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SUMMARY: The electrons dynamics and the time autocorrelation function

CEE(t) for the total electric microfield of the electrons on positive charge impu-
rity embedded in a plasma are considered when the relativistic dynamic of the
electrons is taken into account. We have, at first, built the effective potential gov-
erning the electrons dynamics. This potential obeys a nonlinear integral equation
that we have solved numerically. Regarding the electron broadening of the line in
plasma, we have found that when the plasma parameters change, the amplitude

of the collision operator changes in the same way as the time integral of CEE(t).
The electron-impurity interaction is taken first as screened Deutsh interaction and
second as Kelbg interaction. Comparisons of all interesting quantities are made
with respect to the previous interactions as well as between classical and relativistic
dynamics of electrons.
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1. INTRODUCTION

The nonlinear behavior of electric charges
around an impurity charge of the same sign is a prob-
lem that has been studied for a long time due to
its great importance in many techniques (Holtsmark
1919, Hooper 1966, Iglesias et al. 1983, Boerker et
al. 1987, Berkovsky et al. 1996). It is worth to
mention that for fully ionized plasma composed of
electrons and positive ions, the hypothesis of one
component plasma (OCP) allows us to ignore the ef-
fects of ions motion with respect to those of electrons
because the mass ratio is about me/mi ≈ 1/2000.
So, the system is composed of only one kind of
mobile charges (electrons), whereas the species of
the opposite charge (ions) are modeled by the con-
tinuous background which provides electrical neu-

trality. Coulomb forces between point charges are
purely repulsive and charges approach very close to
each other only rarely whatever the plasma condi-
tions. Concerning the ion-electron interaction, it is
clear that it requires a quantum mechanical descrip-
tion. In this case, the Coulomb potential is replaced
by a finite and regularized potential at the origin
(Deutsh 1977, Deutsh et al. 1978, Minoo et al.
1981) V SD

ie (r)(Screened−Deutsh) = −(Ze2/r)(1 −
exp(−r/λT ))exp(−r/λD) or Kelbg interaction (Fili-
nov et al. 2003) V K

ie (r) = − Ze2

r
√

π
(1− exp(−r2/λ2

T ) +√
π r

λT
(1−erf( r

λT
))) where λD = (kBT/(4πnee

2))1/2,
λT = (2πh̄2/(mekBT ))1/2, and ne is the density of
the electrons and, in this way, the quantum effects
are approximately taken into account. Furthermore,
we will also consider these two potentials for the
interaction between the electron and the continu-
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ous positive background. We note that many recent
works on statistical properties of electrons in plas-
mas exist. For example, we find in Dufour et al.
(2005) and Dufty et al. (2003) that the electrons are
considered as classical particles moving by the first
Newton law (d−→v /dt = −m−1

e
−→∇ .V (r) where me is

the electron rest mass). In addition, the interaction
between the electron and the continuous background
is taken as purely Coulombic. In our work, we con-
sider the relativistic motion of the electron around
the impurity to compute CEE(t). This task passes
through two steps: - The first step: computation
of the effective potential V(r) in which the electron
moves, - The second step: we solve the relativistic
equation of motion for the electron in the effective
potential (d−→p /dt = −−→∇ .V (r) where −→p = m−→v and
m = me/(1−v2/c2)1/2). Furthermore, when we com-
pute the effective potential V(r), we consider that the
electron interacts with the test charge and with the
continuous background positive charge via a regu-
larized potential, whereas it interacts with the elec-
trons via the Debye potential. In Section 2 we con-
struct the equation for the effective potential which
yields the subsequent results of this paper. We also
solve this equation and present some discussions on
its solutions. The dynamics properties, that is to
say, the time autocorrelation function of the elec-
tron microfield, are presented in Section 3. Section
4 applies the results of Section 3 to the electronic
broadening of the line shape in plasmas. At the end,
we close this paper by Conclusion. Before starting
the second Section, let us recall the relevant param-
eters for our study: the charge number Z, the av-
erage distance between electrons a = (3/4πne)1/3,
the electron coupling constant Γ = e2/(kTa), the
electron de Broglie thermal length λT , the degree of
quanticity η = λT /a and the Debye length λD. The
cases considered in this work are (for Z=2, Z=4 and
Z=8): the coupling parameter Γ = 0.1, the quan-
ticity parameter η = 0.177, the dimensionless Debye
length η′ = λD/a = 1.826. These parameters cor-
respond to the electron density ne = 2. × 1020cm−3

and to the temperature T = 1.6 × 105K. In this re-
gion of temperature and electron density, the non-
relativistic treatment of the plasma becomes invalid
(Mihajlov et al. 2011). We shall then treat the elec-
tron motion around the impurity in the framework
of the relativistic classical mechanics.

