
Maciej Hamiga
Marcin Jarząb

AN ANALYSIS OF METHODS
FOR SHARING AN ELECTRONIC PLATFORM
OF PUBLIC ADMINISTRATION SERVICES
USING CLOUD COMPUTING
AND SERVICE ORIENTED ARCHITECTURE

Abstract This paper presents a case study on how to design and implement a public
administration services platform, using the SOA paradigm and cloud model for
sharing among citizens belonging to particular districts and provinces, provi-
ding tight integration with an existing ePUAP system. The basic requirements,
architecture and implementation of the platform are all discussed. Practical
evaluation of the solution is elaborated using real-case scenario of the Business
Process Management related activities.

Keywords ePUAP, public administration, SOA, cloud, architecture

17 listopada 2012 str. 1/18

Computer Science • 13 (4) 2012 http://dx.doi.org/10.7494/csci.2012.13.4.115

115

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Directory of Open Access Journals

https://core.ac.uk/display/27200529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

As the Internet becomes one of the most important means of communication, public
administration tries to follow this trend, by offering its services through the World
Wide Web. In many countries, IT systems are being created, which not only provide
web-based access to public administration for citizens but also try to digitalize the
whole business process workflow of these institutions.

The purpose of this paper is to analyze and propose an effective solution which
aims at moving public administration services into a cloud environment [4] using
a Service Oriented Architecture (SOA) paradigm. Changing the old, on-premises de-
ployment model to cloud-based hosting can improve cost-efficiency, provide better
reliability, scalability and unify the IT infrastructure country-wide whereas SOA pro-
vides capabilities for the development of applications by combining loosely coupled
and interoperable services.

Such an approach, however, also brings new challenges that need to be faced, such
as quality of services assurance, adequate tenant isolation level and security, system
scaling and failover capabilities. All these factors need to be taken into account during
project and implementation phases.

1.1. What is ePUAP

The Electronic Platform of Public Administration Services (ePUAP—Polish acro-
nym) is a computer system that aims at facilitating and accelerating the process of
computerization of Polish public administration services, country-wide. A centralized
point of access to all services for the citizens is an additional and important benefit.

The system itself is accessible through the web, both for administrators and
regular users, and offers a set of services, from which any subset can be chosen by the
public administration unit to implement. These services are as follows:

• Communication services — including sending and receiving electronic documents,
with various options of validation / receipt acknowledgment.
• Security services — such as Single Sign-On (SSO), citizen identification number

verification.
• Coordination services — simplified environment enabling the use of business

process modeling software.
• Catalog services — centralized repository of document templates, procedure de-

scriptions etc.

All services are published using Web Services standards, which makes integration
with external systems possible. After registering certificates in the ePUAP system,
external applications can pull or push documents to the public administration units
in an automated way. Public administration unit themselves can also make use of
the integration mechanisms, to hook up their own electronic document systems into
ePUAP.

17 listopada 2012 str. 2/18

116 Maciej Hamiga, Marcin Jarząb

1.2. Problem statement and research contribution, related work

While ePUAP is a step forward in the process of digitalization of public administra-
tion, it still does not completely address the problem of on-premises software systems
that are functioning in administration units all around the country. ePUAP is merely
a front-end, acting as a bus to which proprietary local governments computer systems
can plug-in and does not take into account the heterogeneity of business processes
among various institutions. While input data formats (i.e. documents that citizens
file in) are often standardized, the workflow of business processing can significantly
differ between organizations.

There is already some research about models of how to utilize Cloud computing
and SOA in the context of eGovernment public services [7]. In [5] there are elabora-
ted techniques and patterns that should be used to transform electronic government
solutions based on traditional architectures to these new paradigms. They state that
there is a strong requirement for clear legal regulations, strong leadership of the na-
tional government and environment which is able to sustain technology innovations.
An interesting initiative is also supervised by the United States Government and Ge-
neral Services Administrator to launch the cloud computing platform Apps.gov [1]
hosting large portions of federal government infrastructure. The platform provides
access to storage and compute resources and also exposes business, productivity and
social apps for customers.

