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Abstract. A fundamental problem in paleoclimatology is to
take fully into account the various error sources when ex-
amining proxy records with quantitative methods of statisti-
cal time series analysis. Records from dated climate archives
such as speleothems add extra uncertainty from the age de-
termination to the other sources that consist in measurement
and proxy errors. This paper examines three stalagmite time
series of oxygen isotopic composition (δ18O) from two caves
in western Germany, the series AH-1 from the Atta Cave
and the series Bu1 and Bu4 from the Bunker Cave. These
records carry regional information about past changes in win-
ter precipitation and temperature. U/Th and radiocarbon dat-
ing reveals that they cover the later part of the Holocene,
the past 8.6 thousand years (ka). We analyse centennial- to
millennial-scale climate trends by means of nonparametric
Gasser–M̈uller kernel regression. Error bands around fitted
trend curves are determined by combining (1) block boot-
strap resampling to preserve noise properties (shape, auto-
correlation) of theδ18O residuals and (2) timescale simula-
tions (models StalAge and iscam). The timescale error in-
fluences on centennial- to millennial-scale trend estimation
are not excessively large. We find a “mid-Holocene climate
double-swing”, from warm to cold to warm winter condi-
tions (6.5 ka to 6.0 ka to 5.1 ka), with warm–cold amplitudes
of around 0.5 ‰δ18O; this finding is documented by all three
records with high confidence. We also quantify the Medieval
Warm Period (MWP), the Little Ice Age (LIA) and the cur-
rent warmth. Our analyses cannot unequivocally support the
conclusion that current regional winter climate is warmer
than that during the MWP.

1 Introduction

We can learn about the climatic variations over time dur-
ing the past by examining natural archives. This task com-
prises (1) sampling an archive, (2) measuring on the samples
a proxy variable indicative of climate, (3) dating the samples,
and (4) statistically analysing the obtained proxy time series
to infer the properties of the climatic process that generated
the data. This paper uses the speleothem archive,δ18O as
proxy variable and U/Th as well as radiocarbon technology
as dating tools. The statistical question we are elucidating re-
gards centennial- to millennial-scale trends in the climate of
western Germany during the later part of the Holocene.

It is well established that the measurement error ofδ18O in
a speleothem is smaller than the “proxy error” because other
considerable factors than climate influenceδ18O (Fairchild
and Baker, 2012). These error sources and internal variabil-
ity of the complex, nonlinear climate system (Lorenz, 1963)
already make an inference (of trends) inexact and require us
to report the uncertainty of a statistical analysis (Mudelsee,
2010). Estimates without error bars are useless. (With this
statement we wish to say that one should give the measures
of error, such as bias or standard deviation, when reporting
the result of a statistical analysis. We do not mean that pub-
lished records of paleoclimate are useless. In fact, the sci-
entists measuring and establishing those records are mostly
experts and do perform excellently when reporting the scope
and limitations of the methods they develop and use.)

It is equally well established that also dating a sample
has an error (Taylor, 1987; Ivanovich and Harmon, 1992).
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In addition, construction of a curve of age against depth in
a climate archive (Sect.2) has to make assumptions, which
may be violated, adding to the uncertainty of a time value in
a proxy time series. It is fair to say that statistical theory and
practice have largely ignored the effects of dating errors; no-
table exceptions are in the field of spectral analysis (Akaike,
1960; Moore and Thomson, 1991; Thomson and Robinson,
1996), see alsoMudelsee et al.(2009). Climate time series
analysis has only recently become aware of the need – and
developed simulation-based capabilities – to fully include
timescale errors for obtaining realistic uncertainty measures
of an analysis (Mudelsee et al., 2009; Haam and Huybers,
2010; Mudelsee, 2010; Huybers, 2011; Rhines and Huybers,
2011; Stanford et al., 2011; Shakun et al., 2012).

In line with these recent advances, this paper aims to study
the effects of dating errors on nonparametric trend analyses,
which has been done neither in the work cited in the previous
paragraph nor, to the best of our knowledge, in other work.
Although our findings are obtained on speleothemδ18O se-
ries, we expect them to be of relevance for analyses on other
archives and other proxy variables as well.

