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Abstract. In this study, we report results from scaling anal-
ysis of 2.5 m spatial and 1 s temporal resolution lidar-rainfall
data. The high resolution spatial and temporal data from the
same observing system allows us to investigate the variabil-
ity of rainfall at very small scales ranging from few meters to
∼1 km in space and few seconds to∼30 min in time. The re-
sults suggest multiscaling behaviour in the lidar-rainfall with
the scaling regime extending down to the resolution of the
data. The results also indicate the existence of a space-time
transformation of the formt∼Lz at very small scales, where
t is the time lag,L is the spatial averaging scale andz is the
dynamic scaling exponent.

1 Introduction

Spatial and temporal variability of rainfall across multi-
ple scales is of fundamental interest to meteorologists and
hydrologists. In the last two decades, multiscaling-based
framework has been increasingly used by researchers to sta-
tistically characterize the rainfall variability over a range
of temporal and spatial scales (e.g., Schertzer and Lovejoy,
1987; Tessier et al., 1993; Gupta and Waymire, 1993; Geor-
gakakos et al., 1994; Veneziano et al., 1996; Venugopal et
al., 1999; Lilley et al., 2006; Lovejoy and Schertzer, 2006;
Lovejoy et al., 2008). While the temporal scales varied from
few seconds to years (e.g., Georgakakos et al., 1994; Ols-
son et al., 1993), the spatial scales varied from few hundreds
of meters to continental scales (e.g., Lovejoy and Schertzer,
2006; Lovejoy et al., 2008). Although rainfall is comprised
of individual rain drops, it is usually studied as a continu-
ous field under the assumption of large number (N ) of drops.
Lilley et al. (2006) showed evidence of multifractal nature
of this N-limit in rain based on the data collected during the
HYDROP experiment (Desaulniers-Soucy et al., 2001). In
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this study we aim to investigate the presence of multiscaling
in rainfall at very small scales ranging from few meters to
∼1 km in space and few seconds to∼30 min in time using
the 2.5 m and 1 s resolution rainfall data measured by lidar
over Iowa City, Iowa, USA (Lewandowski et al., 2009). Our
study therefore contributes towards understanding the mul-
tiscale statistical properties of rainfall at space-time scales
that received little attention, as shown in the following brief
review of the literature.

A physical process is said to be scale-invariant or scal-
ing, if large scale and small scale structures are related by
a scale-changing operation that involves only the scale ratio
and an exponent (e.g., Schertzer and Lovejoy, 1987). If dif-
ferent exponents are required to describe the scaling behavior
of different moments, then the process is said to be multi-
scaling. Studies have shown that multiscaling behaviour is
a result of multiplicative cascades, where large scale struc-
tures feed small scale structures (e.g., Schertzer and Lovejoy,
1987; Lovejoy et al., 1990). This results in higher and higher
intensities being concentrated into smaller and smaller areas,
which is true of rainfall process. In addition to understand-
ing rainfall processes across multiple scales, other attractive
features of the multiscaling framework are that parsimonious
models can be developed to (1) generate synthetic rainfall
fields at a given resolution, and (2) statistically downscale
rainfall fields to a desired resolution.

The first step in the scaling analysis of rainfall is usually to
investigate the presence of scale-invariance using the power
spectrum analysis. After the power spectrum analysis, tools
such as moment scaling, structure functions, and probabil-
ity distribution multiple scaling (e.g., Lovejoy and Schertzer,
1990; Nykanen and Harris, 2003) are applied to detect the
presence of multiscaling behaviour in the rainfall. Since
we are interested in rainfall variability at smaller scales, we
present here a short overview of the studies that employed
high resolution rainfall data (scales below 1 min in time and
1 km in space). We follow this review with description of
our experimental setup and then describe our analysis and
results.
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1.1 Brief review of temporal analyses