As a solution to the problem described above, this paper aims at proposing
a technological solution that would move on-premises public administration software
installation into a centrally hosted, IT cloud based on SOA paradigm. The proposed
technological stack is used to implement a platform which integrates with ePUAP to
realize real-life use cases and promotes standardization of the IT infrastructure and
software while enhancing cost effectiveness, reliability and accessibility of electronic
public administration services.

This paper is organized as follows. Section 2 presents a vision of ePUAP in
a cloud using the SOA approach. The architecture and implementation are presented
in sections 3 and 4 respectively. In section 5 a case study is presented. The paper
ends with conclusions and a list of possible improvements which could be considered
as a part of future work.

2. Vision of ePUAP in the cloud using SOA

The vision of public administration IT services hosted in a cloud brings multiple
advantages and possibilities for organizations that host their own, local computer
systems or do not own such systems at all (Fig. 1). All hardware resources would be
moved to centralized data centers — dependently on financial possibilities: multiple
across the country, or single with a disaster recovery backup location. All services
would be made available to service consumers by the data center using virtualization
techniques for storage, compute and network resources. Hardware needed on the or-

17 listopada 2012 str. 3/18

An analysis of methods for sharing an electronic platform (...) 117

ganization side (local government agency) would consist only of personal computers.
Citizens would use an ePUAP portal which is integrated with particular cloud in-
stances, serving a given group of citizens assigned to country region i.e. province and
district.

Figure 1. Vision of ePUAP platform in the cloud based on SOA paradigm.

Service Oriented Architecture would be introduced, encouraging software colla-
boration though the use of standards-based communication protocols and constructs
such as Enterprise Service Bus (ESB) that enable message mediation between vario-
us message formats. Existing proprietary, legacy applications can be either rewritten
as SOA components and plugged into the ESB or left in place, with software com-
munication adapters installed. That would ensure message routing between legacy
applications and the rest of the system.

To simplify the process of porting internal business processes to the new system,
utilization of high level design tools, such as Business Process Modeling Notation
(BPMN) diagram editors, business analysts cooperating with developers will be able
to model organization business workflows which will make use of all of the services
available in the cloud environment.

Access to all services migrated to the cloud will be web-based, with web applica-
tion providing access to all components of the system. Proprietary web applications,
internal portals etc. can also be hosted in the cloud, making use of virtualized infra-
structure and high availability clusters of application servers.

Additionally, integration with the current ePUAP solution should be provided. In
the beginning, ePUAP could serve as a centralized front-end for public administration
services country-wide. During the next stages of movement to cloud infrastructure,
such integration could be tightened, alongside with moving the ePUAP itself into the
common public administration cloud.

17 listopada 2012 str. 4/18

118 Maciej Hamiga, Marcin Jarząb

3. Architecture

The SOA Solution Stack (S3) [3, 10] proposed by IBM elaborates the process of SOA
applications development and deployment. The S3 model presented in Figure 2 pro-
vides a detailed description of architectural elements divided into nine layers. Each
layer has a physical and logical aspect and lets the organization define the degree of
consumer-provider integration. The existence of both functional and non-functional
service requirements is also assumed, which establish the SOAs objective. S3s nine
layers are operational systems, service component, services, business process, consu-
mer, integration, QoS, information architecture, and governance and policies. The
five horizontal layers relate to the overall functionality of the SOA solution, which are
cut-crossed by the vertical layers that are non-functional in nature.

Figure 2. S3 SOA reference architecture.

Modern computing infrastructures for applications should be created according
to architectures that provide flexible platform and operational capabilities for the
provisioning of required computational resources by applications. This can be attained
by introducing service orientation to the concepts of orchestration and management
of computational infrastructure through a Service-Oriented Infrastructure (SOI) [8]
paradigm.

