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Abstract: In this note, by using O. Hadzi¢'s generalization of a fixed point theorem of
Himmelberg, we prove a non - cooperative equilibrium existence theorem in non -
compact settings and a generalization of an existence theorem for non - compact infinite
optimization problems, all in not necessarily locally convex spaces.
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1. INTRODUCTION

In paper [5], Kaczynski and Zeidan introduced the concept of the continuous
cross - section property and by using the Ky Fan fixed point theorem proved an existence
theorem for finite optimization problem in compact convex seting. A few years later S.M.
Im and W.K. Kim, by using Himmelberg's [4] non - compact generalization of the K. Fan
fixed point theorem, proved a non - cooperative equilibrium existence theorem in non -
compact setting. Using O. Hadzi¢'s generalization of Himmelberg's fixed point theorem
we shall prove existence theorem for non-cooperative equilibrium and existence theorem
to non - compact infinite optimization problems in not necessarily locally convex spaces.

2. PRELIMINARIES

Let I be any (possibly uncountable) index set and for each ie/, let X, be a
Hausdorff topological vector space and X =[] X, be the product space. We shall use the

iel

following notations:
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X' =11X,
i

and p,: X > X,, p': X > X' be the projection of X onto X, and X' respectively.
For any xe X, we simply denote p'(x)e X' by x' and x=(x",x,). For any given
subset K of X, K, and K' denote the image of K under the projection of X onto X,
and X', respectively.

Foreach iel, let S, : X' — 2% be a given set valued map. We are concerned

with the existence of a solution xe€ K to the following system of minimization
problems:

fi(®)=min{f,(¥',2) | z€ S,(x)}, *)

where f, : X - R isareal valued function for each i e /.

Such problems arise from mathematical economics or game theory where the

solution X € X is usually called the non - cooperative equilibrium or social equilibrium.
Of course, it is clear that when the functions f, are continuous and K is

compact, the minimum in (*) is obtained for each i</ but not necessarily at X,.

Therefore we shall need a consistency assumption between f; and S, in order to obtain a

solution of a system of minimization problem.
Now let us recall some definitions and results which will be useful later.

Let X and Y be two Hausdorff topological spaces and 2" a set of non - empty subset of
Y. Under a multivalued mapping of X into Y we mean a mapping f : X —2". Then

f is called:
(1) Lower semicontinuous (l.s.c.) if the set {x e X | f(x)nV =} is open in
X forevery openset V in Y.

(2) Upper semicontinuous (u.s.c.) if the set {xe X | f(x)cV} is open in X
for every open set V' in Y.
(3) Continuous if it is both 1.s.c. and u.s.c..

Lemma 1. [1] Suppose that W : X xY — R is a continuous function and G : X —2"

is continuous with compact values. Then the marginal (set valued) function

V(x)={yeG(x) | W(x,y) = sup W(x,z)}

zeG(x)
s u.s.c. mapping.
Definition 1. 4 function f : K > R, where K is a subset of a vector space, is called

quasi - convex on K ifthe set {x e K | f(x)<r} is convex set for all r e R. Of course

every convex function is quasi - convex but the converse is not true.
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Definition 2. Let X be a Hausdorff topological space, K — X and &/ the fundamental
system of neighbourhoods of zero in X. The set K is said to be of Z — type if for every

Vel thereexists Ueld such that
comv(UN(K-K))cV.
(convA = convex hull of the set 4 ).

Remark. Every subset K — X, where X is a locally convex topological vector space, is

of Z— type. In [3] examples of subset K = X of Z— type, where X is not locally
convex topological vector spaces, are given.

The next fixed point theorem will be an essential tool for proving the existence
of solution in our optimization problems.

Theorem A. [3]. Let K be a convex subset of a Hausdorff topological vector space X
and D is a nonempty compact subset of K. Let S : K — 2" be an u.s.c. mapping such
that for each x € K, S(x) is nonempty closed convex subset of D and S(K) is of Z —
type. Then there exists a point X € D such that x € S(x).

3. RESULTS
We begin with the following:
Proposition 1. Let {K.},_, be a family of nonempty compact convex subsets of Hausdorff

(K, c X,, forevery iel), X =I1X, and K =11K,.
iel

iel

topological vector spaces {X,}

iel

Iffor every i€l theset K, isof Z— typein X, then K isof Z— typein X.

i

Proof: For each i € [ let Z/ be a fundamental system of zero neighbourhoods in space

X, and let us denote by Z7 the fundamental system of zero neighbourhoods in the

product (Tihonov) topology on X =[] X,. For any V' € Z/ we have to prove that there
iel

exists U € &/ such that conv(U N (K —K)) c V. Suppose that V' € Z/ . Then there exists
a finite set {i,, 7,,..., i,} =/ suchthat V' =[[X/, where

iel

i

. X,, iel\{i,i,,...i}
O
Ve, ie€li,iy,....i,},

and V, eZ{, for each ie{i,i,,...,i,}. Since K, c X,, iel, and K, is of Z— type,
there exists U, € &£, where i € {i,...,i,} such that

conv(U, N (K, -K,)) V.