Scaling analysis of rainfall in time has been most of-
ten performed using the rainfall measured by rain gauges.
Crane (1990) analyzed the 30-s rain gauge time series of
a rain storm in Germany and reported the spectral slopes
closer to turbulence spectral slopes of 5/3, and 3. Olsson
et al. (1993) analyzed two years of 1-min resolution rain-
fall data collected at 12 locations in the city of Lund, Swe-
den. They reported that the power spectrum is scale-invariant
from 40 min to approximately 5000 min with an exponent of
5/3. They also reported a break in scaling of power spectrum
at 40–50 min, which corresponds to average rainfall event
duration. The scale break was also noticed in their box di-
mension analysis around 20 min to one hour depending on
the low rainfall threshold. Georgakakos et al. (1994) ana-
lyzed the 5 s resolution rainfall time series of seven storms
that occurred between May 1990 and April 1991. Based on
the power spectrum analysis, they reported a scaling regime
from 10 s to 20 s for all the storms except one storm for which
they reported a regime from 20 s to 10 min. They have also
suggested of a possibility that for a considerably larger sam-
ple size (longer duration events), the scaling regime might in-
crease. The scaling exponents estimated in that study ranged
from 1.2 to 1.4. Fabry (1996) analyzed data measured by a
sonic gauge, rain gauge and vertically pointed radar to deter-
mine the scale regimes for the precipitation fields. The sonic
gauge had a resolution of 0.1 s, whereas the rain gauge data
was at daily scale. The spatial data from the radar was con-
verted to equivalent time data using an echo speed of 25 m/s.
From the power spectra of the sonic gauge data and converted
radar data, he reported a scaling range extending from ap-
proximately an hour to a few seconds with a scale break and
near white noise like behaviour in the spectrum after that.
The slope of the power spectrum in this regime was estimated
to be 1.40. He further argued inertia and fall speeds of the
hydrometeors resulted in the scale break in the precipitation
field and the white noise spectrum at higher frequencies.

Harris et al. (1996) investigated the orographic influence
on the multiscaling properties of the 15-s resolution rainfall
time series collected by rain gauges during June 1993, May
1994, and November 1994 in Southern Alps, New Zealand.
They reported that the power spectrum scaling regime and
the exponent depended on the elevation of the rain gauge.
The scaling regime was longer and the exponent decreased
(from∼1.5 to∼0.9) as one moved to higher elevations. From
the moment scaling analysis, they noticed that the intermit-
tency in the rainfall decreased with the increase in elevation.
Veneziano et al. (1996) analyzed the same data as in Geor-
gakakos et al. (1994) and showed that the power spectrum
of the logarithm of the rainfall time series has a segmented
form with four distinct scaling regimes with exponents of
1.6, 2.7, 0.7, and 1.9 in the order of increasing frequency.
However, they argued that the rainfall is not multiscaling and
proposed a model that satisfies the conditions of stationarity,

non-negativity and multiplicative structure observed in the
rainfall records. Menabde et al. (1997b) analyzed 15 s res-
olution rainfall data of length 17 h measured by electronic
rain gauges over Norfolk Island and Matawai regions in New
Zealand. They reported a scaling behavior in the spectrum
from the scales of 17 h down to approximately 4 min. They
did not consider smaller scales to avoid possible instrumenta-
tion effects on the spectrum. Nikolopoulos et al. (2008) com-
pared the power spectra of stratiform and convective rainfall
measured by two vertically pointing radars (S-band and X-
band) at three different heights. The resolution and the length
of the rainfall data were 9 s and 1 day, respectively. The
spectra from both the radars displayed scaling behaviour for
both the storms with spectral exponents ranging from 1.36
to 3.34. In general, they have reported a scaling regime ex-
tending from about 20 s to approximately an hour. However,
the scaling regimes changed with the type of the storm and
also with the altitude. Though they noticed a white noise like
behaviour in the spectrum at higher frequencies (similar to
Fabry, 1996) for the stratiform rainfall, the power spectrum
of convective rainfall did not present such behaviour.