The proposed architecture (Figure 3) delivers virtualized and physical services
that can be described in categories such as Hardware as a Service (HaaS), Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS),
Workflow as a Service (WaaS) which further can be aligned with the S3 model. The
presented architecture is enough general and can be orthogonally analyzed not only
in the ePUAP context.

17 listopada 2012 str. 5/18

An analysis of methods for sharing an electronic platform (...) 119

The framework enabling realization of such architecture must be modular with
components that are configurable to fulfill the constantly changing requirements and
evolution of IT technologies. They require solutions that not only correspond to cur-
rent requirements, but also allow to evolution and adaptation, as technology advances
and new requirements emerge.

Figure 3. Architecture of the cloud and S3 model combined.

Exposed services must be fully discoverable, interoperable and easy to integrate
with external provisioning frameworks required for instance to build hybrid clouds.
The solution must support aspects such as:
• Cloud environment creation through the provisioning of virtualized infrastruc-

ture with allocated compute, storage resources distributed over physical servers
connected with virtual network.
• The provisioned virtualized infrastructure elements can be modified during run-

time so the running application services can obtain or release access to physical
resources during execution.
• Particular elements of the cloud need to be constantly governed to ensure the

required Quality of Services (QoS) using tools to monitor and manage the confi-
guration of particular elements within the S3s Operational Systems layer through
the specification of QoS goals (QoS Layer) for provisioned elements, definition of
provisioning procedures and adaptation policies (Governance and Policies Layer)
stored in a central repository.

3.1. Infrastructure as a service

The purpose of the virtualized infrastructure layer is to supply other layers with
computing power, storage and basic software components that will enable them to
run higher-level user applications. The main mean used to achieve this goal is the use
of virtualization techniques, which will create a feeling of unlimited resources for the
upper layers.

17 listopada 2012 str. 6/18

120 Maciej Hamiga, Marcin Jarząb

Two of the main challenges that arise when adapting the cloud computing model
for hosting multiple organizations within one shared cloud are tenant isolation and
quality of service assurance. Heavy virtualization, either ‘bare-metal’ or ‘hosted’ can
guarantee that both of these requirements are fulfilled. However, for smaller public
administration units, lightweight virtualization can be applied, in a form of operating
system containers, such as OpenVZ or Solaris containers [9]. This method of virtu-
alization can provide sufficient isolation and QoS parameters, with more fine-grained
resource allocation for a given group of organizations.

The choice of hardware infrastructure that will be used for virtualization is left
for the implementer to choose — virtual machines (VM) can be hosted on literally
every modern hardware platform. Such platforms can be either cluster installations,
with hardware virtualization support, or multiple lower end nodes connected using
a fast and reliable network. When considering the second option, VM load balancing
and migration can be crucial for ensuring the efficient use of hardware resources.
Luckily, most commercial and open source cloud management software provides VM
migration support.

To fully leverage the advantages of virtualization and to ease and the speed up
deployment and configuration of applications, a sub-layer of application servers will
be introduced. Such servers would be distributed in the form of Virtual Appliance —
bundles containing Just Enough Operating System (JEOS) to run them using the VM
hypervisor. After the deployment of a virtual appliance, a sserver would join the pool
of available resources and be ready for configuration and deployment (either manual
or automatic) of the proper software for the needs of given organization.

3.2. Platform as a service

PaaS exposes services on top of a given software platform (application server, ESB,
Message Oriented Middleware, database) that is provided as a “service” to build high-
level service. PaaS might produce a platform that contains a properly configured OS,
database and application server with already-deployed application components, often
serving tenant application1, and enabling software delivery through an on-demand
business model. Many application platforms like J2EE or .Net provides such sup-
port using so-called domain notion where particular application server instances can
be assigned to a group of infrastructure users. Database-level multi-tenancy can be
achieved by both using separate database schemas and appropriate user permissions,
or — in the case of higher database throughput requirement — by physical separation
of databases on two or more physical nodes.

