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Dynamic economic dispatch (DED) is one of the major operational decisions in electric power 
systems. DED problem is an optimization problem with an objective to determine the optimal 
combination of power outputs for all generating units over a certain period of time in order to 
minimize the total fuel cost while satisfying dynamic operational constraints and load demand in 
each interval. This paper presents an improved differential evolution (IDE) method to solve the 
DED problem of generating units considering valve-point effects. Heuristic crossover technique 
and gene swap operator are introduced in the proposed approach to improve the convergence 
characteristic of the differential evolution (DE) algorithm. To illustrate the effectiveness of the 
proposed approach, two test systems consisting of five and ten generating units have been 
considered. The results obtained through the proposed method are compared with those reported 
in the literature. 

Keywords: Dynamic economic dispatch, ramp rate limits, nonsmooth fuel cost function, 
differential evolution 

1. INTRODUCTION 

Dynamic economic dispatch (DED) is an extension of the conventional economic 
dispatch problem used to determine the optimal generation schedule of on-line generators, 
so as to meet the predicted load demand over certain period of time at minimum operating 
cost under various system and operational constraints. Due to the ramp-rate constraints of a 
generator, the operational decision at hour t may affect the operational decision at a later 
hour. For a power system with binding ramp-rate limits, these limits must be properly 
modeled in production simulation. The DED is not only the most accurate formulation of 
the economic dispatch problem but also the most difficult dynamic optimization problem. 

 
     Most of the literature addresses DED problems with convex cost functions [1]–[3]. 
However, in reality, large steam turbines have steam admission valves, which contribute 
nonconvexity in the fuel cost function of the generating units [4]-[6]. Accurate modeling of 
DED problem will be improved when the valve point loadings in the generating units are 
taken into account. Furthermore, they may generate multiple local optimum points in the 
solution space. Previous efforts on solving DED problem have employed various 
mathematical programming methods and optimization techniques. Traditional methods like 
gradient projection method [1], Lagrangian relaxation [7], dynamic programming and so 
on, when used to solve DED problem, suffer from myopia for nonlinear, discontinuous 
search spaces, leading them to a less desirable performance and these methods often use 
approximations to limit complexity.  
 

The stochastic search algorithms such as genetic algorithm (GA) [4],[8], evolutionary 
programming (EP) [5],[9],[10], simulated annealing  (SA) [11], and particle swarm 
optimization (PSO) [6] may prove to be very effective in solving nonlinear ED problems 
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without any restriction on the shape of the cost curves. They often provide a fast, 
reasonable nearly global optimal solution. The setting of control parameters of the SA 
algorithm is a difficult task and convergence speed is slow when applied to a real system. 
Though the GA methods have been employed successfully to solve complex optimization 
problems, recent research has identified some deficiencies in GA performance. This 
degradation in efficiency is apparent in applications with highly epistatic objective 
functions. Moreover, the premature convergence of GA degrades its performance and 
reduces its search capability that leads to a higher probability toward obtaining a local 
optimum [12]. EP seems to be a good method to solve optimization problems, when applied 
to problems consisting of more number of local optima the solutions obtained from EP 
method is just near global optimum one. Also GA and EP take long simulation time in 
order to obtain solution for such problems. All these methods use probabilistic rules to 
update their candidates positions in the solution space. Sequential quadratic programming 
(SQP) method seems to be the best nonlinear programming method for constrained 
optimization problem but the objective function to be minimized is nonconvex , it ensures 
the local optimum solution.  

 
Recently, SA [13], hybrid EP-SQP [14], DGPSO [15] and hybrid PSO-SQP [16] 

methods are proposed to solve dynamic economic dispatch problem with nonsmooth fuel 
cost functions. These hybrid methods utilize local searching property of SQP along with 
stochastic optimization techniques to determine the optimal solution of DED problem.     

 
Differential Evolution developed by Storn and Price is one of the excellent evolutionary 

algorithms [17] . DE is a robust statistical method for cost function minimization, which 
does not make use of a single parameter vector but instead uses a population of equally 
important vectors. This paper develops an improved DE algorithm to determine the 
optimum generation schedule of the DED problem that takes into consideration of valve-
point effects. In the proposed approach, the search capability of the DE algorithm is 
enhanced by introducing heuristic crossover operation and gene swap operator, which leads 
to a higher probability of getting global or near global optimal solutions. The proposed 
method is tested on five-unit and ten-unit sample test systems and the results are compared 
with a SA, hybrid EP-SQP, DGPSO and PSO-SQP methods. The effectiveness and 
potential of the proposed approach to solve DED problem is demonstrated. 