1.2 Brief review of spatial analyses

The spatial multiscaling analyses were usually carried out
with the data provided by ground-based and space-based
remote sensing platforms, although there were few studies
which converted temporal rainfall data from rain gauges into
spatial data from Taylor’s hypothesis. In this section, we only
present a short review of studies that used high resolution
(less than or equal to 1 km) spatial data.

Tessier et al. (1993) analyzed the scaling properties of hor-
izontal cloud radiances obtained from satellites in different
frequency bands, and horizontal and vertical radar reflectiv-
ity fields. From the power spectrum of the fields, they con-
cluded that the horizontal cloud radiances scale over a wide
range of approximately 200 m to 2000 km and horizontal
radar reflectivity fields display scaling from approximately
75 m to 10 km. For the vertical radar reflectivity fields, the
one-dimensional spatial power spectrum averaged in time
displayed scaling down to 100 m. Menabde et al. (1997a)
analyzed 50 two-dimensional rainfall fields obtained from
a mobile X-band radar in New Zealand at a resolution of
120 min. The individual as well as ensemble averaged power
spectra displayed a good scaling regime from 30 km down
to 240 m. The scaling exponent of ensemble averaged spec-
trum was estimated to be 2.38. Nykanen and Harris (2003)
analyzed the orographic effects on multiscaling characteris-
tics of three storms in the Blue Ridge Mountains of Virginia.
The power spectrum exponents for the three storms respec-
tively were 2.29, 2.58, and 2.69. Though the upper limit of
the scaling regime varied from storm to storm, they reported
that all the spectra were scaling down to 1 km. They have re-
ported a decreasing trend of scaling range of power spectrum
with increasing topographic elevation. However, they have
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also indicated that the relation of multiscaling characteristics
with rainfall is not universal and depends on the surrounding
meteorology.

1.3 Brief review of spatio-temporal analyses

The studies discussed so far have analyzed the spatial
and temporal variability of rainfall independently. How-
ever, some studies have performed simultaneous multiscal-
ing analysis of spatially variable rainfall field that evolves
over time (e.g., Marsan et al., 1996; Venugopal et al., 1999).
Marsan et al. (1996) proposed a space-time rainfall model
based on three-dimensional anisotropic multiplicative cas-
cades taking into account scaling anisotropy between space
and time characterized by exponentH and causality. The
value ofH was found to be –0.11 and –0.09 for x-t and y-t
sections of NEXRAD radar-rainfall datasets of 8-km resolu-
tion in space and 15-min resolution in time. Based on the
analysis of convective storms in Darwin, Australia, Venu-
gopal et al. (1999) reported an existence of a power-law
space-time transformation of the formt∼Lz (t is the time
lag, andL is the spatial averaging scale) such that rainfall
evolution remains invariant over a range of scales (2 km to
20 km in space and 10 min to several hours in time). The
exponentz called the Dynamic scaling exponent was found
to vary between 0.6 and 1.2. In this study we employ the
methodology proposed by Venugopal et al. (1999) to investi-
gate the presence of power-law space-time transformation.

From the above discussion it is clear that the scaling ex-
ponents and the regimes not only depend on natural causes
such as orographic forcing and type of rainfall but also on ar-
tificial aspects such as the type of the measuring device, and
the resolution of the data. According to Tessier et al. (1993),
if rainfall is related to atmospheric turbulence, any break in
rainfall scaling could be due to a break in the scaling of at-
mospheric turbulence. While some studies confirmed that the
power spectrum scales up to the resolution of the instrument,
there were some studies which reported that beyond a certain
scale, the small scale structure of the rainfall is lost resulting
in the white noise like spectrum. From the brief literature
review, it is also clear that the highest temporal resolution of
the rainfall analyzed was about 0.1 s (Fabry, 1996) and the
highest spatial resolution was approximately 75 m (Tessier et
al., 1993).

Our main intention behind this study is to introduce the
unique high-resolution space-time lidar-rainfall dataset, per-
form preliminary multiscaling analysis at the range of scales
rarely (if ever) analyzed. The results from this study would
therefore help us better understand the scaling properties of
rainfall at very small scales. The paper is organized as fol-
lows. Following the Introduction, Sect. 2 describes the data
and Sect. 3 gives a short description of the multiscaling anal-
ysis tools employed in this study. The results are discussed
in the Sect. 4 followed by the summary and conclusions in
Sect. 5.