1There is a distinction between multi-tenancy, isolated tenancy and mega-tenancy. Multi-tenancy
uses the same instances of database or other environments with the same version of an application.
Isolated tenancy devotes a dedicated and unique database to each application installation offering
flexible software customization with many applications’ version. Mega-tenancy is a sort of combina-
tion of the multi and isolated tenancies where execution environments are dedicated with a shared
database.

17 listopada 2012 str. 7/18

An analysis of methods for sharing an electronic platform (...) 121

SOA is a key concept of the proposed solution. Every subsystem, operation or
functionality will be published as a standardized service and integrated with other
services using Enterprise Service Bus software available in the PaaS layer. ESBs pro-
vide advanced message routing functionality, data exchange format mediation, and
monitoring and high availability capabilities. What is also important in an environ-
ment that is opened for extension, ESB through the use of technologies such as Java
Business Integration (JBI) or Open Services Gateway initiative (OSGi) supports an
easy process of plugging-in new components/services into the system.

In the described use case of a system for public administration units, services
hosted in the ESB could consist of:

• A business process execution service — an entry point to the business process
execution engine.
• Legacy systems ESB adapters — providing access to proprietary applications in

a standardized fashion.
• ePUAP services — ESB “proxied” services for pulling and push data from/to

existing electronic administration system.
• Data services, catalog services — such as document storage, LDAP lookups etc.

Figure 4. Message communication exchange between ESB and ePUAP portal.

3.3. Software as a service

Multiple instances of web-based applications will be the backbone of the systems
front-end. Clustered (or single — for non-demanding organizations) applications will
be configured to fulfill each tenant specific needs. Through the use of web interface,
all system capabilities and services will be exposed to end users — i.e. public admini-

17 listopada 2012 str. 8/18

122 Maciej Hamiga, Marcin Jarząb

stration unit employees. ePUAP will remain the main entry point for country citizens,
however, specific applications can always be made accessible to the broader public.

Some web applications will be crucial to the functioning of the system, thus they
will be ‘prepackaged’ and deployed for every tenant. An example of such application
is a BPM task console, which enables users to access tasks assigned to them by the
business process execution engine. Other applications can be specifically requested by
the organization and deployed ‘on-demand’ — legacy applications being moved to the
cloud also fall under this category.

3.4. Workflow as a service

One of the key aspects of the designed system is the WaaS functionality. Business
Process Modeling (BPM) tools aim at bridging the gap between business analysts
and technical teams providing additional support during the phases of design and
deployment of complex business processes.

A standard chosen for BPM implementation in this project is BPMN — this for-
mat, maintained by OMG Consortium, is capable of modelling workflows and storing
information about the presentation of the model. Such an approach enables the use
of standardized editors, workflow visualizations etc. Up to version 1.2, BPMN was
responsible only for the model and presentation of the process. To execute the BPMN
described process in an execution engine, an intermediate step of BPMN2BPEL map-
ping was needed. Resulting Business Process Execution Language files were ready to
be deployed and run in existing engines coming from various vendors. With the intro-
duction of BMPN 2.0, a standard BPEL mapping was described and made obsolete
the same time — BPMN 2.0 supports native process execution, without the need for
any kind of translation. Products that leverage BPMN 2.0 features already exist on
the market — including a powerful, open-source business process modeling framework
jBPM, maintained by JBoss.

BPM tools provide end users with the ability to setup their own workflows which
will interact with other services plugged into the ESB. Web application will be able to
pull information from the business process execution engine to, for example, determine
tasks that are pending user approval, display them and then submit the approval
information back to the engine so the process can resume.

Modeled processes will also have access to the existing ePUAP system — data
submitted by the citizen using the ePUAP frontend can be transferred to the BPM
engine, processed according to the workflow and then pushed back to ePUAP.

4. Implementation

As a part of the research, a simple implementation was prepared, to ensure that the
vision proposed can be realized in reality with the use of currently available techno-
logies, frameworks and software. Proof of concept (PoC) implementation covers each
layer of the architecture described earlier, to assemble a basic yet working solution.