2. INTEGRAL EQUATION FOR THE
EFFECTIVE ENERGY POTENTIAL

2.1. Construction of integral equation for
the effective energy potential

Let us consider a medium consisting of elec-
trons and a continuous background of neutralizing
positive electrical charges. This is the so called
model of the one component plasma (OCP). At first,
the distribution of the electrons is that of Maxwell-
Boltzmann governing the equilibrium state of the

electrons’ system. If we place a positive ion of charge
Ze (called test charge or impurity) at the coordi-
nates origin the system is disturbed and, after a cer-
tain time t, it will reach a new equilibrium state de-
scribed by a new distribution of electrons over the
space around the charge Ze. The latter is deter-
mined through the potential energy of an electron
located at distance r from the test charge Ze when
the system reaches this new equilibrium state. This
potential energy is built as a sum of three contribu-
tions:

V (r) = Vie(r) + Vee(r) + Vef(r) (1)

where Vie(r) is the potential energy of ion-electron
interaction (the ion is the test charge), Vee(r) is the
interaction energy of the electron with all other elec-
trons and Vef(r) is the interaction energy of the elec-
tron with the continuous neutralizing background of
ions (Kalman et al. 2002, Talin et al. 2002). The
ion-electron interaction is taken in a way that we can
consider the quantum effects at short distances; we
represent it here by the following pseudo-potential
(Deutsh 1977, Deutsh et al. 1978, Minoo et al.
1981):

V SD
ie (r) = −Ze2

r
(1− e−r/λT )e−r/λD (2)

or Kelbg interaction:

V K
ie (r) = − Ze2

r
√

π
.(1− e

− r2

λ2
T ) +

r
√

π

λT
(1− erf(

r

λT
)))

(3)
We will first investigate the case of screened

Deutsh potential, while the results for the Kelbg po-
tential are then straightforward. Most previous stud-
ies (Talin et al. 2002, Dufty et al. 2003, Dufour et
al. 2005) took the Coulomb interaction like elec-
trons interactions with themselves and with uniform
neutralizing background of positive electric charge.
To approach to the reality and taking into account
the effect of screening in our study, we will take the
electron-electron interaction to be that of the Debye
potential energy e2e−r/λD/r such as the potential en-
ergy Vee(r) in the mean field so that approximation
is equal to:

Vee(r) = e2

∫
f(
−→
r′ ,−→p )

e
− |
−→r −

−→
r′ |

λD

|−→r −−→r′ |
d−→p 3d

−→
r′

3
, (4)

where:

f(−→r ,−→p ) =
N

Ω
(
mβ

2π
)3/2e−β(

−→p 2

2m + V (r)) (5)

is the Maxwell-Boltzmann distribution, N is the to-
tal number of electrons, and Ω is the volume of the
system, whereas the energy potential of the electron
with the positive background neutralizing charge is
given by:
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V SD
ef (r) = −nee

2

∫
(1− e−

|−→r −
−→
r′ |

λT )e−
|−→r −

−→
r′ |

λD

|−→r −−→r′ |
d
−→
r′

3

(6)
In this formula, we have introduced the

screened Deutsh interaction between the electron
and the continuous background of positive charge.
Then, the potential interaction energy of the elec-
tron, with all the plasma components, satisfies the
following nonlinear integral equation:

V SD(r) = V SD
ie (r)+

e2
∫ ∫

f(
−→
r′ ,−→p ) e

− |
−→r −

−→
r′ |

λD

|−→r −−→r′ |
d−→p 3d

−→
r′

3

−nee
2
∫ (1−e

− |
−→r −

−→
r′ |

λT )e
− |
−→r −

−→
r′ |

λD

|−→r −−→r′ |
d
−→
r′

3

(7)

Using spherical coordinates and some basic
calculations, the last integral equation is transformed
into the following:

V SD(r) = V SD
ie (r) + 2πnee

2
∫∞
0

r′dr′
r λD.