2 Data

Lidar (Light Detection and Ranging) is an active remote
sensing instrument primarily used in atmospheric applica-
tions (planetary boundary layer, aerosols, water vapour stud-
ies, etc.). Its design is based on the same principles as radars
with the exception that lidar uses a laser as its source of elec-
tromagnetic radiation. After emitting a very short pulse of
laser light (∼10 ns), lidar measures the amount of light re-
turning to its detector as a function of time (or distance be-
cause the speed of light is fixed). A single lidar profile con-
tains information about the amount of energy that was scat-
tered from the pulse by hydrometeors at various ranges along
the path. Lidar does not provide a direct measurement of
rainfall intensity. A complicated data processing is required
in order to invert the raw lidar data to rain intensities. The
lidar data processing involves two major steps of inversion:
(i) determination of extinction coefficients from the raw lidar
data and (ii) calculating corresponding rain rates.

The lidar data used in this scaling study was originally
taken on 20 September 2002 in Iowa City, IA. The lidar
system was equipped with a 1.064 micron Nd:YAG laser, at-
tached to a Cassagrain telescope with a primary mirror win-
dow of 25 cm and focal length of 2.5 m. The laser pulsed
at 50 Hz with 25 mJ of energy per pulse. The signal on the
detector was digitized and consecutive profiles were aver-
aged, resulting in 2.5 m spatial and 1 s temporal resolution.
The length of the dataset used in this study is approximately
75 min and the maximum distance for which the data is avail-
able at each time step is approximately 3 km. To avoid any
corrupted data due to the lidar signal attenuation by the heavy
rainfall, we only considered the data up to a distance at which
the rainfall rate was less than 50 mm/h. We also did not in-
clude the first 150 m of data due to the instrumentation is-
sues. Therefore, the spatial range varied at each time step
with the shortest distance range of 760 m and longest range
of approximately 2350 m. A detailed description of the lidar
data processing performed on the lidar data for this study is
presented in Lewandowski et al. (2009).

3 Analysis tools

3.1 Power spectrum analysis

We have seen in the Sect. 1 that the Fourier power spectrum
was one of the most widely used tools to detect the presence
of scale-invariance in rainfall. A power spectrum that dis-
plays log-log linearity within a certain range of frequencies
can be represented by a simple power law of the form:

E (f ) = f −β (1)

wheref is the frequency and exponent is the slopeβ. The
process is then scale-invariant in nature. The power spectrum
should display log-log linearity as represented by Eq. (1) for
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a range of scales. However, there is no definite rule that gives
the minimum range for which the spectrum should be log-log
linear. The log-log linearity can be checked by performing
local linear analysis and also based on theR2 value in linear
regression. The corresponding scaling regime should be at
least of such a length that there are negligible sampling ef-
fects in the regression analysis. Steeper the power spectrum
smoother and more organized the rainfall field, as in the case
of convective storms (e.g., Nykanen and Harris, 2003).

3.2 Moment scaling analysis

The next tool we used in this study is the moment scaling
analysis to investigate the presence of multifractality. For a
multifractal process, it has been shown (e.g., Menabde et al.,
1997a) that the spectral slopeβ is always less than dimen-
sion D of the field. Ifβ>D, which is often the case with
geophysical phenomena including rainfall, moment scaling
analysis is performed on their fluctuations. These can be
obtained either by fractional differentiation (e.g., Schertzer
and Lovejoy, 1987; Nykanen and Harris, 2003) or by taking
small-scale fluctuations of the original field (e.g., Tessier et
al., 1993; Menabde et al., 1997a). In this study, we adopted
the latter approach.