17 listopada 2012 str. 9/18

An analysis of methods for sharing an electronic platform (...) 123

4.1. Infrastructure layer

For the purpose of PoC implementation, all resources were allocated on one physical
node. Oracle VirtualBox2 was used as VM hypervisor. Vagrant3 software took the re-
sponsibility of managing virtual machines instances. Choice of Vagrant was dictated
by the usage of only one node — actual VM migration capabilities were not required
in such an environment and Vagrant is designed to create multi-VM development
environments on a single physical computer. It is not suited for production use — if
the designed system were to be deployed in reality, an enterprise-class solution like
OpenNebula, Eucalyptus, OpenStack [6] should be preferred. Such solutions offer mo-
re sophisticated VM management, VM live migration, physical nodes load monitoring
etc.

Java application servers were used as a basis to run the remaining software com-
ponents of the system. JBoss4 was chosen as AS vendor, with JBoss AS 7.1 product
— this choice was dictated by the compatibility of the selected BPM solution, good
clustering capabilities and community support.

With Vagrant supporting the concept of “box” — VM image with preconfigured
JBoss AS and Java technology stack preinstalled was used. This made spinning up
a new application server node as easy as adding a new Vagrant VM to the list and
selecting an appropriate prepackaged box.

4.2. Platform as a service layer

After VM startup, a set of maintenance tasks needed to be performed in order to
prepare the virtual node for actual usage. This problem was addressed by setting up
Chef5 provisioning framework to perform network and OS setup, application server
configuration and startup, application deployment etc. A chef introduces the concept
of “cookbooks” and “recipes” to perform administrative tasks. Cookbooks are sets
of recipes — ruby scripts that perform actual operations on the provisioned nodes.
Recipes are configurable with the use of attributes, which can be overridden auto-
matically (e.g. dependent on the operating system), or manually — specified by the
administrator before the VM provision takes place.

The Chef repository contains a number of recipes that deal with common tasks
— such as installing desired JDK. The Chef also provides so-called “resources” —
helpers that enable users to easily write their own, specialized recipes. Using attribu-
tes, resources and the Chef template system (which is able to produce configuration
files of any type and structure), recipes were prepared to assign application servers to
the accurate domain or to point the application code to the correct database node,
assigned to the tenant.

2https://www.virtualbox.org
3http://vagrantup.com
4http://www.jboss.org/jbossas
5http://wiki.opscode.com/display/chef/Home

17 listopada 2012 str. 10/18

124 Maciej Hamiga, Marcin Jarząb

With Vagrant explicit support for Chef, provisioning configuration was merged
with the Vagrant VM configuration. In a production environment, Chef encourages
users to make use of the client-server approach — with central Chef Server storing
recipes and node-specific configuration files, and Chef Client — executing configured
sets of recipes on the nodes.

Listing 1: Chef recipe configuring and running JBoss as part of a server domain
chef.add_recipe ("jboss ::domain -conf")
chef.add_recipe ("jboss ::domain -run")
chef.json = {

:jboss => {
:domain_name => "mpl.umk.jboss.slave1",

:domain_controller => {
:address => "192.160.6.11" , :port => 9999

},
:bind_address => "192.160.6.10"

}
}

The ESB concept is the central point of SOA and the entire concept of the system.
The Fuse ESB6 product was chosen as the ESB implementation. It is based on the
Apache ServiceMix7 project, but provides additional documentation, maintenance
and support to deliver an enterprise-ready, open source service bus.

Expansibility of the designed system is required — if one cloud needs to fulfill
the needs of multiple organizations, tenants need to have the ability to plug their own
extensions into the common architecture. Fuse ESB enables users to achieve that goal
by providing support of two technologies — JBI and OSGi.