(e−(r+r′)/λD − e−|r−r′|/λD)(1− e−βV SD(r′))

−2πnee
2
∫∞
0

r′dr′
r λ(e−

r+r′
λ − e−

|r−r′|
λ )

(8)

where λ = λDλT /(λT + λD).
In order to deal with an dimensionless equa-

tion, we put Y SD(x) = −aV SD(r)/(Ze2) , a =
(4πne/3)−1/3 , x = r/a , η = λT /a , η′ = λD/a and
ξ = ηη′/(η + η′). After that, we obtain the desired
dimensionless integral equation:

Y SD(x) = 1
x (1− e−x/η)e−x/η′

− 3
2Z

∫∞
0

t
x [η′(e−

x+t

η′ − e
− |x−t|

η′ )(1− eZΓY SD(t))

−ξ(e−
x+t

ξ − e−
|x−t|

ξ )]dt
(9)

The same calculations for the case of Kelbg
interaction give:

Y K(x) = Y K
ie (x)+

3
2Z

∫∞
0

t
x [η′(e−

x+t

η′ − e
− |x−t|

η′ )eZΓY K(t)

− 1
η
√

π (F (t + x)− F (|x− t|))]dt.

(10)

where:

Y K
ie (x) = 1

x
√

π
[1− e−( x

η )2 + x
√

π
η (1− erf(x

η ))]
(11)

and

F (x) = −x(η + x
√

π
2 + η

2 e−( x
η )2)+

η2
√

π
2 erf(x

η )( 3
2 + (x

η )2)
(12)

It should be noted here that Shukla et al.
(2008) has also studied the electron dynamics around
an impurity by considering the hot and degener-
ate electrons. For this the quantum distribution of
Thomas-Fermi was used.

2.2. Numerical solution of the integral
equation for the potential energy

We can solve the nonlinear integral equation
(9) by the method of successive iterations (fixed
point method FPM) starting with the initial func-
tion Y0(x) = Y SD

ie (x) = 1
x (1− e−x/η)e−x/η′ . We can

also solve this integral equation by transforming it
into a second order nonlinear differential equation
and then use the method of Runge-Kutta (RKM) to
solve it. The numerical solution of the nonlinear inte-
gral equations (9-10), in the case Γ = 0.1, η = 0.177,
η′ = 1.826 and Z = 2 and Z = 8 by the iterative
method gives the potential energy as shown in Figs.
1-2.
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Fig. 1. Effective potential energy of the electron for Z=2 in Deutsh and Kelbg cases.
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Fig. 2. Effective potential energy of the electron for Z=8 in Deutsh and Kelbg cases.

In Figs. 1-2, we notice that using the Kelbg
potential as initial potential and interaction potential
between the electron and the continuous background
of positive charge in the integral equation, gives a
solution decreasing more weakly than when screened
Deutsh potential is used. This means that Deutsh
solution is strongly screened, that is to say that its
range is also inferior to that of Kelbg solution. The
RKM allows us to solve, equivalently to the integral
equation, the nonlinear differential equation for the
Deutsh case. In this way we have solved the equa-
tion:

Y ′′ + 2
r Y ′ = 3

Z (eZΓY (r) − 1 + ( ξ
η′ )

2) + 1
η′2 Y (r)

− 1
rη ( 2

η′ + 1
η )e−r( 1

η′+
1
η )

(13)
with initial conditions:

Y (0) ≈ 1/η and Y ′(0) ≈ −(η′/2η + 1)/ηη′ (14)

Fig. 3 shows this equivalence, for the Deutsh case,
with the effective potential Y SD(r) when Z=8, Γ =
0.1, η = 0.177, η′ = 1.826.
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Fig. 3. Effective potential energy of the electron
for Z=8 in the Deutsh case computed with the Fixed
Point Method (* * *) and Runge-Kutta Method (—).
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Fig. 4. Schematic map of electron distribution
around the impurities in the plasma.