In the spatial moment scaling analysis, we obtained the
rainfall fluctuations in spaceϕ (xi, tj ) at each time instanttj
as

ϕ(xi, tj ) =
∣∣R(xi+1, tj ) − R(xi, tj )

∣∣ (2)

whereR (xi, tj ) is the lidar-rainfall value at pixelxi for time
instanttj . The fluctuations were averaged over a range of
spatial scalesL (Scale Ratioλ = Total Spatial Distance/L) to
obtain ϕλ

(
x, tj

)
. The ϕλ

(
x, tj

)
values for all time steps

were pooled together and the statistical momentsMq (λ) of
various moment ordersq were estimated for each scale ratio
λ.

Mq (λ) =
〈
ϕλ

(
x, tj

)q 〉
for all tj (3)

where,〈·〉 denotes the ensemble average. The procedure for
the temporal moment scaling analysis was similar to that of
spatial analysis. Here, we fixed the spatial location and ob-
tained rainfall fluctuations in time. The fluctuations were
then averaged over a range of temporal scales and the sta-
tistical moments of various orders were estimated.

The rainfall fluctuations are said to be multifractal if there
exists a scaling relationship of the form:

Mq (λ) ∼ λK(q) (4)

and ifK(q) (slope ofMq (λ) versusλ in the logarithmic do-
main) is a nonlinear function ofq. The nonlinear function
is called moment scaling function or simplyK(q) function
and the exponentK(q) is referred to as moment scaling ex-
ponent. Theoretically,K(q) is required forq ranging from
0 to∞ to fully characterize the multifractality in the rainfall

fluctuation fields. However, Tessier et al. (1993) proposed
a universal multifractal model for theK(q) based on multi-
plicative cascades consisting of parametersα, andC1.

K(q) =
C1

α−1 (qα
− q) 0 ≤ α < 1 and 1< α ≤ 2

K (q) = C1q logq α = 1
(5)

The parameterα is the Levy-stable (or multifractality) in-
dex and indicates the probability distribution from which the
weights are generated in the cascading process. The case
0<α<2 (α 6=1) corresponds to log(Levy) multifractals, and
if α=1 the multifractal process is log(Cauchy) (e.g., Tessier
et al., 1993). The case withα=2 corresponds to lognormal
multifractals.C1 is the intermittency parameter that charac-
terizes the sparseness of the mean.

In this study, the parametersC1 andα were obtained using
the double trace moments (DTM) technique (e.g., Tessier et
al., 1993). In the DTM technique, we take various powers
η of the rainfall fluctuations at their highest resolution, then
average the powered fluctuations to various spatial and tem-
poral scales (with scale ratioλ), and estimate the statistical
moments of various ordersq.

Mη,q (λ) =
〈[
ϕη

(
x, tj

)]q
λ

〉
for all tj (6)

In case of universality, the statistical moments will depend
on scale ratio as:

Mη,q (λ) ∼ λK(q,η)−(q−1)D (7)

and

K(q, η) = ηα
· K(q) (8)

Thereforeα is the slope ofK (q, η) versusη in a double log-
arithmic plot for a fixedq. The value ofC1 can be obtained
by pluggingα in Eq. (5) for a fixedq. For a detailed descrip-
tion of the DTM technique, the reader is referred to Tessier
et al. (1993).

3.3 Dynamic scaling analysis

So far we have analyzed spatial and temporal components of
rainfall independent of each other. Since rainfall is a time-
evolving process, the spatial and temporal variability are not
independent of each other. Simultaneous multifractal analy-
ses allow studying the temporal evolution of rainfall at mul-
tiple spatial scales. In this study we adopted the framework
proposed by Venugopal et al. (1999), which consists of esti-
mating the probability density function (PDF) of the follow-
ing statistic:

1 ln Ii,τ (L, t) = ln IL
i (τ + t) − ln IL

i (τ ) (9)

whereIL
i (τ ) is the nonzero rainfall intensity at locationi,

time instantτ , for spatial scaleL, andtdenotes the time lag
over which the rainfall evolution is measured. Venugopal
et al. (1999) chose the above statistic based on the evidence
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that the relative changes in the spatial and temporal rainfall
fluctuations were independent of the intensities (e.g., Per-
ica and Foufoula-Georgiou, 1996; Venugopal et al., 1999).
1 ln Ii,τ (L, t) was estimated in the following manner.

