantr, for spatial scald., andrdenotes the time lag
ponent. TheoreticallyK (¢) is required forg ranging from  over which the rainfall evolution is measured. Venugopal
0 to oo to fully characterize the multifractality in the rainfall et al. (1999) chose the above statistic based on the evidence
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that the relative changes in the spatial and temporal rainfall ;5 2%4¢s 70 2 12%0m__ 20w ¥m_op
fluctuations were independent of the intensities (e.g., Per- 12 1P
ica and Foufoula-Georgiou, 1996; Venugopal et al., 1999). °
Alnl; . (L, t) was estimated in the following manner.

At each instant in timer, the rainfall intensities ()
were obtained for spatial scalésvarying from spatial reso-
lution of the data to the scale allowed by the distance range.s
For exampleL varies as 2.5m, 5m, 10 m etc. for adatawith — 10*4
spatial resolution of 2.5 mA In I; ; (L, r) was then estimated 1
using Eg. (9), where varied from the temporal resolution of T e T 10° 10° L1
the data to the lag allowed by the length of the dataset. The Frequency [Hz] Spatial Frequency [m’]
Alnl; . (L, 1) values can be pooled and the PDFs can be ob-_. , . .
tained only when their statistical properties do not depend,9: 1 Témporal and spatial power spectrum of the lidar-rainfall

L . . data. The dots indicate the power spectrum averaged in logarithmic
S'gn'f'caf?“Y on the absolute time Coo_rdmate The Stan' (octave) bins. The slope of the regression line fitted to the octave-
dard deviations (AIn f; - (L, 1)) was estimated at each time  p;neq spectrum is also indicated on each panel.
instant to identify such stationary region. Within the station-
ary region, the standard deviatia(L, ¢r) of the PDFs of
Aln1l; - (L,t) was estimated for each combinationfoind  with a departure from scaling around the region 80s to 140 s
t. Then the pairs of. andt are found for whichZ(L,#)  (Fig. 1a). The departure could be due to the limited sample of
is constant. If the values df andt display log-log linear-  the data resulting in sampling issues towards lower frequen-
ity, then there exists a space-time transformation of the formgjes. A thorough analysis with a large dataset is required to
t~L* across a range of scales. For a much detailed descripcheck if the scale break (if exists) is related to characteristic
tion of the algorithm, the reader is referred to Venugopal ettime scale in rainfall.
al. (1999). The average spectrum was then octave-binned (e.g., Har-

ris et al., 1996) in this region to avoid excessive weighting
on higher frequencies, and the regression analysis was car-

10°] Slope = -1.99

ower Spectrum
3
2

4 Results and discussion ried out on the octave-binned spectrum. Figure 1a shows the
octave-binned spectrum included in the regression analysis

4.1 Power spectrum (solid gray circles) along with the fitted regression line. The
slope of the regression line fitted to the octave-binned av-

4.1.1 Temporal spectrum erage power spectrum was —1.84 with &f value of 0.99

. ) ) . (Fig. 1a). Further, the average of the slopes of individual
At each point along the distance axis, Fast Fourier Transforrrbo\,ver spectra was equal to —1.81. From these values, it can

algorithm is applied on the time series of the lidar data topg g4id that the average power spectrum is indeed represen-
obtain the temporal power spectrum. The average temporghyive of the individual spectra. We refrained from perform-
power spectrum was estimated by averaging the individuaj,q jinear regression for lower frequencies (empty circles in
power spectra for the time series corresponding to spatial |°Fig. 1a) as they are dominated by the sampling effects. Un-
cations from 150m to 910 m. The range was sellected suchike Fabry (1996) and Nikolopoulos et al. (2008), we did
that we have continuous time series of lidar-rainfall data. ot notice any white noise like spectrum at high frequencies.

Further, only those individual spectra that display scaling be-rpa¢ s, scale-invariance extended up to the scales allowed by
havior with R2>0.95 was used to estimate the average SPECthe resolution of the data.

trum (Fig. 1a).

We carried out the local linear analysis to check the log-4.1.2 Spatial spectrum
log linearity of the average power spectrum and the departure
from scaling behavior. A window, whose size varied loga- First, we estimated the individual spatial power spectrum at
rithmically, was moved along the frequency axis of the tem-each instant in time with a fixed spatial range of 1250 m. Due
poral power spectrum and linear regression was performedo the maximum rainfall threshold of 50 mm/h, sometimes
within that particular window. Logarithmic sized window the available range was found to be less than 1250 m. In such
was selected so that the window size is uniform in a log-logcases, we zero-padded the lidar signal and estimated the in-
plot. The slope varied from —0.50 to —2.0 with a sharp tran-dividual power spectrum. The individual spectra estimated
sition between frequencies corresponding to 80 s and 140 st each time instant were then averaged to obtain the aver-
From 2 s up to 80 s, the slope varied from —1.75 to —2.0 withage spatial spectrum. Further, only those individual spec-
a coefficient of variation (CV) of 0.037 compared to the full tra that display scaling behavior witk?>0.95 was used to
regime, where the CV was equal to 0.093. Therefore, we carstimate the average spectrum. We did not carry out local
say that the spectrum is log-log linear in the regime 2 s to 80 dinear analysis for the spatial spectrum as there were only

www.nonlin-processes-geophys.net/16/579/2009/ Nonlin. Processes Geophys., 58652009



584 P. V. Mandapaka et al.: Multiscaling of lidar-rainfall

256 points most of which were concentrated towards higher . 512 10 om 2
frequencies. The average spectrum was octave-binned an a)
the slope was estimated leaving first two points (Fig. 1b).