2. FORMULATION OF DED PROBLEM 

The classic DED problem minimizes the following incremental cost function associated 
to dispatchable units: 

 

                             
1 1

   ($)
T N

it it
t i

Min F  F (P )
= =

=∑∑                                                    (1) 

 
where F is the total generating cost over the whole dispatch period, T is the number of 
intervals in the scheduled horizon,  N is the number of generating units, and Fit(Pit) is the 
fuel cost in terms of its real power output Pit at time t. Taking into account of the valve-
point effects, the fuel cost function of ith thermal generating unit is expressed as the sum of 
a quadratic and a sinusoidal function in the following form 
 

          2
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where ai,  bi,  and ci are cost coefficients, ei, fi  are constants from the valve point effect of  
the  ith  generating  unit,  and Pi  is  the  power output of  the  ith unit in megawatts.  
 
The minimization of the generation cost is subjected to the following equality and 
inequality constraints: 

1) Real power balance constraint 

1

0
N

it Dt Lt
i

P  - P  - P   
=

=∑                                                                 (3) 

where t = 1, 2, …, T.  PDt is the total power demand at time t and PLt is the transmission 
power loss at time t in megawatts. PLt   is calculated using the B-Matrix loss coefficients and 
the general form of the loss formula using B-coefficients is 
 

  
1 1

N N

Lt it ij jt
i j

P   P B P
= =

=∑∑                                                                  (4) 

2) Real power generation limit 

min maxi it iP P P≤ ≤                                                                    (5) 
where Pimin is the minimum limit, and Pimax is the maximum limit of real power of the ith  
unit in megawatts. 

3) Generating unit ramp rate limits 

-  ,      1  2, 3,.........,  ( 1)P P UR i , Nit ii t ≤ =−                            (6) 

                          -       1  2, 3,.........,  ( 1)P P DR i , Nit ii t ≤ =−         

                     
where URi  and DRi are the ramp-up and ramp-down limits of ith unit in megawatts. Thus 
the constraint of (6) due to the ramp rate constraints is modified as 
 

       max min )maxmin 1 1(P  P - DR ) P (P  P URi it i , ii , i(t ) i(t )≤ ≤ +− −         (7) 

 
such that 

    max( - ),min min, ( 1)P P P DRiit i i t= −      and                        (8) 

                           min( ),max max, ( 1)P P P URit i ii t= +−  

4) Constraint satisfaction technique 

To satisfy the equality constraint of equation (3), a loading of any one unit is selected as the 
depending loading PNt . The power level of Nth generator is given by 
 

  
( 1)

1

N

Nt Dt Lt it
i

P P P P
−

=

= + − ∑                                                 (9) 

 
The transmission loss PLt is function of all the generators including that of dependent 

generator, and it is given by    
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Expanding and rearranging, equation (10) becomes 
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The loading of dependent generator can be determined by solving (11) using standard 
algebraic method. 

3. IMPROVED DIFFERENTIAL EVOLUTION ALGORITHM FOR DED 
PROBLEM 

The detailed implementation of IDE to solve the dynamic economic dispatch problem, 
is as follows:   

 
      1)  Initialization: DE uses NP D-dimensional parameter vectors 
 

                           , ;   1  2  3,.........  k GP  k , , , NP=                                                     (12) 
 

in a generation G, with NP being constant over the entire optimization process. At the 
start of the procedure, i.e., generation G = 1, the population vectors have to be generated 
randomly within the limits. For T intervals in the generation scheduling horizon, there are T 
dispatches of generation by N generating units. An array of control variable vectors or 
positions of the each agent can be represented as 

 
( ) ( )11 21 31 1 1 2 3             ,  

                                        for  1 2 3 .........
k,G N T T T NTP P P P P P P P P

k  , , , ,NP

⎡ ⎤= ⎣ ⎦
=

                         (13) 

Where PNT  is the generation power output of the Nth unit at Tth interval. 
 