At each instant in timeτ , the rainfall intensitiesIL
i (τ )

were obtained for spatial scalesL varying from spatial reso-
lution of the data to the scale allowed by the distance range.
For example,L varies as 2.5 m, 5 m, 10 m etc. for a data with
spatial resolution of 2.5 m.1 ln Ii,τ (L, t) was then estimated
using Eq. (9), wheret varied from the temporal resolution of
the data to the lag allowed by the length of the dataset. The
1 ln Ii,τ (L, t) values can be pooled and the PDFs can be ob-
tained only when their statistical properties do not depend
significantly on the absolute time coordinateτ . The stan-
dard deviationσ

(
1 ln Ii,τ (L, t)

)
was estimated at each time

instant to identify such stationary region. Within the station-
ary region, the standard deviation6(L, t) of the PDFs of
1 ln Ii,τ (L, t) was estimated for each combination ofL and
t . Then the pairs ofL and t are found for which6(L, t)

is constant. If the values ofL and t display log-log linear-
ity, then there exists a space-time transformation of the form
t∼Lz across a range of scales. For a much detailed descrip-
tion of the algorithm, the reader is referred to Venugopal et
al. (1999).

4 Results and discussion

4.1 Power spectrum

4.1.1 Temporal spectrum

At each point along the distance axis, Fast Fourier Transform
algorithm is applied on the time series of the lidar data to
obtain the temporal power spectrum. The average temporal
power spectrum was estimated by averaging the individual
power spectra for the time series corresponding to spatial lo-
cations from 150 m to 910 m. The range was selected such
that we have continuous time series of lidar-rainfall data.
Further, only those individual spectra that display scaling be-
havior withR2>0.95 was used to estimate the average spec-
trum (Fig. 1a).

We carried out the local linear analysis to check the log-
log linearity of the average power spectrum and the departure
from scaling behavior. A window, whose size varied loga-
rithmically, was moved along the frequency axis of the tem-
poral power spectrum and linear regression was performed
within that particular window. Logarithmic sized window
was selected so that the window size is uniform in a log-log
plot. The slope varied from –0.50 to –2.0 with a sharp tran-
sition between frequencies corresponding to 80 s and 140 s.
From 2 s up to 80 s, the slope varied from –1.75 to –2.0 with
a coefficient of variation (CV) of 0.037 compared to the full
regime, where the CV was equal to 0.093. Therefore, we can
say that the spectrum is log-log linear in the regime 2 s to 80 s

Fig. 1. Temporal and spatial power spectrum of the lidar-rainfall
data. The dots indicate the power spectrum averaged in logarithmic
(octave) bins. The slope of the regression line fitted to the octave-
binned spectrum is also indicated on each panel.

with a departure from scaling around the region 80 s to 140 s
(Fig. 1a). The departure could be due to the limited sample of
the data resulting in sampling issues towards lower frequen-
cies. A thorough analysis with a large dataset is required to
check if the scale break (if exists) is related to characteristic
time scale in rainfall.

The average spectrum was then octave-binned (e.g., Har-
ris et al., 1996) in this region to avoid excessive weighting
on higher frequencies, and the regression analysis was car-
ried out on the octave-binned spectrum. Figure 1a shows the
octave-binned spectrum included in the regression analysis
(solid gray circles) along with the fitted regression line. The
slope of the regression line fitted to the octave-binned av-
erage power spectrum was –1.84 with anR2 value of 0.99
(Fig. 1a). Further, the average of the slopes of individual
power spectra was equal to –1.81. From these values, it can
be said that the average power spectrum is indeed represen-
tative of the individual spectra. We refrained from perform-
ing linear regression for lower frequencies (empty circles in
Fig. 1a) as they are dominated by the sampling effects. Un-
like Fabry (1996) and Nikolopoulos et al. (2008), we did
not notice any white noise like spectrum at high frequencies.
That is, scale-invariance extended up to the scales allowed by
the resolution of the data.

