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Abstract

Within this study, the implementation of the smoothed particle hydrodynamics (SPH) method solving the complex
problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is out-
lined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is
presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The
results of numerical computations are confronted with the experimental as well as computational data published in
the literature.
c© 2009 University of West Bohemia. All rights reserved.
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1. Introduction

The computational solution of the fluid-structure interaction (FSI) is a complex problem which
is a topical issue in numerous engineering applications, from the mechanical and civil engi-
neering through the environmental engineering to biomechanics and biomedical engineering.
Within this study a special attention is paid to the interaction between a quasi-incompressible
fluid (liquid) and an isotropic elastic solid. The FSI problem is decomposed to synchronous so-
lution of the fluid dynamics and the elastodynamics, while the interaction algorithm is applied
at the fluid-solid interface. The mechanical response of the fluid and of the solid is solved sep-
arately using the smoothed particle hydrodynamics (SPH) method and the particle-to-particle
contact algorithm is applied in order to solve their interaction.

The SPH method is a truly meshless Lagrangian numerical technique introduced to solve
gas dynamics problems in astrophysics in late 1970s, [5] and [11]. Since then, the flexibility of
its meshless Lagrangian nature and ease of implementation is well employed within numerous
branches of computational physics, see e.g. [10, 20]. Its meshless character makes the method
very flexible and enables simulations of physical problems which might be difficult to capture by
conventional grid-based methods. As this contribution is concerned about its application within
computational continuum mechanics, it should be emphasised that the SPH method could be
advantageous e.g. during simulations of materials undergoing large deformations, brittle solids,
free surface flows or fluid-structure interaction.

Besides a number of publications on numerical modelling of fluid to structure or structure
to structure interaction by coupling the SPH method to mesh-based methods, e.g. [4, 7, 8, 21],
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there are several studies related to computational analysis of these problems purely by the SPH
approach, e.g. [1, 2] or [17]. Within this study, a purely SPH based solution of the FSI problem
is utilised. Standard SPH models for laminar flow of a quasi-incompressible fluid, e.g. [12, 3]
or [10], and for an isotropic elastic material, e.g. [9] or [6], are adopted and implemented within
a special SPH code.

Antoci et al., [1], presented a complex FSI algorithm utilising an approximate SPH evalu-
ation of a surface integral. That requires an identification of the contact surface which might
be challenging especially when fractures are involved. Herewith, a simplified interaction algo-
rithm, which enables solution of an interaction between fluid and solid without a need to define
the contact surface, is implemented. The FSI is realised by application of contact forces acting
between the particles at the contact interface. This approach was previously used by Campbell
et al., [2], for a solution of the contact between elastic bodies.

The stability of the performance of the SPH code is enforced by an application of addi-
tional numerical stabilising terms (artificial viscosity, artifical stress and correction of particle
motion). The rigid boundary conditions are represented by two sets of boundary particles while
an additional corrective term may be applied.

The implemented SPH code is applied to a test problem which was originally performed
and published by Antoci et al., [1], whose experimental as well as computational results are
used for validation of the presented code.

2. SPH model

Within the SPH formulation, the computational domain is discretised by a finite set of inter-
polating points (particles) with invariant coordinates in the material frame. The SPH particles
represent a finite mass of the discretised continuum and carry the information about all physical
variables which are evaluated at their positions. The function values and their derivatives at
a specific particle are interpolated from the function values at surrounding particles using the
interpolating (smoothing) function and its derivatives, respectively,

fi =
∑

j

mj

ρj

fjW (|ri − rj|, h), (1)

∇ifi =
∑

j

mj

ρj

fj∇iW (|ri − rj|, h), (2)

where m is the mass, ρ is the density and W is the interpolating (smoothing) function with a
continuous derivative∇iW . The index i, j respectively, denotes the variables at the particle i,
j respectively, and ∇i denotes a derivative according to ri which is the position vector.