We have also found that the RKM (differential
equation) is faster than the fixed point method (inte-
gral equation). The drawback of the RKM is that it
is very sensitive to the initial conditions. Conversely,
the FPM, despite that it requires a lot of time for
computation, it has more guarantees that the result
converges towards an exact solution. Another draw-
back of the FPM is that it is adaptable only for the
shielded initial potential.

Mathematically, the integral Eq. (9) admits
finite solutions at short distance (when r has ap-
proximately the screening length as shown in Fig.
4). This rapid convergence towards the solution is
guaranteed by the screening effect. Physically, this
may be interpreted by the following reasoning: a non
bounded electron interacts with a neighborhood of
some mean inter-electron distance a. This neighbor-
hood contains electrons that are distributed with a
density ne(r) around a single impurity of positive
electric charge. This means that the impurities are
distributed in plasma with a mean constant density
such that the neighborhood of each electron contains
only a single impurity (see schematic map in Fig. 4).
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What has just been said suggests that the numeri-
cal integration of the integral equation or the equa-
tion differential must be truncated to the size of this
neighborhood. When the screening is weak (that is
to say that λD is very large) the convergence towards
the solution of the integral Eq. (9) becomes slow and
the solution coincides at large distance with Kelbg
solution, see Figs. 1-2.

3. THE DYNAMICAL PROPERTIES
OF THE ELECTRONS

3.1. Relativistic electron trajectories in
plasma

The calculation of real trajectories of relativis-
tic electrons in a hot plasma is a necessary step to cal-
culate several dynamical properties such as the time
autocorrelation function, the diffusion coefficient and
the electric permittivity... So, the purpose of this sec-
tion is the calculation of relativistic trajectories of an
electron in a plasma, and then we compare between
classical and relativistic trajectories for few cases of
potential energy. The relativistic force acting on an
electron in the plasma is equal to the derivative of
the momentum −→

P :

−→
F =

d
−→
P

dt
=

dm

dt
−→v + m

d−→v
dt

(15)

and the derivative of the mass is:

dm
dt = me

d
dt

(
1/

√
1− v2/c2

)

= me
1
c2
−→v · −→γ (

1− v2/c2
)−3/2

(16)

where −→γ is the relativistic acceleration, me is the
rest mass of the electron and c the speed of light in
vacuum. Therefore, this force is equal to:

−→
F =

me

c2

(
1− v2/c2

)−3/2
(−→v · −→γ )−→v +

me√
1− v2/c2

−→γ
(17)

and the force on the other hand equals:

−→
F =

d
−→
P

dt
= −−→∇V (r) (18)

where V (r) represents the potential energy (8) of an
electron in the plasma at position r from the coordi-
nate origin.

We write the Eqs. 17) and (18) in cartesian co-
ordinates, and equating member to member we find
the following system of equations:




meω3

c2 vx

(
(vx + c2

ω2vx
)γx + vyγy + vzγz

)
= −x

r
∂V (r)

∂r

meω3

c2 vy

(
vxγx + (vy + c2

ω2vy
)γy + vzγz

)
= −y

r
∂V (r)

∂r

meω3

c2 vz

(
vxγx + vyγy + (vz + c2

ω2vz
)γz

)
= − z

r
∂V (r)

∂r

(19)

where: ω = 1/
√

1− (
v2

x + v2
y + v2

z

)
/c2 =

1/
√

1− v2/c2

Solving this system of equations gives the ex-
pression for the acceleration as follows:

−→γ :





γx = ζ
[
+

(
c2 − v2

x

)
x− yvxvy − zvxvz

]
γy = ζ

[−xvxvy +
(
c2 − v2

y

)
y − zvyvz

]
γz = ζ

[−xvxvz − yvyvz +
(
c2 − v2

z

)
z
]
(20)

where: ζ = − 1
mec2ω

1
r

∂V (r)
∂r and, now, we can use the

following Taylor formula to find the trajectories of
relativistic electrons:
−→r (t + ∆t) = 2−→r (t)−−→r (t−∆t) + (∆t)2−→γ (t) (21)

In Figs. 5-6, we present the difference between clas-
sical and relativistic trajectories of an electron in
plasma governed by the effective potential (9) and
(10). These figures show that the motion of elec-
trons in a cold plasma around the impurity center
can be bound, but the electrons in the hot plasma
are free due to their high velocities and the bounded
trajectories do not appear in relativistic motion.
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Fig. 5. Classical and relativistic trajectories for the
initial conditions: r(0)=0.7 and v(0)=0.485.
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Fig. 6. Classical and relativistic trajectories for the
initial conditions: r(0)=0.76 and v(0)=1.04.
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3.2. The microfield autocorrelation
function.