2) Heuristic Crossover operation:  It is unique crossover operator because it uses 

values of the objective function in determining the direction of search and it 
produces only one offspring. The operator generates a single offspring X3 from the 
randomly selected two parent vectors X1 and X2 in the population according to the 
rule 

 
                 3 2 1 2  r (  - )X X X X= +                                                          (14) 

 
where r is a random number between 0 and 1 and the parent having higher fitness 
value is denoted by X1 and lower X2. The offspring produced due to crossover 
randomly replaces any one of the individuals in the population. A heuristic 
crossover operator with probability of 0.02 is implemented in this algorithm.   

 
3) Mutation: For the following generation G+ 1, new vectors Vk, G+1 are generated 

according to the following mutation scheme 
1 1 2  for   1 2 3 .........k, G k, G r , G r , GV    P   F . (P  - P ),   k  , , , ,NP+ = + =     (15) 
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The integers r1 and r2 are chosen randomly over [1, NP] and should be mutually 
different from the running index k. Under certain circumstances, the index k will 
be exchanged by an arbitrary random number r3 ∈  [1, NP].  F is a scaling factor, 
which controls the amplification of the differential variation. The value of scaling 
factor is defined as follows: 

 

  iter1
itermax

F     - =                                                               (16) 

 
where iter and itermax are the number of current iteration and the maximum 
iteration, respectively. In DE, the mutation is solely derived from positional 
information of current population. This scheme provides for automatic self-
adaptation and eliminates the need to adapt standard deviations of a probability 
density function.  
 

4) Evaluation of Each Agent: Each individual in the population is evaluated using the 
fitness function of the problem to minimize the fuel cost function. The real power 
limit of the first generator and the unit ramp rate limits are constrained by adding 
them as a exact penalty term to the objective function to form a generalized fitness 
function fk as given below. 
 

 1 1 1 lim lim
1 1 1 t 2 2

 -   - 
T N T T N

k it it t t r it r
t i t i

 f F (P ) P P P Pμ μ
= = = = =

= + +∑∑ ∑ ∑∑              (17) 

where 1   randμ μ  are penalty parameters, and 
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− −

− −

⎧⎪ < −⎪⎪⎪⎪= + > +⎨⎪⎪⎪⎪⎪⎩

                                   (19) 

 
The penalty terms associated with inequality constraints are added to the objective 
function. The penalty terms reflect the violation of the constraints and assign a 
high cost of the penalty function to candidate point far from the feasible region.  
 

5) Estimation and Selection: The parent is replaced by its child if the fitness of the 
child is better than that of its parent. Explicitly, the parent is retained in the next 
generation if the fitness of the child is worse than that of its parent. DE selection 
scheme is based on local competition only. i.e., a child   Vk, G+1 will compete 
against one population member Pk, G  and survivor will enter the new population. 
The number NT of children which may be produced to compete against Pk, G 
should be chosen sufficiently high so that sufficient number of child will enter the 
new population. if  Vk, G+1 is worse than that of its parent , the vector generation 
process defined by (15) & (19) is repeated up to NT times. If  Vk, G+1 still worse 
than that of its parent, Pk, G+1 will be set to Pk, G. An insufficient number NT leads to 
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survival of too many old population vectors, which may induce stagnation. To 
prevent a vector Pk, G from surviving indefinitely, DE employs the concept of 
aging. NE defines how many generations a population vector may survive before it 
has to be replaced due to excessive age. To this end Pk, G in (13) is checked first for 
how many generations it has already lived. If  Pk, G has an age of less than NE  
generations it remains unaltered, otherwise Pi, G is replaced by Pr3, G with  r3 ≠ k 
being a randomly chosen integer r3 ∈  [1, NP]. In short, if Pk, G is too old it may 
not serve as a parent vector any more but will be replaced by a randomly chosen  
member of the current generation G. 

 
6) Gene Swap operator:  For a large scale optimization problems with difficult search 

spaces and lengthy chromosomes, the possibility of the DE algorithm to get 
trapped in local optima will be high. Maintaining diversity is especially important 
for dynamic optimization problems since the optimum of such a function changes 
over time and if the population is clustered in a tight region, the individuals may 
not be able to detect a change in the function landscape. In order to increase the 
diversity in the population of DE algorithm, a gene swap operator is introduced in 
the proposed algorithm. This operator randomly selects two genes in a 
chromosome and swaps their values. If the modified chromosome proved to have 
better fitness, it replaces original one in the new population. In the proposed 
algorithm, gene swap operator is applied with a probability of 0.05 that swaps the 
active power output of two units in the randomly selected individual. 

