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Abstract. The objective of this work was to compare time
and frequency fluctuations of air and soil temperatures (2-,
5-, 10-, 20- and 50-cm below the soil surface) using the
continuous wavelet transform, with a particular emphasis
on the daily cycle. The analysis of wavelet power spectra
and cross power spectra provided detailed non-stationary ac-
counts with respect to frequencies (or periods) and to time
of the structure of the data and also of the relationships that
exist between time series. For this particular application to
the temperature profile of a soil exposed to frost, both the
air temperature and the 2-cm depth soil temperature time
series exhibited a dominant power peak at 1-d periodicity,
prominent from spring to autumn. This feature was gradu-
ally damped as it propagated deeper into the soil and was
weak for the 20-cm depth. Influence of the incoming so-
lar radiation was also revealed in the wavelet power spectra
analysis by a weaker intensity of the 1-d peak. The prin-
cipal divergence between air and soil temperatures, besides
damping, occurred in winter from the latent heat release as-
sociated to the freezing of the soil water and the insulation
effect of snowpack that cease the dependence of the soil
temperature to the air temperature. Attenuation and phase-
shifting of the 1-d periodicity could be quantified through
scale-averaged power spectra and time-lag estimations. Air
temperature variance was only partly transferred to the 2-cm
soil temperature time series and much less so to the 20-cm
soil depth.
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1 Introduction

The soil temperature has important biological, agricultural
and climatic consequences (Grundstein, et al., 2005). Indeed,
soil temperatures modulate the response of many soil bio-
logical and biochemical processes (Lloyd and Taylor, 1994;
Quyang and Zheng, 2000; Luo et al. 2003; Beltrami and
Kellman, 2003). For instance, soil organic matter decom-
position and the resulting release of CO2 to the atmosphere
are dependent on soil temperatures (Kätterer et al. 1998;
Kirschbaum, 2006). Coupled with air temperature, soil tem-
perature in the upper few hundred meters of the earth’s crust
may also inform on past climatic conditions (Putman and
Chapman, 1996; Schmidt et al., 2000; Bartlett et al., 2006;
Pollack et al., 2005; Smerdon et al., 2006). Furthermore, soil
temperatures below 0◦C influence snowmelt runoff and soil
hydrology, especially by reducing soil permeability (Niu and
Yang, 2006). Consequently, the modelling of such ecosys-
tem processes often involves soil temperatures as a driving
variable.

Soil temperature data are typically not available at a re-
gional scale but has to be estimated, usually from empirical
or semi-empirical relationships with standard meteorological
data including soil properties and vegetation (e.g., Zheng et
al. 1993; Kang et al. 2000). Although mainly influenced
by anomalies in the atmospheric circulation (Hu and Feng,
2003), the soil temperature integrates the effects of air tem-
perature, vegetation, snow cover, net radiation at the surface
(Beltrami, 2001) and heat transfer through soils with differ-
ent thermal properties in the vertical direction (Hu and Feng,
2003). Soil temperatures at various depths thus result from
surface energy processes and from regional environmental
forcing. This local response of soil temperature to atmo-
spheric forcing varies both in time and depth.

Available observation networks of soil temperature have
been examined by Zhang and al. (1996), Ouyang and
Zheng (2000), Schmidt et al. (2000), Beltrami and Kell-
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Fig. 1. Location of the Howick station in Qúebec, Canada.

man (2003), Hu and Fend (2003), Pollack et al. (2005), Niu
and Yang (2006) and Smerdon et al. (2006). The soil ther-
mal response in the field typically shows a diurnal pattern
mostly driven by the temperature of the lower atmosphere.
At the surface, Bartlett et al. (2006) reported air tempera-
ture explaining as much as 94% of the total variance of the
soil temperature. Soil temperature in a vertical profile is
governed by a heat diffusion process (Clauser, 1982). Put-
nam and Chapman (1996), Beltrami (2001), and Bartlett et
al. (2006) showed that, for unfrozen ground, soil temperature
tracks surface air temperature with amplitude attenuation and
phase lag as a function of depth and soil properties.

The incoming solar radiation also influences the soil tem-
perature fluctuations. If surface soil temperature closely
matches surface air temperature during the night, the soil
temperature may be significantly warmer during the day-
light hours, particularly in summer and autumn (Putnam and
Chapman, 1996). Soil temperature time series are thus typ-
ically positively biased when compared to air temperature
time series. The sensitivity of the offset caused by the inci-
dent solar radiation is largely attributable to the specific sur-
face conditions at the site and may not be a feature of the
soil–air tracking at all locations (Bartlett et al., 2006).