4.1.2 Spatial spectrum

First, we estimated the individual spatial power spectrum at
each instant in time with a fixed spatial range of 1250 m. Due
to the maximum rainfall threshold of 50 mm/h, sometimes
the available range was found to be less than 1250 m. In such
cases, we zero-padded the lidar signal and estimated the in-
dividual power spectrum. The individual spectra estimated
at each time instant were then averaged to obtain the aver-
age spatial spectrum. Further, only those individual spec-
tra that display scaling behavior withR2>0.95 was used to
estimate the average spectrum. We did not carry out local
linear analysis for the spatial spectrum as there were only
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256 points most of which were concentrated towards higher
frequencies. The average spectrum was octave-binned and
the slope was estimated leaving first two points (Fig. 1b).
The first two points were not included to avoid sampling ef-
fects. The average value of the slopes of individual spatial
power spectra was equal to –2.02 and the slope of average
spatial power spectrum was –1.99 with anR2 value of 0.99.
From the high value ofR2, it can be said that the spectrum is
log-log linear in the regime 5 m to 250 m. Figure 1b shows
the average spatial power spectrum, the octave binned aver-
age spectrum and the fitted regression line. It is not possible
to compare the spatial power spectrum from this study with
the ones reported in the literature as most of them were radi-
ally averaged two-dimensional power spectra obtained from
two-dimensional rainfall fields.

4.2 Moment scaling

From the Sect. 4.1, we have seen that the power spectral ex-
ponents were greater than the dimension of the data, which
is one. Therefore, moment scaling analysis was performed
on the absolute fluctuations computed using Eq. (2). In
the Fig. 2, we show the statistical moments obtained using
Eq. (3) for both time and space. It can be noticed that the
moments display log-log linearity with respect to the scale.
In time, the scale-invariance was found to hold from the low-
est resolution of 1 s to 512 s in time and in space it extended
from 2.5 m to 320 m. The scaling regimes in time and space
were shorter than those noticed in power spectral analysis
in the previous section. The power spectrum and the mo-
ment scaling analysis are two different tools to investigate the
presence of scaling. While the power spectrum is a second-
order analysis, the moment scaling invlolves estimation of
the moments of order ranging from 0.1 to 3.5. In addition,
the sampling issues impact these two techniques in a differ-
ent manner. Therefore, the scaling regimes detected by these
tools need not be exactly same.

We did not perform the moving window analysis (like in
power spectrum) to check the log-log linearity and the devi-
ation in scaling behavior as we only had 10 points. TheR2

value for the linear regression in the log-log plot for various
moment orders (Fig. 2) was always greater than 0.98. From
the high values ofR2, it can be said that the moments are
indeed log-log linear. Figure 2 also shows the ordinary least
squares regression fit to the statistical moments. The slopes
K(q) of the fitted regression lines are plotted against the cor-
responding moment orders for the temporal and spatial do-
mains in the Fig. 3. For both cases, the slopes vary non-
linearly with the moment order confirming that the rainfall
fluctuations are multfractal. Figure 3 also shows the DTM fit
and the corresponding universal multifractal parameters for
space and time domain. While the intermittency parameter
C1 was the same for temporal and spatial data, the multifrac-
tal parameterα was greater for spatial data (Fig. 3).

Fig. 2. Variation of(a) temporal and(b) spatial moments of rainfall
fluctuations of various moment ordersq with respect to scale ratio
λ. Figure also shows the fitted ordinary linear regression lines.

Fig. 3. Variation of (a) temporal and(b) spatial moment scaling
exponents with respect to the moment order. The parameters of the
universal multifractal model are given in the inset.