The smoothing function W is defined so that its value monotonously decreases as the dis-
tance between particles increases. It has a compact support domain, which radius is defined by
the smoothing length h. The smoothing function is normalised and in the limit case, when the
smoothing length goes to zero, the smoothing function becomes the Dirac delta function, see
e.g. [10] for details on deriving the general SPH equations and the smoothing functions. Within
this study, the cubic B-spline smoothing function is applied, [12].

2.1. Quasi-incompressible fluid

The conservation laws describing the fluid dynamics are discretised using the relations (1) and
(2) so that a symetric form of the SPH governing equations satisfying the third Newton’s law is
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obtained. The conservation of mass is assured by the continuity equation

dρi

dt
=
∑

j

mj(vi − vj) · ∇iWij , (3)

where v is the velocity vector and Wij = W (|ri − rj|, h).
The fluid motion is governed by SPH approximation of the Navier-Stokes equation

dvi

dt
= Pi + Vi + fi, (4)

where Pi is the pressure term, Vi represents the viscous forces and fi is the body force. The
pressure term is derived so that

Pi = −
∑

j

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∇iWij , (5)

where p is the pressure. The viscous forces are modelled by a term derived by Morris et al. [16]

Vi =
∑

j

2μ
mj

ρiρj

(ri − rj) · ∇iWij

|ri − rj|2 + η2
(vi − vj), (6)

which implies a representation of the second derivative by a combination of a standard SPH and
a finite difference approximation of the first derivative. The symbol μ stands for the dynamic
viscosity of the fluid and η2 = 0.01h2 is a corrective constant avoiding a creation of singularity
when particles are approaching each other.

The presented SPH model implies the quasi-incompressible representation of the fluid
through the equation of state, [12],

pi = 0p + K

[(
ρi

0ρ

)Γ

− 1

]
, (7)

where K is the bulk modulus

K = 0ρ
0c2

Γ
. (8)

Constants 0p and 0ρ indicate the initial pressure and the initial density respectively. The initial
sound speed value 0c is a numerical parameter which is estimated so that the resulting Mach
number of the modelled flow is less than 0.1. A constant parameter Γ is usually set equal to 7.

2.2. Elastic solid

Within the SPH model of elastic solid material, the conservation of mass is represented by the
continuity equation (3) as it is done within the model of fluid. The conservation of momentum
for the elastic material is derived analogously to the equation of motion (4). The resulting SPH
equation of motion utilising the Einstein’s summation convention according to the coordinates
α and β may be written as follows

dvα
i

dt
=
∑

j

mj

(
σαβ

i

ρ2
i

+
σαβ

j

ρ2
j

)
∂Wij

∂xβ
i

+ fα. (9)
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The stress tensor σ is defined so that

σαβ
i = −piδ

αβ + Sαβ
i , (10)

where p is the hydrostatic pressure, Sαβ is the deviatoric stress and δαβ is the Kronecker delta.
The rate of change of the deviatoric stress is given according to the Jaumann’s formulation of
the Hooke’s law

dSαβ
i

dt
= 2G

(
ε̇αβ
i − 1

3
δαβ ε̇γγ

i

)
+ Sαγ

i Ωβγ
i + Ωαγ

i Sγβ
i , (11)

where G is the shear modulus of the modelled material, ε̇ and Ω are the strain rate and rotation
rate tensors respectively. The hydrostatic pressure p is calculated from the state equation

pi = 0c2(ρi − 0ρ), (12)

while the bulk modulus of the represented material is given so that

K = 0ρ 0c2. (13)

3. Stabilising terms

The SPH governing equations may be extended by additional artificial numerical terms which
helps to keep the numerical simulation stable. Then, the pressure term in the Navier-Stokes
equation (4) becomes

Pi = −
∑

j

mj

(
pi

ρ2
i

+
pj

ρ2
j

+ Πij + Rijφ
n
ij

)
∇iWij (14)

and the equation of motion for the elastic solid (9) becomes

dvα
i

dt
=

∑
j

mj

(
σαβ

i

ρ2
i

+
σαβ

j

ρ2
j

)
∂Wij

∂xβ
i

+

+
∑

j

mj

(
Πijδ

αβ + Rαβ
ij φn

ij

) ∂Wij

∂xβ
i

+ fα. (15)

The artificial viscosity term Πijδ
αβ is applied in order to smooth the unphysical numerical

oscillations, [15], while the artificial stress term Rαβ
ij φn

ij (note that n is the exponent) reduces
the tensile instability, [14]. The exact meaning of terms Πij , Rαβ

ij and φij is explained in section
3.1 and 3.2, δαβ is the Kronecker delta.