Let U=[]X,. for

iel
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[ESNR AR L ATURY A
UL i€y iy},

Now, suppose that z € conv(U N (K —K)). This implies that there exist 7,k =1,2,...,m,
and u* eUN(K-K),i=1,2,...,m, so that r, >0,k =1,2,...,m, ]:Z;rk =1 and z= érku".
Let us prove that z € V. It is enough to prove that p,(z) €V, for every i € {i,...,i,} .

For z= élrkuk it follows that p,(z) = érk p,(u") for all iel. Suppose now
that ie {i,...,7,}.

Since p,(u*)e X, N(K,-K,)=U, (K, -K,) it follows that

p;(z) e conv(U, N (K, - K,)) V..
Now, we shall prove our main result.

Theorem 1. Let K be a non-empty convex subset of Hausdorff topological vector space
X and D be a nonempty compact subset o K. Suppose that ¢ : XxX - R is

continuous function and S : K —2” a continuous set valued map such that
(1) far each, x € K, S(x) is a nonempty closed convex subset of D,
(2) S(K) is of Z— type subset;
(3) for each x e K, y — ¢(x,y) is quasi - convex on S(x).

Then there exists a point X €D such tha xe€S(X) and ¢(x,y)=¢(x,x) for all
y e S(x).
Proof: Define a set valued mapping ¥ : K —2” by

V(x):={z € S@) | §(x.2) = inf g1}

for all xe K. Since ¢ is continuous and S(x) is non-empty compact, V(x) is
nonempty compact subset of D for all xeK. For each z,z,eV(x) and
tel0,1], tz, +(1-1)z, € S(x).

Since ¢(x,z,) =d(x,z,) = ir;(f)(é(x, y)=r and {z € S(x) | #(x,z) <r} is convex, one can

see that 7z, +(1—-¢)z, e V(x) so V(x) is convex for every x€ K. By Lemma 1., ' is
u.s.c. mapping. Now, by Theorem A, there exists a fixed point xe D of V, ie.
X € V(x). But this point is just what we need to find.

In [6] S.M. Im and W.K. Kim give an example which show that, even when X
is a locally convex Hausdorff topological spaces, the lower semicontinuity of S is
essential in Theorem 1.
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Next we shall prove a generalization of Kaczynski - Zeidan's result to non -
compact infinite optimizations problems in not necessarily locally convex space.

Theorem 2. Let I any (possibly uncountable) index set and for each i€ I, let K, be a
convex subset of Hausdorff topological vector space X, and the D, be a non - empty
compact subset of K,. Foreach icl, let f, : K=[1K, > R be a continuous function

iel

and S, : K' — 2" be a continuous set valued mapping such that for each i € I
(1) S.(x') is non - empty closed convex subset of D;;
(2) S(X") is of Z— type;
(3) x, = f.(x',x,) is quasi - convex on S,(x").

Then there exists a point X € D =[1D, such that for each i€, %, € S,(x") and

iel
f(x',x)= inf f(X',z).
zeS; (¥)
Proof: For each i € I, let us define a set valued function ¥, : K' — 2% by
V)= eS,a) | S )= inf [,

As in the proof of Theorem 1. ¥,(x) is non- empty compact convex set and V; is u.s.c.
mapping. Now, we define V' : K — 2° by
Voo =[1r),
iel
for each x € K.
Then V(x) is non - empty compact convex subset of D and V is us.c.

mapping. By Proposition 1 subset V' (K) is of Z— type. Using Theorem A again one

can see that there exists a point ¥ € D such that X € V(%) i.e. ¥’ €V,(X') and
fi(x',%)=inf f(xX',2)
zeS; (&)

foral iel.

In special case of Theorem 2, when K is a compact convex and S, is the cross
section of K =[K, (i.e. S, : K' > 2% is defined by S,(x,)={ze X, | (x',z)eK}),

iel

then the continuous cross - section property from [5] clearly implies the assumption of
Theorem 2 by letting K, =D, for each ie /. Therefore, Theorem 2 is an infinite
generalization of Theorem in [6] to non - compact setting in not necessarily locally
convex space.
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