 
7) Stopping Criterion: The procedure from 2-6 is repeated until the maximum 

number of iterations reached.  

4. NUMERICAL SIMULATION RESULTS AND DISCUSSION 

An improved DE algorithm for the DED problem described above has been applied to 
five-unit and ten-unit systems with nonsmooth fuel cost function to demonstrate the 
performance of the proposed method. The simulations were carried out on a PC with 
Pentium IV 2.8-GHZ processor. The software is developed using the MATLAB 6.5. An 
improved DE uses four control variables ie.  population size NP, maximum number of 
generations NG, number of trials per iteration NT, number of generations a population 
vector may survive before it has to be replaced due to excessive age NE. The number of 
trials have been conducted with changes in the size of population, number of generations, 
and number of trials per iteration in order to obtain the best values to achieve the overall 
minimum cost of generation. The best solution obtained through the proposed method is 
compared to those reported in the recent literature.   

 
 

Example-1: 5–unit system 

The cost coefficients, generation limits, load demand in each interval and ramp-rate 
limits of five-unit sample system with valve-point loading are given in Appendix, which is 
taken from Ref. [13]. The scheduling time horizon is one day divided into 24 intervals. The 
transmission losses are calculated using B-coefficient loss formula. The results of the 
proposed method are compared with that of the simulated annealing (SA) method [13]. The 
IDE control parameters used in this example are NP= 100, NG= 500, NT= 10 and 
NE= 5. The optimal dispatch of real power for the given scheduling horizon using 
improved DE method is given in Table 1. The best total production cost obtained using 
proposed method is $45800, compared to $47356 of the SA method. The sum of total 
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generating power in each interval satisfies the load demand plus transmission losses.  The 
computation time taken by the algorithm is 3min, 17s. 

 
Table 1 : Best scheduling of 5-unit system using improved DE method 
Hour P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) Ploss (MW) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

13.5391 
11.2817 
12.0242 
27.0177 
39.9826 
18.5381 
17.3986 
14.4462 
20.2907 
49.9993 
72.0943 
49.0762 
20.7067 
44.9018 
42.6234 
22.4686 
13.7916 
10.1286 
14.1660 
12.0689 
41.9365 
41.0368 
23.2548 
15.2391 

99.3704 
98.5308 
105.7360 
106.5800 
99.3312 
111.6850 
94.4374 
99.2620 
99.2430 
101.3351 
103.7987 
95.2490 
97.9203 
101.9107 
106.1245 
98.0354 
100.0280 
97.0662 
99.0430 
98.6777 
86.6247 
76.6583 
92.1743 
70.2344 

30.2998 
64.7365 
99.9374 
120.3798 
120.3491 
118.6123 
117.5525 
113.7126 
136.3110 
121.6219 
112.9096 
114.8818 
113.2666 
112.6850 
113.4645 
113.1596 
116.3379 
113.9712 
113.5148 
111.4379 
120.5802 
110.6187 
103.0519 
88.1839 

127.1172 
124.7846 
125.0162 
125.2478 
124.9764 
137.7051 
174.9023 
211.2911 
210.9401 
210.4041 
209.4610 
210.0632 
211.2251 
211.5980 
210.1864 
210.1344 
194.7838 
210.3131 
203.6348 
209.7849 
195.4251 
166.3992 
130.8563 
130.7542 

143.5164 
139.7971 
137.0990 
156.6716 
179.8703 
229.3824 
230.0848 
224.5312 
233.3671 
231.1839 
232.7864 
282.5364 
271.6483 
229.0945 
190.7303 
143.4480 
139.7523 
184.5040 
232.8794 
282.8782 
245.2676 
218.0152 
183.5350 
163.1208 

3.8429 
4.1308 
4.8128 
5.8969 
6.5096 
7.9229 
8.3756 
9.2431 
10.1519 
10.5443 
11.0500 
11.8066 
10.7670 
10.1900 
9.1291 
7.2460 
6.6936 
7.9831 
9.2380 
10.8476 
9.8341 
7.7282 
5.8723 
4.5324 