3.1. Artificial viscosity

The artificial viscosity is defined as a combination of terms analogous to bulk and von Neu-
mann-Richtmyer viscous pressures used in finite difference methods, [15],

Πij = −ζ1
(ci + cj)(hi + hj)

2(ρi + ρj)
ψij + ζ2

(hi + hj)
2

2(ρi + ρj)
ψ2

ij , (16)

ψij =

{
(vi−vj)·(ri−rj)

|ri−rj |2+η2 , (vi − vj) · (ri − rj) < 0,

0, (vi − vj) · (ri − rj) ≥ 0,
(17)

where ζ1 and ζ2 are constant artificial viscosity parameters. The term Πij is positive when parti-
cles are aproaching each other and null otherwise. The first term in the equation (16) introduces
the shear and the bulk viscosity and the second term helps to prevent particle interpenetration.
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3.2. Artificial stress

The artificial stress term acts as a repulsive force between particles which is increased when the
separation between particles decreases. That is achieved through the scaling function φij which
is defined as a ratio of the smoothing function values for the actual distance between the pair of
particles rij and the initial particle spacing 0r,

φij =
W (rij)

W (0r)
. (18)

Within the quasi-incompressible fluid model, the artificial stress value Ri is taken as

Ri = ξ
pi

ρ2
i

, (19)

when the value of the pressure pi is negative, and null otherwise, [14]. The value of parameter
ξ is set according to the value of the exponent n and the smoothing length. In the following, the
value of exponent n is set equal to 4 and ξ is taken equal to 0.3.

Within the elastic solid model, the artificial stress value is considered

Rαβ
i ∼ −ξ

σαβ
i

ρ2
i

, (20)

when the value of the stress σαβ
i is positive, and null otherwise, refer to [6] for further details.

The resulting value of the artificial stress factor between two particles is assumed

Rαβ
ij = Rαβ

i + Rαβ
j . (21)

3.3. Correction of particle motion

The stability of the entire calculation may be also improved by implementing the particle motion
correcting term, [13], which corrects the value of particle velocity according to the averaged
velocity of all neighbouring particles

dri

dt
= vi + ε

∑
j

2mj
vj − vi

ρi + ρj
Wij . (22)

A constant parameter ε is from an interval 〈0; 1〉. This term is usually applied in order to prevent
an unphysical particle motion during high speed flows and during simulations of problems
involving tension.

4. Fluid-Structure Interaction

There are two major SPH approaches to the material interaction representation applied in prac-
tice. The first approach might be called “the summation over all particles” where the governing
equations are solved for all particles together, while the second approach treats the particles
of every material separately and let them interact through a special interaction algorithm (that
might be represented by an application of contact forces at the material interface). The latter
approach is applied within this study.
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4.1. Contact Algorithm

In order to solve the interaction between fluid and solid material, a contact algorithm is imple-
mented so that the fluid dynamics and the elastodynamics are solved separately. In other words,
any fluid particle in the vicinity of an elastic body is not involved within the summation terms
in the governing equations for solid body and vice versa. The interaction between fluid and
solid particles is realised through contact forces. The contact algorithm implemented within
this study is based on the algorithm used by Campbell et al. to treat the interaction of elastic
bodies, [2].

The contact algorithm is executed for every pair of fluid and solid particles at a distance less
than the thickness of the contact interface. The contact thickness might be defined according
to the initial particle spacing, particle radius or by the smoothing length (the radius of the
smoothing function support). In the following, the contact thickness equal to the smoothing
length is applied. When the particles get into contact, it is possible to evaluate the interface
penetration

rp =
1

2
(hi + hj)− rij, (23)

where rp is the interface penetration, h is the smoothing length and rij is the distance between
particles. The contact force is applied along the vector connecting the particle centers. An
ideally plastic contact is considered, i.e. the force magnitude is estimated so that it brings both
particles to rest with respect to each other within a single timestep.