A further purpose of this paper is to study the effects of
using different age-modelling algorithms. On the other hand,
we do not intend to discuss the merits of the algorithms them-
selves, and we do not make a recommendation which one to
use.

The structure of this paper is as follows. Section2 details
sampling, measuring and dating and also gives an overview
of construction of age–depth curves on the basis of abso-
lutely dated depth points. Section3 explains nonparametric
regression for geoscientists with some background in statisti-
cal science. Section4 presents results and discusses regional
climate variations. Section5 contains the conclusions.

2 Data

The speleothems analysed here are stalagmites stemming
from two caves in the karstic Sauerland region, western Ger-
many. Stalagmite AH-1 (Niggemann et al., 2003), from the
Atta Cave (51◦07′30′′ N, 7◦54′56′′ E), has a length of 61 cm.
Stalagmites Bu1 and Bu4 (Fohlmeister et al., 2012), from the
Bunker Cave (51◦22′03′′ N, 7◦39′53′′ E), have lengths of 65
and 20 cm, respectively; these stalagmites grew separated by
a distance of 12 m.

2.1 Dating points

AH-1 was dated using U/Th mass spectrometry at 13 depth
points (measured as the distance from the top of the sta-
lagmite). We here add information from radiocarbon dat-
ing of the topmost point (Table1). Note that Table1 shows
slight deviations in U/Th ages and their errors from the orig-
inal publication (Niggemann et al., 2003), which are due to
a recalibration of the U and Th spike solutions used in the

Table 1.Dating points, stalagmite AH-1. Age errors are given con-
ventionally as 2-σ standard deviation.

Depth (cm) Age (ka) Age error (ka)

0.1 −0.03 0.02
2 0.819 0.067
4.5 1.61 0.1

10.2 1.666 0.063
14.5 2.37 0.11
19.3 2.511 0.078
25.7 3.47 0.17
30 4.17 0.23
34 4.25 0.12
39.5 4.58 0.38
43.7 5.5 0.18
48.2 5.44 0.1
50.2 6.87 0.16
55.3 8.51 0.087

Heidelberg U/Th laboratory (Hoffmann et al., 2007). All ages
reported in this paper are relative to AD 1950. Bu1 and Bu4
were dated using U/Th mass spectrometry at 10 and 11 depth
points, respectively, and using radiocarbon information on
the topmost point (Fohlmeister et al., 2012). It was found that
Bu1 shows a hiatus and problematic ages between 14.6 and
30 cm depth; hence, Bu1 is analysed separately in an early
and a late part.

2.2 Age–depth curves

In general, construction of an age–depth curve utilizes infor-
mation from the absolute dating points. It makes the addi-
tional assumption of a growth of the archive with time, that
means, a strictly monotonically increasing age–depth curve.
Still, the curve is not uniquely defined by the above, and
additional assumptions are invoked, which ideally consider
the physics of the archive’s growth and, possibly, prior infor-
mation (e.g. from other, neighbouring archives). It is there-
fore not astonishing that several approaches to the construc-
tion have been developed in different scientific communities
(which often associate themselves with the type of archive
typically employed). It is also reasonable to adopt Bayesian
methods, which are designed to utilize prior information. The
following is an overview of age–depth construction tools that
can be used in a situation as here (dated depth points); it is
based on the book byMudelsee(2010, pp. 172–173 therein).
We focus on tools that are also able to generate simulated
age–depth curves and error bands that reflect the various
sources of uncertainty (dating errors, violated assumptions).