Example-2: 10–unit system  

     In this example, the DED problem of the 10-unit system is solved by the proposed 
method by neglecting transmission losses in order to compare the results of the improved 
DE method with hybrid methods such as Hybrid EP-SQP, Deterministically guided PSO 
and Hybrid PSO-SQP algorithms reported in literature [14], [15], & [16]. The load demand 
of the system was divided by 24 intervals. The system data for ten-unit sample system is 
taken from the Ref. [14] , as given in Appendix. Transmission losses have been ignored for 
the sake of comparison of results with those reported in literature. The following DE 
control parameters has been chosen for this example: NP= 120, NG= 1500, NT= 10, and 
NE= 5. The best results obtained through various hybrid methods and from the improved 
DE method are shown in Table 2. It clear from the table that the proposed method produces 
much better results compared to recently reported hybrid methods for solving DED 
problem. The optimum scheduling of generating units for 24 hours using proposed method 
is given in Table 3. The computation time of proposed method for ten-unit system is 14min, 
15s.  Figure 1 shows the convergence characteristics of the IDE for DED problem. 
              

Table 2:  Comparison of results for 10-unit system 
Method Total fuel 

cost (dollars/24h) 
Difference (%) 

from improved DE 
Improved DE 
Hybrid EP-SQP[14] 
DGPSO[15] 
Hybrid PSO-SQP[16] 

1026269 
1031746 
1028835 
1027334 

--- 
0.5306 
0.1494 
0.1037 
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Table 3: Best scheduling of 10-unit system using improved DE method 
Hour P1 

(MW) 
P2 

(MW) 
P3 

(MW) 
P4 

(MW) 
P5 

(MW) 
P6 

(MW) 
P7 

(MW) 
P8 

(MW) 
P9 

(MW) 
P10 

(MW) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

226.653 
226.843 
303.957 
303.351 
302.830 
379.834 
379.967 
379.841 
456.523 
456.582 
456.444 
465.802 
457.002 
380.226 
303.669 
302.696 
379.823 
380.774 
380.458 
456.353 
380.012 
303.007 
229.435 
293.992 

135.010 
135.030 
150.391 
229.524 
309.507 
389.487 
459.959 
396.569 
397.284 
459.983 
459.996 
459.793 
459.997 
396.844 
390.425 
310.449 
230.498 
310.259 
390.118 
459.884 
459.916 
382.899 
304.436 
224.469 

232.146 
305.610 
312.253 
331.327 
337.410 
338.729 
302.114 
339.865 
339.842 
338.274 
339.832 
339.511 
300.751 
305.844 
339.992 
286.680 
260.451 
300.307 
300.653 
339.993 
335.361 
261.195 
181.198 
101.208 

60.155 
60.137 
60.046 
60.035 
60.001 
60.188 
75.387 
124.731 
174.728 
211.290 
255.159 
299.877 
257.028 
207.145 
157.603 
107.634 
61.008 
60.420 
71.348 
121.252 
76.326 
60.745 
61.010 
60.285 

73.031 
73.000 
122.743 
172.743 
122.762 
73.016 
73.006 
122.964 
172.960 
222.960 
222.712 
242.993 
222.503 
222.744 
172.744 
172.215 
172.642 
172.515 
221.933 
223.660 
237.966 
222.631 
172.717 
122.725 

57.000 
57.540 
57.000 
57.039 
95.439 
135.264 
159.999 
159.983 
130.739 
130.908 
159.850 
159.996 
122.856 
159.786 
159.820 
122.332 
123.557 
151.611 
159.925 
159.003 
122.307 
72.543 
58.245 
57.102 

129.995 
129.813 
129.603 
129.975 
129.996 
129.467 
129.523 
129.991 
129.917 
129.994 
129.983 
129.974 
129.844 
129.399 
129.618 
129.987 
129.999 
129.990 
129.428 
129.987 
129.986 
129.901 
129.955 
129.988 

47.006 
47.027 
47.000 
47.006 
47.006 
47.009 
47.022 
47.000 
47.006 
47.003 
47.010 
47.007 
47.018 
47.006 
47.129 
47.001 
47.002 
47.125 
47.137 
77.127 
107.125 
119.997 
119.994 
119.228 