During winter, the soil is much less influenced by air tem-
perature variations because freezing of the upper soil intro-
duces a non-conductive mechanism (latent heat) that is effec-
tive until the upper layers of the soil are completely frozen
(Beltrami, 2001); the latent heat released by freezing wa-
ter warms up the surrounding soil (Luo et al., 2003). The
presence of a snowpack may further reduce the conduction
process at the surface (Beltrami and Mareschal, 1991). Both
the annual number of snow cover days and the thermal resis-
tance explain a considerable amount of the variance in the
thermal offset between air temperatures and soil tempera-
tures (Grundstein et al., 2005).

The objective of this work was to compare time and fre-
quency fluctuations of air and soil temperatures at different
depths using the continuous wavelet transform, with a par-

ticular emphasis on the daily cycle. With wavelet analysis,
a comprehensive description of the structure of soil temper-
ature profile, its evolution over time, and how it relates to
air temperature observations can be obtained without the sta-
tionary assumptions of standard Fourier frequency analysis.
This may be particularly advantageous for the description of
temperature time series of soils exposed to frost because of
the non stationary behaviour of incoming solar radiation in-
fluences in high latitude, of the non-conductive mechanism
that takes place only during freezing, and of the insulation
properties of a fluctuating snowpack. Within the context of
global warming, interest in soil temperature has been increas-
ing because of its effect on the carbon release through soil
organic matter decomposition – this release of carbon con-
stitutes a dangerous positive feedback that leads to further
warming. Several soil organic matter simulation models in-
clude a parameter that affects the decomposition rates as a
function of soil temperature (e.g., Parton et al., 1987; Andrén
and Katterer, 1997). These parameters are commonly esti-
mated from standard weather station data such as mean daily
or monthly air temperatures. Consequently, knowledge of
the air and soil temperature relationships is valuable to soil
carbon models.

In this study, soil temperature amplitude attenuation and
time-lag with depth were evaluated as a function of the in-
coming solar radiation for a site exposed to frost in south-
eastern Canada. The energy exchange within the top 50 cm
of the soil and the bottom 10 m of the atmosphere was ex-
amined using time series data for 1000-, 600-, and 150-cm
high air temperature, soil temperature at 2-, 5-, 10-, 20- and
50-cm below the soil surface, incoming solar radiation and
snowpack height.

2 Materials and methods

2.1 Site and dataset description

The Mesonet-Montreal network is made up of of 43 meteo-
rological stations in the Saint-Lawrence River valley. The
Howick station that was used in this study is located at
45.0202◦ N and 73.7566◦ S, 43.9 m above sea level in south-
eastern Canada (Fig. 1). The station was situated in a cropped
field. The soil at this site is classified as a Humic Gleysol,
St-Urbain and Ste-Rosalie soil series (Canada Soil Survey
Committee, 1978). The soil texture of the Ap horizon (≈0 to
30 cm) ranged from a clay loam to a silt clay loam with a soil
organic matter content of 6.8%. The underlying Bg soil hori-
zon (≈30 to 70 cm) was characterized by a texture ranging
from clay to heavy clay.

Climate 1971–2000 normal values for the near-by Sainte-
Martine automatic weather station are 6.3◦C, 813 mm of
rainfall, and 171 cm of snowfall. The air-soil station was
programmed to report observations every 5 min. All obser-
vations were averaged over the previous minute, except for
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rainfall that was 5-min total. For the purpose of the present
study, data were averaged or summed in order to produce 3-h
observations to reduce noise and to obtain Fourier periods of
6 h, or more.

Rainfall was measured with a tipping bucket gauge (TB3:
Hydrological Services PTY), snowpack height with a sonic
ranger sensor (SR50: Campbell Scientifics), incoming solar
radiation with a pyranometer (CNR1: Kipp and Zonen), air
temperature with a thermometer (HMP45C: Vaisala) 150 cm
above ground level inside a Stevenson standard shelter and
with thermometers (HMP45C: Vaisala) 600 cm and 1000 cm
above ground level in naturally aspirated 10-plate radiation
shields, and soil temperature with thermocouples 2, 5, 10, 20
and 50 cm below ground level (STP01: Hukseflux).