The first two points were not included to avoid sampling ef-
fects. The average value of the slopes of individual spatial .
power spectra was equal to —2.02 and the slope of averags®

spatial power spectrum was —1.99 with Rf value of 0.99.
From the high value oR?, it can be said that the spectrum is o) et

b)

q

=24
=20
q=16

log-log linear in the regime 5m to 250 m. Figure 1b shows TS
the average spatial power spectrum, the octave binned aver «w 1o S 10°
age spectrum and the fitted regression line. It is not possible Scale Ratio &

to compare the spatial power spectrum from this study with
the ones reported in the literature as most of them were radiFig. 2. Variation of(a) temporal andb) spatial moments of rainfall

ally averaged two-dimensional power spectra obtained fronfluctuations of various moment ordeyswith respect to scale ratio
two-dimensional rainfall fields. A. Figure also shows the fitted ordinary linear regression lines.

1 15

4.2 Moment scaling ) %
From the Sect. 4.1, we have seen that the power spectral exg
ponents were greater than the dimension of the data, whict&
is one. Therefore, moment scaling analysis was performed"é,
on the absolute fluctuations computed using Eq. (2). In‘,—f 087
the Fig. 2, we show the statistical moments obtained using®
Eq. (3) for both time and space. It can be noticed that the |
moments display log-log linearity with respect to the scale. : .
In time, the scale-invariance was found to hold from the low-
est resolution of 1s to 512 s in time and in space it extended
from 2.5m to 320 m. The scaling regimes in time and spacerig. 3. Variation of (a) temporal andb) spatial moment scaling
were shorter than those noticed in power spectral analysisxponents with respect to the moment order. The parameters of the
in the previous section. The power spectrum and the mo-universal multifractal model are given in the inset.
ment scaling analysis are two different tools to investigate the
presence of scaling. While the power spectrum is a second-
order analysis, the moment scaling invlolves estimation of4.3 Dynamic scaling
the moments of order ranging from 0.1 to 3.5. In addition,
the sampling issues impact these two techniques in a differAs mentioned in Sect. 3.3, dynamic scaling analysis has to be
ent manner. Therefore, the scaling regimes detected by thegserformed in the region where the statistical properties of the
tools need not be exactly same. quantity estimated using Eq. (10) do not depend significantly

We did not perform the moving window analysis (like in 0n the absolute time coordinateTo identify such stationary
power spectrum) to check the log-log linearity and the devi-region, we moved a window of size 900's (15 min) along the
ation in scaling behavior as we only had 10 points. Hfe Standard deviation series(A In I; (8, 8)) and estimated the
value for the linear regression in the log-log plot for various CV. The window that resulted in the least CV was selected
moment orders (Fig. 2) was always greater than 0.98. Frontor the dynamic scaling analysis. The coefficient of variation
the high values o2, it can be said that the moments are for the corresponding time period is 0.39. The overall stan-
indeed log-log linear. Figure 2 also shows the ordinary leasdard deviatior (L, ¢) was then estimated for the stationary
squares regression fit to the statistical moments. The slope&gion for each combination @f and:. In the Fig. 4, we plot
K (¢) of the fitted regression lines are plotted against the corihe pairs ofL andt for which the standard deviation was
responding moment orders for the temporal and spatial doconstant. From the Fig. 4, it can be seen that the relationship
mains in the Fig. 3. For both cases, the slopes vary nonbetween. and is log-log linear confirming the presence of
linearly with the moment order confirming that the rainfall dynamic scaling of the form~L< in the lidar-rainfall data.
fluctuations are multfractal. Figure 3 also shows the DTM fit  Due to the restriction imposed by the attenuation of lidar
and the corresponding universal multifractal parameters fosignal by heavy rainfall, the spatial range at each time step
space and time domain. While the intermittency parametewvaried from approximately 750 m to 2350 m. The station-
C1 was the same for temporal and spatial data, the multifracarity conditions further limited the length of the dataset to
tal parametew was greater for spatial data (Fig. 3). 15min. Therefore, we have only four to five points as an

3 0
Moment Order

[
N
w
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T oynarc Sealing U rized according to the double trace moment technique to ob-
1 x z tain the universal multifractal model parameters. The inter-

o0 o mittency paramete€; was same for both spatial and tempo-
0.004 054 ral lidar-rainfall series. The multifractal index was equal
0 0.010 049 to 1.92 for temporal and 1.97 for spatial data. The values

of « indicate that the lidar-rainfall data corresponds to the
log(Levy) multifractals. We also noticed a space-time trans-
formation of the formr~L? in the lidar-rainfall data with an
exponent in the range of 0.49 to 0.59. However, it should be
noted that this transformation was observed only for the very
small scales in the range of 1s te20s in time and from
10mto 160 m in space.
10 100 Our high-resolution dataset allowed us to perform multi-
Distance [m] scaling analysis at very small scales that received little at-
tention in the literature. However, to really bridge the scale

Fig. 4. Evidence of dynamic scaling in the standard deviation of gap, we need to perform an expensive experiment with li-

Alni;; (L, 1) (Eq. 9). The values of the standard deviations and thedars, rain gauges, radars and satellites observing the same

corresponding dynamic scaling exponents were given in the inset. rainfall system for a considerable time period. Such an exper-

iment should be designed so that there is some overlap in the

scales observed by different instruments. Besides bridging
evidence of dynamic scaling in lidar-rainfall (Fig. 4). The the scale gap, such an experiment will also provide insights
scaling range extended from 10 m to 160 m in space and froninto the physical mechanisms responsible for the observed
1sto~20s in time. However, it should be noted that for a sca“ng behavior in rainfall datasets.

dataset with wider spatial range and longer stationary period,

one might notice longer scaling regimes. The dynamic scal-AcknowledgementsThe authors acknowledge useful discussions

ing exponent is also shown in the Fig. 4 along with the cor- with Deborah Nykanen and V. Venugopal.
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