Fc = Kp

{
max(F1, F2), ṙp > 0,

0, ṙp < 0,
(24)

where

F1 =
(mi + mj)rp

2Δt2
, (25)

F2 =
(mi + mj)cprp

rijΔt
, (26)

where Fc is the contact force, Δt is the timestep, cp is the sound speed and Kp is the scaling
parameter. As the numerical value of the sound speed of modelled materials within the sim-
ulation presented in section 7 is comparable, the value of cp is defined as an averaged sound
speed of the materials in contact. The contact force Fc is nonzero only for particles which are
approaching each other. Above method using the equation (25) is similar to the well-proven
penalty contact force algorithm for crashworthiness simulations, [18], where the contact force
is applied in normal direction to the contact surface.

5. Rigid Boundaries

The rigid boundaries are represented by two sets of boundary particles, the interface and the
wall particles, [19]. When the rigid boundary is fixed, the position of both sets of the boundary
particles does not change in time. The interface particles are placed along the boundary sur-
face while the wall particles fill in the region behind the boundary surface to the width of the
smoothing function support. Both sets of boundary particles are involved within the summation
terms in the governing equations, but only the density and the pressure of the wall particles are
evolved. The evolution of boundary particles’ density and pressure helps to prevent a penetra-
tion of the boundary by active particles (fluid or solid). Despite the fact that the prevention of
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boundary penetration may also be enforced by the artificial viscosity (16) and by the correcting
term (22), it may eventually happen that some active particles do penetrate the boundary. This
may cause a significant corruption of the entire simulation. In order to stabilise the calculation
at such cases, an algorithm similar to that of the rigid wall treatment in finite element codes for
crashworthiness is applied, [18].

Every interface particle has assigned a normal vector to the boundary surface. When an
active particle approaches the boundary interface, an artificial displacement is applied to the
active particle along the normal vector of the nearest interface particle. The value of the artificial
displacement is set such that the penetration of the boundary is immediately avoided and the
new distance between particle and the boundary interface is rs = 0.01x0, where x0 is the
initial particle spacing. When the artificial displacement is applied, it is necessary to adequately
adjust the active particle velocity vector. An artificial velocity (rb + rs)/dt is added to the
active particle velocity vector in the direction of the boundary normal, where rb is the boundary
penetration. Even though the artificial displacement causes an additional energy dissipation
in the vicinity of the boundary, it is applied to stabilise simulations when penetration of the
boundary is imminent.

6. Implementation

An introduction of the relations (1) and (2) enables the evaluation of the function values and
their spatial derivatives without a presence of a computational grid. The connectivity of grid-
based methods is replaced by the search for the neighbouring particles within the compact
support domain of the smoothing function. In this study, the search for the neighbouring parti-
cles is realised by the linked-list algorithm, [10]. The time integration of the SPH equations is
performed by an explicit numerical integration scheme. Herewith, the predictor-corrector time
integrating scheme with appropriate time-stepping conditions is utilised, [6, 16].

7. Numerical simulations

Antoci et al., [1], proposed an experiment involving the interaction of a collapsing column of
water with an elastic plate, which they used for validation of their numerical FSI solver. Their
experimental setup is designed so that the tests can be analysed as a two-dimensional problem.

The problem of elastic plate subjected to time varying water pressure exerted by a collapsing
water column is applied here as a validation of the implemented contact algorithm and the
calculated results are compared to experimental as well as computational data published in [1].
The simulation setup is displayed in Fig. 1 (top-left). The fluid particles are coloured in dark
grey, the solid particles are black and the rigid boundary is light gray. The column of water is
kept between two vertical walls. The lower part of the left wall is elastic while the other parts
are considered to be rigid, i.e. the upper part of the left wall, the right vertical wall and the tank
bottom are rigid. There is no other obstacle nor wall to the left from the elastic plate so that the
water flow can evolve freely in horizontal direction when the elastic plate is released.