2.2 Wavelet transform analysis

The continuous wavelet transform is regularly used in geo-
physical applications for the analysis of variance fluctua-
tions of non-stationary time series. Hydrological applica-
tions include stream flow (Smith et al., 1998; Nakken, 1999;
Lafrenìere and Sharp, 2003; Anctil and Coulibaly, 2004), soil
moisture (Lauzon et al., 2004; Parent et al., 2005), vegeta-
tion density (Cosh and Brutsaert, 2003), soil properties (Lark
and Webster, 2001), and topographical relationship with crop
yields (Si and Farell, 2004).

For a discrete sequence of observation,xn, the continuous
wavelet transformWn is defined as the convolution product
of xn with a scaled and translated waveletψ(η) that depends
on a non-dimensional time parameterη as follows:

WX
n (s) =

N−1∑
n′

xn′ψ∗

[
(n′

− n)δt

s

]
(1)

Wheren is the localized time index,s is the wavelet scale,δt
is the sampling period,N is the number of points in the time
series and the asterisk indicates the complex conjugate. Note
that it is considerably faster to perform these convolution cal-
culations in Fourier space (Torrence and Compo 1998).

Since a complex wavelet leads to complex continuous
wavelet transforms, the wavelet power spectrum defined as∣∣WX

n (s)
∣∣2 provides a convenient description of the fluctua-

tion of the variance at different times and frequencies.
A number of functions may be used for wavelet trans-

formation. An admissible wavelet function must have zero
mean and be represented in both time and frequency domains
(Farge, 1992). The selection of a particular wavelet func-
tion depends mainly on the experimenter’s perspective and
objectives. However, an appropriate wavelet should show
patterns similar to the time series (Nakken, 1999). The Mor-
let wavelet shows peaks and troughs in a wavelike fashion
suitable to air and soil temperature time series and provides
a more acute definition in the spectral space than other com-
mon candidates such as the Mexican hat. The Morlet wavelet
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Fig. 2. The Morlet wavelet in the time domain: real part (blue) and
imaginary part (black).

(Fig. 2) is a complex non-orthogonal wavelet consisting of a
plane wave modulated by a Gaussian function as follows:

ψ0(η) = π−0.25eiω0ηe−0.5η2
(2)

Whereω0 is the non-dimensional frequency equalled to 6 to
satisfy the admissibility condition stated above.

Spectral analysis often reveals that the variance of geo-
physical time series is organized along some preferential
frequency bands that extend over a specific range of scales
(e.g. Rajagopalan and Lall, 1998). The scale-averaged
wavelet power allows to further examine fluctuations in vari-
ance over such bands of wavelet periods. The scale-averaged
wavelet power is the weighted sum of the wavelet power
spectrum over selected scaless1 to s2 (Torrence and Compo,
1998):

W2 =
δjδt

Cδ

j2∑
j=j1

∣∣WX
n (sj )

∣∣2
sj

(3)

Whereδj is a factor fixing the scale resolution (chosen as
0.1) andCδ is a reconstruction factor specific to each wavelet
form (Cδ=0.776 for the Morlet wavelet).

Similar to a cross-correlation analysis, cross wavelet phase
angle evaluates the phase difference between the components
of two time series. IfWXY

n (s)=WY
n (s)W

Y∗
n (s) is the cross

wavelet power spectrum from time seriesX andY , then their
phase angle isφXYη (Labat et al., 2000) as follows:

φXYn = tan−1

[
=

(
WXY
n (s)

)
<

(
WXY
n (s)

)]
(4)
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Fig. 3. 3-h meteorological time series:(a) 1000-cm air tempera-
ture, (b) 600-cm air temperature,(c) 150-cm air temperature,(d)
incoming solar radiation, and(e) rainfall (blue) and snowpack (red)
heights.

as computed from the real (<) and imaginary (=) parts of the
cross wavelet power spectrum. In practice,WXY

n (s)must be
previously smoothed (Torrence and Webster, 1999; Grinsted
et al., 2004; Maraun and Kurths, 2004; Maraun et al., 2007).
The extent to which the two time series are out of step or the
phase angle is expressed in radians between -π andπ . If the
phase angle isπ /2 radians, the second series is lagging the
first one by a quarter of a cycle. It may be convenient to con-
vert the phase angle into a time-lag by means ofT φXYn /2π ,
whereT is the wavelet period.