Java Business Integration is a specification developed under the Java Community
Process, for an approach to implement SOA architecture based on Java technology
stack. Specification is based on the Web Services and Normalized Message Router
(NMR) concepts, and provides portability between any JBI implementation. Curren-
tly, however, JBI is slowly being replaced with OSGi-based platforms. OSGi, a module
system and service platform for Java, offers an impressive, standardized and dynamic
component model. Fuse ESB 4.x series bring OSGi support using Apache Karaf/Felix8

as an implementation.

To compete with the JBI specification, an alternative to NMR is also required.
In Fuse ESB, Apache Camel9 integration framework is such a solution. Apache Camel
is an implementation of the Enterprise Integration Patterns — a set of rules and pat-
terns for integrating heterogeneous data sources and message formats. With powerful
DSL available in multiple programming languages, multiple components capable of
transforming data from most of endpoint types used in the enterprise and the con-

6http://fusesource.com/products/enterprise-servicemix
7http://servicemix.apache.org
8http://karaf.apache.org
9http://camel.apache.org

17 listopada 2012 str. 11/18

An analysis of methods for sharing an electronic platform (...) 125

cept of “Exchange” — a normalized message container — Apache Camel can serve
as a modern NMR replacement.

Components realized as part of PoC implementation leverage OSGi and Camel
to create OSGi bundles that can be easily and dynamically plugged into the ESB.
An OSGi bundle serving as ePUAP integration layer was created, that allowed the
platform to receive and send documents to/from ePUAP, appropriately map the do-
cument data to business process data and finally start a process instance. Web service
consumers and producers were created using Apache CXF10 framework — which is
also integrated into Camel. This made creating a simple WS component as simple
as writing one short XML configuration file. ePUAP integration layer takes care of
the appropriate certificate signing of the outgoing requests, and the verification of
requests incoming from ePUAP — all other system components do not have to take
security mechanisms required by ePUAP into account.

4.3. Software as a service layer

The SaaS is the least standardized layer of the system architecture stack. Any kind
of Java-based web application can be deployed on a standalone or clustered JBoss
server. For the purpose of PoC implementation, two instances of a user task web
console were deployed, serving two different organizations. The application itself is
provided alongside with jBPM11 solution stack — it a simple example of software
accessing the business process execution engine and the business process repository
to execute previously defined processed. Console is also capable of handling human
tasks assigned to the users in the system. They can be displayed and completed by
the user, thanks to the Freemarker Template Language (FTL)12 templates generated
by the jBPM software.

4.4. Workflow as a service layer

jBPM was chosen as the provider of the BPMN modeling suite. It does not only pro-
vide the process execution engine, but also the complete set of tools accompanying it.
These additional components include BPMN graphical editor (distributed as Eclipse
IDE plugin or a standalone web application), Guvnor process repository, jBPM task
console and Human Task Service for managing user tasks.

The business process execution engine itself is a lightweight, pure Java component
that can be either embedded into the application that needs to start a process execu-
tion, or for example run as a central service, exposing the jBPM engine functionality.
The bundled jBPM console makes use of the embedded engine to execute processes
locally. While such an approach can work in a small scale deployment scenario, the
‘as a service’ approach fits better into the SOA-based environment and provides more

10http://cxf.apache.org
11http://www.jboss.org/jbpm
12http://freemarker.sourceforge.net/docs/dgui_quickstart_template.html

17 listopada 2012 str. 12/18

126 Maciej Hamiga, Marcin Jarząb

control over state persistence, load balancing and availability. To leverage these ad-
vantages, an OSGi bundle was created, which after plugging into the ESB served as
a service oriented business process execution engine.

Second most the important component of the jBPM suite is the Guvnor reposi-
tory (Figure 5), a web application that brings rich collaboration capabilities into the
world of business process modeling. Guvnor serves as a versioned storage of business
processes and related assets.