20.005 
20.001 
20.007 
20.001 
20.049 
20.005 
20.021 
20.057 
20.000 
20.005 
20.014 
20.047 
20.001 
20.006 
20.001 
20.006 
20.020 
20.000 
20.000 
49.742 
20.002 
20.083 
20.011 
20.002 

55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 
55 

 
 
 

 
Fig. 1. Convergence characteristics of an improved DE method for 10-unit system. 
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5. CONCLUSION  

An improved differential evolution based methodology has been developed for 
determination of optimal solution for DED problem with the generator constraints. The 
improved DE incorporates the heuristic crossover and gene swap operator to enhance its 
search capacity, which leads to a higher probability of getting the global or near global 
solution. The feasibility of the proposed method was demonstrated with five and ten-unit 
sample systems. The test results reveals that the optimal dispatch solution obtained through 
the improved DE lead to less operating cost than that found by other methods, which shows 
the capability of the algorithm to determine the global or near global solution for DED 
problem. The proposed approach outperforms SA, hybrid EP-SQP, DGPSO and PSO-SQP 
methods for DED problems in terms of quality of solution with better performance. 
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APPENDIX  

Table A: Data for the 5-unit system 

Quantities Unit 1 Unit 2  Unit 3 Unit 4 Unit 5 
a  ($/(MW)2 h) 0.0080 0.0030 0.0012 0.0010 0.0015 
b  ($/MWh) 2.0 1.8 2.1 2.0 1.8 
c  ($/h)  25 60 100 120 40 
e  ($/h) 100 140 160 180 200 
f  (1/MW) 0.042 0.040 0.038 0.037 0.035 
Pmin  (MW) 10 20 30 40 50 
Pmax  (MW) 75 125 175 250 300 
UR (MW/h) 30 30 40 50 50 
DR (MW/h) 30 30 40 50 50 
 
 
 
Transmission Loss Coefficient for 5-unit system 

 

         

0.000049  0.000014  0.000015  0.000015  0.000020

0.000014  0.000045  0.000016  0.000020  0.000018

  0.000015  0.000016  0.000039  0.000010  0.000012

0.000015  0.000020  0.000010  0.000040  0.000014

0.00

B =

0020  0.000018  0.000012  0.000014  0.000035

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

   per MW. 
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Table B: Load demand for 24 hours (5-unit system) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

1 410 7 626 13 704 19 654 
2 435 8 654 14 690 20 704 
3 475 9 690 15 654 21 680 
4 530 10 704 16 580 22 605 
5 558 11 720 17 558 23 527 
6 608 12 740 18 608 24 463 

 
 

Table C: Data for the 10-unit system 

Quantities Unit 1 Unit 2  Unit 3 Unit 4 Unit 5 
a ($/(MW)2 h) 0.00043 0.00063 0.00039 0.0007 0.00079 
b  ($/MWh) 21.60 21.05 20.81 23.90 21.62 
c  ($/h)  958.20 1313.6 604.97 471.60 480.29 
e  ($/h) 450 600 320 260 280 
f  (1/MW) 0.041 0.036 0.028 0.052 0.063 
Pmin (MW) 150 135 73 60 73 
Pmax  (MW) 470 460 340 300 243 
UR (MW/h) 80 80 80 50 50 
DR (MW/h) 80 80 80 50 50 

 
Quantities Unit 6 Unit 7 Unit 8 Unit 9 Unit 10 

a ($/(MW)2 h) 0.00056 0.00211 0.0048 0.10908 0.00951 
b  ($/MWh) 17.87 16.51 23.23 19.58 22.54 
c  ($/h)  601.75 502.70 639.40 455.60 692.40 
e  ($/h) 310 300 340 270 380 
f  (1/MW) 0.048 0.086 0.082 0.098 0.094 
Pmin (MW) 57 20 47 20 55 
Pmax  (MW) 160 130 120 80 55 
UR (MW/h) 50 30 30 30 30 
DR (MW/h) 50 30 30 30 30 

 
 

Table D: Load demand for 24 hours (10-unit system) 

 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

Time 
(h) 

Load 
(MW) 

1 1036 7 1702 13 2072 19 1776 
2 1110 8 1776 14 1924 20 2072 
3 1258 9 1924 15 1776 21 1924 
4 1406 10 2072 16 1554 22 1628 
5 1480 11 2146 17 1480 23 1332 
6 1628 12 2220 18 1628 24 1184 