The width and the height of the water column are 0.1 m and 0.14 m, respectively. The elastic
plate is 0.005 m thick and 0.079 m long. The upper end of the elastic plate is attached to the
rigid boundary, while the lower end is released at the beginning of the simulation and is free
to move along the rigid bottom. The water density is 1 000 kg m−3 and its dynamic viscosity
is 8.9 × 10−4 Pa s. For numerical reasons, the modelled speed of sound in water is 30 m s−1

which is lower than its physical value, see section 2.1 The density of the elastic material is
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Fig. 1. Elastic plate subjected to time varying water pressure: particle positions at time 0.0 s, 0.09 s,
0.15 s and 0.33 s

Fig. 2. Free end of the elastic plate: Calculated
displacement in x direction (solid line) compared
to experimental (circles) and computational (dots)
results published by Antoci et al. [1]

Fig. 3. Free end of the elastic plate: Calculated
displacement in y direction (solid line) compared
to experimental (circles) and computational (dots)
results published by Antoci et al. [1]

1100 kg m−3, its bulk and shear moduli are 2 × 107 Pa and 4.27 × 106 Pa, respectively. Both
artificial viscosity parameters ζ1 and ζ2 are equal 1 for the solid material and zero for the fluid.
The correction of particle motion parameter ε equals 0.3. The fluid flow is driven by the gravity
force while assuming the gravitational acceleration 9.81 m s−2.

Fig. 1 shows the evolution of the fluid flow while the elastic plate is deformed under the
water pressure. The spatial distribution of SPH particles is displayed at time 0.0 s, 0.09 s, 0.15 s
and 0.33 s, respectively. Naturally, the outflow flux depends on the elastic plate deformation
which is evolved by the water pressure. There are apparent free surface waves at the top of the
water column which may be observed also in the experiments, [1]. Time evolution of the x and
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Fig. 4. Water level at the tank center: Calculated
water level (solid line) compared to experimen-
tal (circles) and computational (dots) results pub-
lished by Antoci et al. [1]

Fig. 5. Energy evolution of the simulated system:
ET total energy, EP potential energy, EK kinetic
energy, U internal energy of fluid, W deformation
energy of solid

y displacement of the elastic plate’s free-end is shown in Fig. 2 and 3, respectively. The time
evolution and the value of the displacements are in a reasonable agreement with the published
data. Even though the maximal displacements of the free-end of the elastic plate are achieved
sooner than in the experiments, all trends in the time evolution are well reproduced. In fig. 4,
there is a comparison of water level values at the center of the tank. Again a good agreement
is achieved. The numerical model is slightly dissipative, due to the introduction of corrective
terms and due to the applied rigid boundary model. There is an apparent drop of the total energy
of the simulated system displayed in fig. 5, which is about 6.5 %.

The key issue of the performed simulations is a proper choice of the contact force scaling
factor Kp. In case its value is set too large, a void area along the contact interface may appear,
on the other hand when its value is too small, there is a danger of an inter-penetration of the
materials in contact. The value 0.002 5 for the scaling factor Kp is applied in the presented
simulation. When a definition of the contact thickness is modified to the value of initial particle
spacing and the scaling factor value is 0.25, nearly identical results are obtained.

8. Conclusion

The presented results of the SPH simulations give a satisfactory agreement with the results of
experiments and numerical simulations performed by Antoci et al., [1]. The applied contact
algorithm for solution of the FSI problem by introducing a contact (penalty) force acting along
the centerline of the interacting particles is very simple and straightforward to implement. Even
though this is a simple approach to interaction modelling, the algorithm is very flexible, stable
and relatively modest in terms of computational costs. It may be advantegeous for simulations
of problems involving fractures and other changes in the interface topology as no contact surface
has to be defined.

Despite the satisfactory results presented, a study of the sensitivity of the contact algorithm
to the parameter setup and an identification of an optimal choice for the scaling factor Kp value
for a general paramater setup are of interest. Eventually, a modification of the presented algo-
rithm so that the contact force is applied in the boundary normal direction can be considered.
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