The total electric microfield due to the elec-
trons on the impurity centered at the coordinate ori-
gin is given by:

−→
E =

N∑

k=1

−→eie(rk) (22)

The dimensionless electric field auto-correlation
function is given by Talin et al. (2008):

CEE(t) =
a4

e2

〈−→
E (t) · −→E

〉

=
a4

e2

∫
d−→r 1d−→v 1....d−→r Nd−→v N

−→
E · −→E (−t)ρe

=
a4

e2

∫
d−→r 1d−→v 1

−→e (r1)N
∫

d−→r 2d−→v 2....d−→r Nd−→v N
−→
E (−t)ρe

=
a4

e2

∫
d−→r 1d−→v 1

−→e (r1)Ψ(−→r 1,−→v 1, t) (23)

where ρe is the equilibrium canonical ensemble and
e(rα) is the single particle field. The integrations
over degrees of freedom 2...N in the second equality
define a reduced function Ψ(r1, v1, t), which is the
first member of a set of such functions

Ψ(−→r 1,−→v 1....−→r s,−→v s, t) =

Ns

∫
d−→r s+1d−→v s+1....d−→r Nd−→v N

−→
E (−t)ρe. (24)

It is straightforward to verify that these functions
satisfy the BBGKY hierarchy (Van Kampen et al.
1967):

(∂t +−→v · −→∇r − (1− v2

c2
)1/2

me
{−→∇r[Vie(r) + Vef (r)]}

·{−→∇v −
−→v
c (
−→v .
−→∇v
c )})Ψ(−→r ,−→v , t)

= 1
meω

∫
d−→r 1d−→v 1[

−→∇rVee(−→r −−→r 1)]

·{−→∇v −
−→v
c (
−→v .
−→∇v
c )}Ψ(2)(−→r ,−→v ;−→r 1,−→v 1, t)

(25)
where me is the electron mass at the rest and c is the
speed of light. Recognizing this linear relationship,
the basic approximation for weak coupling among
the electrons is to neglect all of their correlations at
all times:

Ψ(2)(−→r 1,−→v 1,−→r 2,−→v 2, t) → f(−→r 2,−→v 2)Ψ(−→r 1,−→v 1, t)
+f(−→r 1,−→v 1)Ψ(−→r 2,−→v 2, t)

(26)
Use of (26) in the first hierarchy equation (25) gives
directly the kinetic equation:

(∂t + L)Ψ(−→r ,−→v , t) =
1

meω [−→∇v −
−→v
c2 (−→v .

−→∇v)]f(−→r ,−→v )·−→∇r

∫
d−→r 2Vee (−→r −−→r 2)

∫
d−→v 2Ψ(−→r 2,−→v 2, t)

(27)

where:

L = −→v .
−→∇ − 1

meω

[−→∇rV (r)
]
.(−→∇v −

−→v
c2 (−→v .

−→∇v)
(28)

We limit ourselves to the solution of the homoge-
neous Eq. (27) which is given by:

Ψ(−→r ,−→v , t) = f(−→r ,−→v )−→e mf (−→r (t)) (29)

where:
−→e mf (−→r ) =

1
Ze

−→∇V (r) (30)

and f(r, v) is the Maxwell-Juttner-Boltzmann distri-
bution given by:

f(r, v) =
exp(−(mc2 + V (r))/kT )

m3
ec

3K2(mec2/kT )
. (31)

Here m = meω and K2(x) is the modified Bessel
function. Replacing (29) in (23) we find:

CEE(t) =
a4

e2

∫
f (−→r ,−→v )−→e (r) · −→e mf (r(t))d−→r d−→v

(32)
where −→r (t) is the time-dependent position vector.
To get it for any time t, we have solved numeri-
cally (using Verlet algorithm) the equation of motion
d
−→
P /dt = −e.−→e mf (r) where −→P = me

−→v /
√

(1−v2/c2)
is the relativistic momentum of the electron. In the
calculation of CEE(t) the average on the velocities is
done over the relativistic distribution f(r, v).