A simple age–depth curve is a straight regression line fitted
to the dating points. Also, polynomials of higher order can
be used without technical effort. From the regression resid-
uals follows an error measure (mean squared error), which
can be compared with the typical size of the dating errors.
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Agreement would then corroborate the validity of the esti-
mated age–depth curve (e.g. its linear form). Papers on this
approach includeBennett(1994) on the chronology of a lake
sediment core dated with radiocarbon andSp̈otl et al.(2006)
on a stalagmite dated with U/Th. Simulated curves can be
generated by means of a random number generator using the
dating errors for the individual depths and refitting the regres-
sion line.Drysdale et al.(2004) use a similar approach, also
on a stalagmite, but make an additional, apparently ad-hoc
assumption that stalagmite growth may vary by a factor of
ten between the dating points, resulting in a wider error band.
Bennett and Fuller(2002) study the influence of the age-
model selection on the estimated date of the mid-Holocene
decline of the hemlock tree in eastern North America. In the
presence of hiatuses, it should be worth applying regression
models with a jump in the mean (Mudelsee, 2010), addi-
tionally constrained to monotonic growth, to the construc-
tion of age–depth curves with error bands.Heegaard et al.
(2005) offer an interesting extension to the case where the
material in an archive at a depth is age-inhomogeneous. This
can occur in sediment cores as a result of mixing processes.
Bayesian tools for constructing chronologies are described in
book length byBuck and Millard(2004). Some Bayesian ex-
amples are the papers byAgrinier et al.(1999) on a geomag-
netic polarity record from the Cretaceous–Cenozoic,Blaauw
and Christen(2005) on a proxy record from a climate archive
in the form of a Holocene peat-bog core andKlauenberg et al.
(2011) on glaciologically modelled chronologies for late
Pleistocene ice cores. A new, continuous, piecewise linear,
monotone stochastic process has been suggested (Haslett and
Parnell, 2008) to model accumulation of a climate archive.
These authors also present applications to radiocarbon-dated
lake sedimentary records.

StalAge and iscam (intra-site correlation age modelling)
are two recent approaches particularly designed to calcu-
late age–depth curves and the corresponding uncertainty for
speleothems. We also detail in the following the adaptations
of StalAge and iscam for the purpose of generating simulated
age–depth curves as an input to the statistical analysis.

2.2.1 StalAge

The StalAge algorithm (Scholz and Hoffmann, 2011) uses U-
series ages and their corresponding age uncertainty for age–
depth modelling and also includes stratigraphic information
to constrain further and improve the age model. StalAge has
been shown to be suitable for problematic data sets that in-
clude outliers, age inversions, hiatuses and large changes in
growth rate. Potentially inaccurate ages are identified auto-
matically, and manual selection of outliers prior to applica-
tion is, thus, not required. To offer the highest degree of re-
producibility and comparability for different studies, StalAge
has – unlike many other methods – no adjustable free param-
eters. The algorithm consists of three major steps: first, ma-
jor outliers are identified. Second, the age data are screened

for minor outliers and age inversions, and the uncertainty of
potentially problematic data points is increased using an it-
erative procedure. Third, the age model and corresponding
95 % confidence limits are calculated by means of a Monte
Carlo simulation fitting ensembles of straight lines to sub-
sets of the age data. The algorithm is written in the open
source statistical software R, and the code is available as an
electronic supplement of the original publication (Scholz and
Hoffmann, 2011), which also provides further details and ex-
amples.

Recently, StalAge has been applied to three speleothem
records containing problematic sections, and its performance
has been compared with four other methods (Scholz et al.,
2012). For data sets constrained by a large number of ages
and not including problematic sections, all age models pro-
vide similar results. In case of problematic sections, however,
the algorithms provide clearly different age models as well as
uncertainty ranges (Scholz et al., 2012). StalAge is capable
of modelling hiatuses and accounts for problematic sections
by increased uncertainty. Two spline-based age–depth con-
struction models, in contrast, produced difficult-to-interpret
results for the problematic record sections.

Although StalAge uses a Monte Carlo simulation to cal-
culate the 95 % confidence limits, it does not directly pro-
vide simulated age–depth curves for all proxy depths as is
required for the resampling methods applied in this study.
Thus, the required 2000 age–depth curves are simulated as
follows.

1. We first conventionally apply StalAge to the dating
points obtaining a “best” age model (Fig.1a, c, e) and
the corresponding 95 % confidence limits for each data
set. This provides a probability distribution for each
sample depth. Note that the confidence limits obtained
from StalAge are usually highly asymmetric. In rare
cases, the resulting age model may still show age inver-
sions (Scholz and Hoffmann, 2011), as is, for instance,
the case for the age model calculated for stalagmite
AH-1. StalAge thus performs a further test for mono-
tonicity and, if necessary, a final correction of the “best”
age model subsequent to this step (which has been omit-
ted in the simulations for technical reasons).