4.3 Dynamic scaling

As mentioned in Sect. 3.3, dynamic scaling analysis has to be
performed in the region where the statistical properties of the
quantity estimated using Eq. (10) do not depend significantly
on the absolute time coordinateτ . To identify such stationary
region, we moved a window of size 900 s (15 min) along the
standard deviation seriesσ

(
1 ln Ii,t (8, 8)

)
and estimated the

CV. The window that resulted in the least CV was selected
for the dynamic scaling analysis. The coefficient of variation
for the corresponding time period is 0.39. The overall stan-
dard deviation6 (L, t) was then estimated for the stationary
region for each combination ofL andt . In the Fig. 4, we plot
the pairs ofL andt for which the standard deviation6 was
constant. From the Fig. 4, it can be seen that the relationship
betweenL andt is log-log linear confirming the presence of
dynamic scaling of the formt∼Lz in the lidar-rainfall data.

Due to the restriction imposed by the attenuation of lidar
signal by heavy rainfall, the spatial range at each time step
varied from approximately 750 m to 2350 m. The station-
arity conditions further limited the length of the dataset to
15 min. Therefore, we have only four to five points as an
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Fig. 4. Evidence of dynamic scaling in the standard deviation of
1lnIi,t (L, t) (Eq. 9). The values of the standard deviations and the
corresponding dynamic scaling exponents were given in the inset.

evidence of dynamic scaling in lidar-rainfall (Fig. 4). The
scaling range extended from 10 m to 160 m in space and from
1 s to∼20 s in time. However, it should be noted that for a
dataset with wider spatial range and longer stationary period,
one might notice longer scaling regimes. The dynamic scal-
ing exponentz is also shown in the Fig. 4 along with the cor-
responding standard deviations. The value ofz varied from
0.49 to 0.59 depending on the standard deviation. The ex-
ponents were different compared to Venugopal et al. (1999)
who reported exponents in the range of 0.6 to 0.7 for tropical
convective storms of Darwin, Australia. The scaling regimes
from this study cannot be compared with that of Venugopal
et al. (1999) as they analyzed radar-rainfall images with a
resolution of 2 km in space and 10 min in time.

5 Summary and conclusions

We investigated the space-time lidar-rainfall data with a res-
olution of 2.5 m in space and 1 s in time for the presence of
scale invariance. The power spectrum analysis suggested that
the lidar-rainfall data were scale-invariant with exponents of
–1.84 and –1.99 in time and space respectively. The scal-
ing regime in time extended from 2 s up to 80 s. We noticed
a transition region between 80 s and 140 s, where the power
spectrum departs from the scaling behaviour. The scaling
regime in space extended from 5 m to 250 m. We did not ob-
serve white noise spectrum at higher frequencies that were
reported by some previous studies. In the moment scaling
analysis, the statistical moments of the rainfall fluctuations
displayed scaling behaviour with scaling regimes extending
from 1 s to 512 s in time and 2.5 m to 320 m in space. The
nonlinearity of the moment scaling function indicated that
the lidar-rainfall data displayed multiscaling behaviour both
in space and time. TheK(q) function was then paramete-

rized according to the double trace moment technique to ob-
tain the universal multifractal model parameters. The inter-
mittency parameterC1 was same for both spatial and tempo-
ral lidar-rainfall series. The multifractal indexα was equal
to 1.92 for temporal and 1.97 for spatial data. The values
of α indicate that the lidar-rainfall data corresponds to the
log(Levy) multifractals. We also noticed a space-time trans-
formation of the formt∼Lz in the lidar-rainfall data with an
exponent in the range of 0.49 to 0.59. However, it should be
noted that this transformation was observed only for the very
small scales in the range of 1 s to∼20 s in time and from
10 m to 160 m in space.

Our high-resolution dataset allowed us to perform multi-
scaling analysis at very small scales that received little at-
tention in the literature. However, to really bridge the scale
gap, we need to perform an expensive experiment with li-
dars, rain gauges, radars and satellites observing the same
rainfall system for a considerable time period. Such an exper-
iment should be designed so that there is some overlap in the
scales observed by different instruments. Besides bridging
the scale gap, such an experiment will also provide insights
into the physical mechanisms responsible for the observed
scaling behavior in rainfall datasets.
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