3 Results and discussion

3.1 Time series

The time series covered 862 d from 26 September 2003 to
1 February 2006 (Figs. 3 and 4). At the Howick air-soil
station, annual air temperature fluctuations showed highs
around 30◦C during summer (June to September), and lows
around –30◦C during winter (December to March). The time
series appeared to be noisy mainly due to diurnal patterns
(Fig. 3). Differences between the three air temperature series
for elevation ranging from 150 cm to 1000 cm were small al-
tough the 150-cm air temperature was slightly colder in av-
erage (Table 1). The incoming solar radiation was observed
from December 2004, with maximum values occurring at
summer equinox. The incoming solar radiation annual peak
preceded that of air temperature by about a month. Snowfall
occurred between December and April. The sonic ranger was
installed in December 2004 and rainfall (blue) was abundant
the rest of the year.

Jul−03 Oct−03 Jan−04 Apr−04 Jul−04 Oct−04 Jan−05 Apr−05 Jul−05 Oct−05 Jan−06 Apr−06

−10
0

10
20
30

Time (month, year)

2−
cm

S
oi

l T
 (

°C
) a)

            

−10
0

10
20
30

5−
cm

S
oi

l T
 (

°C
) b)

            

−10
0

10
20
30

10
−

cm
S

oi
l T

 (
°C

) c)

            

−10
0

10
20
30

20
−

cm
S

oi
l T

 (
°C

) d)

Jul−03 Oct−03 Jan−04 Apr−04 Jul−04 Oct−04 Jan−05 Apr−05 Jul−05 Oct−05 Jan−06 Apr−06

−10
0

10
20
30

Time (month, year)

50
−

cm
S

oi
l T

 (
°C

) e)

Fig. 4. 3-h soil temperature time series:(a) 2-cm, (b) 5-cm, (c)
10-cm,(d) 20-cm, and(e)50-cm.

Table 1. Temperature summary from 1 January 2004 to 31 Decem-
ber 2005.

Min (◦C) Mean (◦C) Max (◦C)

1000-cm air –28.7 7.1 32.3
600-cm air –29.1 7.0 32.5
150-cm air –30.6 6.6 32.7
2-cm soil –10.7 8.8 31.2
5-cm soil –10.1 8.8 28.9
10-cm soil –9.0 8.7 27.4
20-cm soil –7.1 8.7 24.4
50-cm soil –2.7 8.5 21.0

As for air temperature, the soil temperature time series
combined the influence of an annual component and of a
smaller diurnal component (Fig. 4). However, soil temper-
ature differed from air temperature in many aspects. In par-
ticular, the amplitude of the annual and diurnal components
was attenuated with depth. For instance, the 2-cm series
ranged from –10.7 to 31.2◦C, and the 50-cm series ranged
from –2.7 to 21.0◦C (Table 1). The diurnal component faded
away gradually with depth and almost vanished at 50 cm. As
shown in Fig. 4, the annual cycle was lagging with depth.
However, it was not possible, from the same figure, to as-
certain the lagging of the diurnal cycle. It is also noteworthy
that mean soil temperatures are higher than the mean air tem-
peratures (Table 1). In fact, on a monthly basis (results not
shown) the 2-cm depth soil temperature is always higher than
the air temperatures. This offset is caused, as stated before,
by the combination of phenomena typical for soil exposed to
frost in high latitude: incoming solar radiation heating during
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Fig. 5. “Phase-space plots” of the 150-cm 3-h air temperature series
and the 3-h soil temperature series at(a) 2-cm, (b) 20-cm, and(c)
50-cm depths.

longer daylight periods, non-conductive mechanism associ-
ated to freezing, and snowpack insulation.