Figure 5. Guvnor process repository console.

jBPM introduces a concept of “Service Task” — a business specific task that
can be used when creating BMPN processes. Creation and sharing of Service Tasks
through Guvnor makes it easy for different organizations and vendors to plug in their
proprietary services into the cloud. All that is required is to create an appropriate
Service Task and OSGi bundle pair. The first can be deployed to Guvnor and the latter
can be plugged into the ESB and provide connectivity with the system. Technical
teams and business analysts working on the processes or service tasks are able to
check in them to Guvnor and then momentarily use them in all of the applications,
with the use of Guvnor REST API. Guvnor does also provide a web BPMN editor, user
roles management and documentation generator functionality. Human Task Service
is a sample jBPM implementation of a service that manages the state of human
activities, according to the WS-HumanTask [2] specification. jBPM supports modeling
of human tasks with the use of special User Task nodes. User Task nodes can receive
or send process data to the user using FTL form templates — a simplified HTML
form language. Human Task Service is used to manage and persist assignment and
state information.

17 listopada 2012 str. 13/18

An analysis of methods for sharing an electronic platform (...) 127

In a multi-tenant environment, multiple instances of Human Task services can
be used to manage tasks inside each organization separately, while ensuring adequate
isolation and security.

5. Case study

For the PoC implementation purpose, the Municipality of Cracow provided examples
of actual business processes concerning new vehicle registration. A single variant of
the process was chosen as the basis for a brief case study.

5.1. Deployment model

To demonstrate multi-tenant support, described vehicle registration process was setup
for two distinct organizations, the Municipalities of Cracow and Tarnow. the Cracow
Municipality is considered to generate more load than the Tarnow office and will
be used to present clustering capabilities on the running virtual machines. Figure 6
presents the cloud structure setup for these two tenants.

Figure 6. PoC cloud deployment structure.

Central point of the system, Fuse ESB is deployed on a separate virtual machine;
the bus itself however is shared amongst both organizations — providing access to
business process execution engine amongst other services. Another shared component,
Guvnor process repository, is deployed alongside the service bus and enables both
organizations to collaborate and reuse resources in their workflows. Data access layer
is realized based on single MySQL database with tenant schema separation.

Municipality of Cracow serves as the example of an organization that needs
to handle excessive traffic — hence load balancing and clustering is required. BPM

17 listopada 2012 str. 14/18

128 Maciej Hamiga, Marcin Jarząb

task console is clustered using two virtual machines and JBoss application server
clustering capabilities. Municipality of Tarnow task console is deployed in a standard,
standalone fashion. Both organizations have access to and communicate with their
respective accounts in the ePUAP test environment.

5.2. Process model

The process description delivered in the form of a process diagram (prepared in a pro-
prietary format) showed clearly that the workflow is completely manual and is not
taking advantage of the digitalization possibilities. Citizens were obliged to fill in
a standardized paper form and deliver it to the office. During workflow next phases,
administration employees performed manual validation of the documents, prepared
additional documents to be stored in the Municipality office and contacted with exter-
nal IT systems to manually register the vehicle or the check if the vehicle has not been
stolen in the past.

Figure 7. Vehicle registration BPMN process diagram, created in jBPM suite.

The move of the process to cloud environment started with moving the process
definition to the standard BPMN format, using Eclipse jBPM designer plugin (Figure
7). As ePUAP is acting as a front-end to the Municipality of Cracow system (Figure 8),
the data is pushed from ePUAP to the BPM engine, initiating the process execution
(Figure 9). ePUAP communication service tasks were already prepared, so that they
could be used by process designers system-wide. Data received from ePUAP is mapped
to process variables and used to create a user task that aims at data validation. FTL

17 listopada 2012 str. 15/18

An analysis of methods for sharing an electronic platform (...) 129

templates are used to present the data to the Municipality of Cracow employee.
After employee action is taken, in the case of positive validation result, the vehicle is
automatically registered in the country-wide POJAZD database — the automation
of this step is one of the advantages of process digitalization. If document validation
fails, data is pushed back to ePUAP with an appropriate note that will help the citizen
to correct the document.

Figure 8. An example of ePUAP user form.

Figure 9. Administrative view of documents queue, with document waiting to be pulled
by the external system.