Regarding the function CEE(t) in Fig. 7, we
found: - when one moves away from t = 0, the rel-
ativistic effect is manifested more clearly. - In Fig.
8, we note that when we increase the charge number
Z, the covariance C(0) also increases, but all the rel-
ativistic curves in Kelbg and Deutsh cases decrease
more quickly and have the same behavior for large
values of time (vanishe quickly and never cross the
Ox axis).

4. APPLICATION TO THE ELECTRONIC
BROADENING IN PLASMAS

First, we have to keep in mind that (Alexiou
1994) and predecessors GBKO (Griem et al. 1962)
considered the interaction between the electrons and
the emitter in the impact approximation. They be-
gin by outlining the process that led Alexiou (1994),
Griem et al. (1962) to construct with hyperbolic
trajectories a valid electronic collision operator for
isolated lines. They considered the interaction of a
plasma electron with an ion as purely Coulombic,
and in addition that the motion of the plasma elec-
tron is due solely to the Coulomb field created by
the ion. The field of the electron in an ion emit-
ter is then Coulombic. We now introduce some new
notations. First, we use the time-dependent inter-
action between a single plasma electron and emitter
electron as follows:
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Fig. 7. Classical and relativistic electric field auto-correlation function for Z=2 in Deutsh and Kelbg cases.
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Fig. 8. Relativistic electric field auto-correlation function for different Z in Deutsh and Kelbg cases.

V (t) = −→
d .−→e (t) = −e

−→
R.−→e (−→r (t)) (33)

where −→R is the position vector of the emitter elec-
tron and −→e (t) is the individual electric field on the
impurity due to the electron located at −→r . Now we
want to separate the purely atomic part and the part
that depends on the details of the collision process.
This leads to defining two quantities (Alexiou 1994):

φd = −2π
nee

2

3h̄2

∫
vF (v)dv

∫
ρdρ

∫ ∞

−∞
dt1

∫ t1

−∞
dt2e

iω1t1eiω2t2−→e (t1).−→e (t2) (34)

and:

φint = −2π
nee

2

3h̄2

∫
vF (v)dv

∫
ρdρ

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2e

iω1t1eiω2t2−→e (t1).−→e (t2) (35)

where F (v) is the Maxwell distribution of the veloc-
ities. The integral:

2πne

∫
vF (v)dv

∫
ρdρ (36)

defines the average in the phases space of the
particle positions ~ri and the particle momentum
~pi. The distribution is that of Maxwell-Boltzmann
F (v)exp(−V/kT ), then we can transform φd as:

φd = − e2

3h̄2

∫ ∞

−∞
dt1

∫ t1

−∞
dt2e

iω1t1+iω2t2

<
−→
E (t1).

−→
E (t2) >can (37)

where −→E (t) is the total field created by the electrons
of plasma on the emitter. By making use of the sta-
tionarity:
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CEE(t1 − t2) =<
−→
E (t1).

−→
E (t2) >can (38)

we can check that:

φd = − e4

3h̄2a4

∫ ∞

0

CEE(t)dt (39)

(in s−1 unit) where CEE(t) is given by (32). The
same formula is used by (Nguyen et al. 1967) for the
collision operator:

φ = −−→Rn.
−→
Rn(

e4

3.h̄2a4
)
∫ +∞

0

CEE(t)dt ≡ −→
Rn.

−→
Rnφd

(40)
In computing the collision operator φ, conversely to
Alexiou (1994) and his predecessors, the plasma elec-
tron (the perturber) moves in the effective field cre-
ated by the entire plasma. Moreover, this electron
creates a field(Deutsh or Kelbg) at the impurity ion.
Then we call φd the amplitude of the collision op-
erator because it is this quantity that contains the
plasma parameters through the correlation function
CEE(t). This contains all the information regarding
the density ne, the temperature T , and the charge
number Z of ions. We present in Table 1 the ratio
of the amplitudes of the collision operator between
the classical and relativistic case for different plasma
conditions such as ne, T and Z. We find that when
Z is increased, the relativistic effect increases.