Amplitude and phase relationships between air and soil
temperatures may be visualised by a simple graph of soil
temperature as a function of air temperature, what Bel-
trami (2001) named “phase-space plots”. Departures from
the interception line, produced by the sinusoidal oscillation
of yearly cycles, yields qualitative information about the cor-
relation of the temperature time series, in both amplitude and
phase. In this instance, “phase-space plots” of 3-h temper-
ature data shows the effect of time-lag across frequencies
(Fig. 5). Near the surface (Fig. 5a), time-lags were small
and, as long as soil temperature remained above freezing, the
air-soil temperature couples followed the interception line.
Below freezing, the air-soil couples changed slope under the
combined influence of latent heat dissipation and snow cover
insulation. Soil temperature remained constant at 0◦C for
some time. At the 20-cm depth (Fig. 5b), more curly fea-
tures developed as a result of increased daily time-lag, and
the slope of the air-soil couples below freezing was influ-
enced even more by latent heat dissipation and snow cover
insulation. At the 50-cm depth (Fig. 5c) the interception el-
lipse was dominated by the annual component of the soil time
series. The winter air temperature penetration into the soil
was very limited.

3.2 Wavelet transform analysis

The continuous wavelet transform, proposed for the first time
to our knowledge for the non-stationary temporal character-
ization of these series, assumes changes in spectral power
properties over time and can simultaneously account for both
time and frequency domains, in contrast with the Fourier
transform (Daubechies, 1992).

In the Morlet power spectra of air temperatures (150 cm)
and soil temperatures (2 and 20 cm) time series (Fig. 6), the
abscissa is time and the ordinate is the equivalent Fourier
period related to wavelet scale. Interpretations may be ex-
tended to other air temperature elevations and soil temper-
ature depths. Colour contours are the variance in excess of
0.1, 1.6, 6.4, and 25.6◦C2. This selection graphically depicts
the 1-d variance. The colour associated with each variance
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Fig. 6. Morlet wavelet power spectra (◦C2): (a) 150-cm air tem-
perature,(b) 2-cm soil temperature, and(c) 20-cm soil temperature
time series.

bands is displayed in the legend along with their occurrence.
The red curve gives the cone of influence beyond which the
edge effects may be of concern (Torrence and Compo, 1998).
Any feature beyond 64 d was not considered in this study in
line with the duration of the series, i.e. 862 d. The annual
cycle was thus not formally identified.

The Morlet power spectrum of air temperature exhibits a
dominant power peak at 1-d periodicity (Fig. 6a). This non-
stationary feature is particularly prominent from spring to au-
tumn. For periods less than one day, much lower variance
occasionally displays features at 0.5-d periodicity. Variance
is also low for periods up to 2 to 4 d, indicating no recur-
rent meteorological phenomenon. The sharp white edges at
high frequencies (variance less than 0.1◦C2) are all caused
by missing observations of air temperature that were linearly
filled before analysis. They shall be neglected hereafter.

Soil temperature follows air temperature very closely (Bel-
trami, 2001). Wavelet analysis diagnoses similitude or dis-
similitude as a function of periodicity. In the Morlet power
spectrum of soil temperatures at the 2-cm depth (Fig. 6b), a
dominant power peak occurs again at 1-d periodicity. How-
ever, time span is more limited than for air temperature se-
ries. The large white patches (Fig. 6b) extending essentially
over the 4-month episode from early December to the end
of March, and over periodicity up to 4 to 8 d, refer to vari-
ance smaller than 0.1◦C2 (There were no missing data in
the soil temperature series). Hence, the soil does not follow
the winter air temperature time series, most likely because
of the introduction of a non-conductive mechanism (latent
heat) and the insulation effect of snowpack. Furthermore, the
soil damping effect at the 2-cm depth temperatures (Fig. 6b)
showed a less pronounced peak at 1-d periodicity, while the
low variance band for periods longer than one day extended
up to 4 to 8 days. Finally, the influence of incoming solar
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cm (blue), and(d) 50-cm (magenta) depths.

radiation produced weaker intensity at the 1-d peak during
the fall, because of shorter daylight periods and of a lower
sun at solar noon.

All features described by the Morlet power spectrum of
the soil temperature at 2-cm depth were more pronounced
at the 20-cm depth (Fig. 6c). The soil damping effect on
temperature considerably weakened the 1-d peak and further
extended the low variance band to periods up to 8 to 16 d. For
instance, the variance for periodicity less than about 0.75 d
was always less than 0.1◦C2 and the winter episode increased
in both time and periodicity.