17 listopada 2012 str. 16/18

130 Maciej Hamiga, Marcin Jarząb

Interaction with POJAZD database is achieved through dedicated Service Tasks
and OSGi bundles — which again, can be reused by other processes. Communication
with Police SIS database of stolen vehicles is realized in an identical manner and can
be partially automated as well. After successful completion of the process execution,
state of the request is updated in the ePUAP system.

6. Summary

Concept presented in this paper is an attempt to free public administration units
country-wide of the burden of maintaining their own IT systems. Through the use of
modern architecture paradigms, such as SOA and Business Process Modeling tools,
a complex system was designed; open for extension and tenant collaboration.

Leveraging private cloud computing concept and building the system on top of
virtualized infrastructure provided scalability and availability almost ‘out-of-the-box’.
Introduction of standardized packaging in the form of virtual appliances and additio-
nal provisioning software made the infrastructure adaptive to change without effort.
Realization of PoC implementation based on an actual business process provided by
the Municipality of Cracow proved that creation of production-ready system accor-
ding to the proposed guidelines is feasible and can bring significant advantages — such
as automation of certain tasks that today are being executed by public administration
employees.

Further work on the discussed topic might include deployment of a sample imple-
mentation on production-grade hardware in a dynamically changing environment —
in order to execute tests of performance, scaling and reconfiguration (including virtual
machines migration between physical nodes). The concept of mixing two levels of vir-
tualization (VM-based and container-based) can also be researched in greater detail
to verify whether such approach would bring real value into the system architecture.

Acknowledgements

The presented research was supported by funding from the European Regional Deve-
lopment Fund no. POKL.04.01.01-00-367/08-00.

References

[1] Us government cloud platform for federal agencies. http://apps.gov.
[2] WS-HumanTask.

http://incubator.apache.org/hise/WS-HumanTask_v1.pdf, 2007.
[3] Arsanjani A., Liang-Jie Z., Ellis M., Allam A., Channabasavaiah K.: S3: A Ser-

vice-Oriented Reference Architecture. IT Professional, 2007.
[4] Buyya R., Broberg J., Goscinski A.: Cloud Computing — Principles and Para-

digms. Wiley, 2011.

17 listopada 2012 str. 17/18

An analysis of methods for sharing an electronic platform (...) 131

[5] Cellary W., Strykowski S.: E-Government Based on Cloud Computing and
Service-Oriented Architecture. ICEGOV, 2009.

[6] Delgado V.: Exploring the limits of cloud computing. Master’s thesis, Universitat
Politecnica de Catalunya, 2010.

[7] Elbadawi I.: Cloud Computing for E-Government in UAE: Opportunities, Chal-
lenges and Service Models. Proc. of ICEGOV 2011, Albany, NY, USA, ACM,
2011.

[8] M.Chang., He J., Castro-Leon E.: Service-Orientation in the Computing Infra-
structure. Proc. of SOSE 2006, Los Angeles, CA, USA, 2006.

[9] Vaughan-Nichols S. J.: New approach to virtualization is a lightweight. Computer,
vol. 39, IEEE, 2006.

[10] Zieliński K., Szydło T., Szymacha R., Kosiński J., Kosińska J., Jarzab M.: Ad-
aptive SOA Solution Stack, vol. 5. IEEE Transactions on Services Computing,
2011.

Affiliations

Maciej Hamiga
AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics,
Computer Science and Electronics, Department of Computer Science, al. A. Mickiewicza 30,
30-059 Krakow, Poland, maciej.hamiga@gmail.com

Marcin Jarząb
AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics,
Computer Science and Electronics, Department of Computer Science, al. A. Mickiewicza 30,
30-059 Krakow, Poland, mj@agh.edu.pl

Received: 30.04.2012
Revised: 26.06.2012
Accepted: 3.09.2012

17 listopada 2012 str. 18/18

132 Maciej Hamiga, Marcin Jarząb