Table 1. The ratio φclassical
d /φrelativistic

d .

Z Deutsh Kelbg

1 0.9052 0.9154
2 0.8102 0.8263
4 0.5767 0.6554
8 0.3256 0.3396

From this table, we see that the difference be-
tween the classical and relativistic collision operator
becomes more important when the number of charge
Z increases.

5. CONCLUSION

The electrons dynamics and the time autocor-
relation function CEE(t) for the total electric mi-
crofield of the electrons on positive charge impurity
embedded in a plasma are considered when the rel-
ativistic dynamics of the electrons is taken into ac-
count. We have, first, built the effective potential
governing the electrons dynamics. This potential
obeys a nonlinear integral equation which we solved
numerically. We found, for fixed Γ = 0.1 and fixed
density ne, that the relativistic effect becomes im-
portant (for Z = 8, φclassical/φrelativistic ' 1/3) when
the charge number Z increases. The collision opera-
tor, responsible for electronic broadening in plasma,

is investigated. The result is that when the plasmas
parameters change, the amplitude of the collision op-
erator becomes important. The electron-impurity in-
teraction is firs taken to be the screened Deutsch
interaction and then the Kelbg interaction. Com-
parisons of all relevant quantities are made for these
interactions as well as between classical and relativis-
tic dynamics of electrons. The relativistic trajecto-
ries of the plasma electrons around the impurity are
more complicated the classical trajectories as it can
be seen in Figs. 5-6. This fact has a direct effect on
the behavior of the electric auto-correlation function.
Indeed, when we move away from t = 0, the differ-
ence between the classical CEE and the relativistic
CEE becomes more obvious.

Acknowledgements – During the preparation of this
paper we have been financially supported by the Min-
istry of Education and Science and Research (PNR
project) and LRPPS Laboratory at Ouargla Univer-
sity of the Republic, Democratic and Popular of Al-
geria for which we present our full and high acknowl-
edgements.

REFERENCES

Alexiou, S.: 1994, Phys. Rev. A, 49, 106.
Ali, S., Shukla, P. K.: 2008, Phys. Lett. A, 372,

4827.
Berkovsky, M. A., Dufty, J. W., Calisti, A., Stamm,

R., Talin, B.: 1996, Phys. Rev. E, 54, 4087.
Boercker, D. B., Iglesias, C. A., Dufty, J. W.: 1987,

Phys. Rev. A, 36, 2254.
Deutsh, C.: 1977, Phys. Lett. A, 60, 317.
Deutsh, C., Gombert, M. M., Minoo, H.: 1978, Phys.

Lett. A, 66, 381.
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KORELACIONA FUNKCIJA I ELEKTRONSKO XIREǋE
LINIJE U RELATIVISTIQKIM PLAZMAMA
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Originalni nauqni rad

Razmatraju se dinamika elektrona i
vremenski zavisna autokorelaciona funkcija
CEE(t) za ukupno elektriqno mikro-poǉe elek-
trona na pozitivno naelektrisanoj primesi
uroǌenoj u plazmu, kada se uzima u obzir
relativistiqka dinamika elektrona. Najpre
smo konstruisali efektivni potencijal koji
upravǉa dinamikom elektrona. Ovaj potenci-
jal se pokorava nelinearnoj integralnoj jed-
naqini koju smo rexili numeriqki. Xto se
tiqe elektronskog xireǌa linije u plazmi,

naxli smo da kada se parametri plazme me-
ǌaju, amplituda sudarnog operatora se meǌa
na isti naqin kao i integral po vremenu od
CEE(t). Interakcija elektron-primesa je naj-
pre uzeta kao ekranirana Deusova (Deutsh) in-
terakcija, a zatim kao Kelbgova (Kelbg) in-
terakcija. Napravǉeno je pore�eǌe svih in-
teresantnih veliqina sa prethodnim interak-
cijama, kao i klasiqne i relativistiqke di-
namike elektrona.
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