The scale-averaged power spectrum allows further exam-
ination of the fluctuations in variance of the 1-d periodic-
ity, more specifically over the 0.8- to 1.25-d wavelet period
band. The point here is to better assess the non stationary be-
haviour of the time series of the dominating frequency band.
The air temperature variance was indeed non-stationary and
lower in winter than in the rest of the year (Fig. 7a). These
modulations are only partly transferred to the 2-cm soil tem-
peratures, where there is even less stationarity than for air
temperatures (Fig. 7b). The 2-cm soil temperature variance

Table 2. Summary statistics of the 150-cm air temperature and soil
temperature time-lags for periods ranging between 0.8 day and 1.25
days, excluding the frozen soils episodes.

Quantile 2-cm 5-cm 10-cm 20-cm

10% 0.4 h 1.4 h 2.7 h 5.8 h
50% 1.4 h 2.4 h 3.8 h 6.9 h
90% 2.1 h 3.1 h 4.4 h 7.6 h

is basically absent in the winter, active in spring and sum-
mer, and gradually reduced during autumn. Except in winter,
this phenomenon may to some extent be linked to the incom-
ing solar radiation (Fig. 3d) that is nearly stable in spring and
summer, and drops gradually during autumn. The attenuation
of fluctuations at the 20-cm depth was as expected stronger
than at the 2-cm depth (Fig. 7c).

In addition to the amplitude of the attenuation, there is a
time-lag to the air temperature variations with soil depth. As
mentioned before, the time-lag associated to the heat diffu-
sion process is easily computed from the wavelet phase angle
of two time series. The time-lag for 1-d oscillations (more
specifically for the band from 0.8 to 1.25 d) of the data at
hand was computed from the phase angle that originates from
the cross wavelet spectra of air temperature at 150-cm and
soil temperature at 2-, 5-, 10-, and 20- cm depths (Fig. 8) –
note that the variance associated to other frequency bands is
too low to lead to reliable time-lag estimations. As expected,
the time-lags increased with depth. The median value was
1.4 h at the 2-cm depth, 2.4 h at the 5-cm depth, 3.8 h at
the 10-cm depth, and 6.9 h at the 20-cm depth (10% and
90% quantiles are given in Table 2). No time-lag results are
provided for the winter season, again because the variance
is very low at that time (see Fig. 7). These results cannot
be generalized to other sites since the heat diffusion process
depends on the local soil properties. However, the results
confirm the potential of the methodology for non stationary
soil temperature time series, which may be useful to anyone
exploring soil temperature models..

4 Conclusions

For this particular application to the temperature profile of a
soil exposed to frost, when the characterization was calcu-
lated for a periodicity between 6 h and 64 d, both the air tem-
perature and the near-surface soil temperature (2-cm depth)
time series exhibited a dominant power peak at 1-d periodic-
ity. A peak that was particularly prominent from spring to au-
tumn. This feature gradually damped as it propagated deeper
into the soil and was weak for the 20-cm depth. Influence of
the incoming solar radiation was also revealed in the Morlet
power spectra analysis by a weaker intensity of the 1-d peak
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during the fall because of shorter daylight periods and of a
lower sun at solar noon. The principal divergence between
air and soil temperatures, besides damping, occurred in win-
ter from the latent heat release associated to the freezing of
the soil water and the insulation effect of snowpack that cease
the dependence of the soil temperature to the air temperature.
Attenuation and phase-shifting of the 1-d periodicity could
be quantified through scale-averaged power spectra and time-
lag estimations over the 0.8- to 1.25-d wavelet period band.
Air temperature variance was only partly transferred to the
2-cm soil temperature time series and much less so to the 20-
cm soil depth. Unfrozen soil time-lags were about 1.4 h at
2 cm and 6.9 h at 20 cm.

Wavelet analyses are descriptive techniques that nicely
complement the arsenal of tools employed for the diagnostic
analysis of time series. The analysis of wavelet power spec-
tra and cross power spectra provided detailed non-stationary
accounts with respect to frequencies (or periods) and to time
of the structure of the data and also of the relationships that
exist between time series. These results are encouraging and
suggest that this type of analysis, if expanded on a large num-
ber of sites, could enable us to provide more general conclu-
sions with respect to soil temperature profiles at a regional
scale. At a time when adaptation to and attenuation of cli-
mate change are prominent environmental and social issues,
the carbon source/sink relationships between soil and atmo-
sphere cannot be overlooked anymore. Climate is the major
determinant of soil biological activity, including the decom-
position rates of soil organic carbon. Better assessment of the
air and soil temperature relationships, at a regional scale, is
one of the components that can improve soil carbon balance
models.
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