2. In a second step, we simulate 2000 monotonically in-
creasing age–depth curves (with a depth resolution of
2 mm) by randomly sampling from the probability dis-
tribution provided by StalAge. To simulate the curves
within the provided probability distributions, we use
a Markov chain Monte Carlo approach (the Gibbs sam-
pler) similarly as described in previous publications
(Sp̈otl et al., 2008; Mudelsee et al., 2009). Since the fi-
nal screening step performed by StalAge is omitted here
(and the probability distributions for the AH-1 data thus
include an age inversion), the Gibbs sampler does not
find monotonically increasing curves for the AH-1 data
set. To provide the 2000 simulated curves for AH-1, the
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Fig. 1. Age–depth curves for stalagmites AH-1 (a, b), Bu1 (c, d)
and Bu4 (e, f) constructed with algorithms StalAge (a, c, e; Scholz
and Hoffmann, 2011) and iscam (b, d, f; Fohlmeister, 2012). Shown
are the dating points (black dots) with the 2-σ dating errors (vertical
black bars), the constructed age–depth curves (thin black lines) and
the average from 2000 simulated age–depth curves (thick blue line –
legible only in the zoomed electronic paper) with the corresponding
2-σ standard-error band (red shading). The circle in(a) indicates
a systematic shift of simulated ages, which results from the methods
used for obtaining the simulated curves (see Sects.2.2.1and4.2).

region including the inversion (at around 5 cm depth,
see Fig.1a) has to be omitted from the simulation. This
explains the systematic deviation between the original
StalAge age model and the mean of the 2000 simulated
curves for AH-1 (Fig.1a, circle). The other data sets
(Bu1 and Bu4) do not include problematic sections, and
the original StalAge age model is within the range of
the simulated age models (Fig.1c, e).

3. In a final step the 2000 simulated age–depth curves
are interpolated (within R) to the high-resolution proxy
depths.

2.2.2 iscam

Another recently published approach to age–depth curve
construction (Fohlmeister, 2012) is called intra-site corre-
lation age modelling (iscam). It employs a random num-
ber generator to account for the dating error of depth points
(Fig. 1). The additional constraints come from other contem-
poraneously grown, neighbouring stalagmites, which exhibit
a similar oxygen isotope pattern preserved in the calcite to
the original “reference” stalagmite. The assumption is that
those age–depth model solutions in which theδ18O records
show higher correlation coefficients are more likely to repre-
sent the true age–depth relationship than random model so-
lutions with lower correlations. This additional information
is thought to lead to more accurate age–depths curves for pe-
riods of simultaneous growth.

To produce random age–depth simulations from iscam, we
generate a very large number of realisations and take the first
2000 where the correlation coefficient exceeds the 2-σ sig-
nificance level. The significance level is estimated by means
of artificial time series prescribed to reflect similar statisti-
cal (i.e. autocorrelation) and sampling properties to the mea-
sured record (note that iscam assumes a normal distributional
shape, which should not be strongly violated in case of the
δ18O records).

The age–depth model of Bu1 is calculated in relation to
Bu4. However, Bu4 grew also during other intervals than Bu1
(Fig. 1). That means, the age–depth curve of Bu4 in such no-
overlap intervals is unconstrained by Bu1 and may therefore
show larger uncertainty than in the overlap intervals. On the
other hand, since the growth periods of Bu4 and AH-1 are
almost identical (Fig.1), the individual age–depth relation-
ships for both stalagmites can be calculated together via se-
lecting the high-correlation age–depth realisations.

2.3 Proxy variable

Measurements of theδ18O proxy variable were performed
on the carbonate material (seeFairchild and Baker, 2012,
for a general reference). The number,n, of data points is
380 for stalagmite AH-1 (Niggemann et al., 2003), 615 for
the earlier part of stalagmite Bu1, 474 for the later part of
stalagmite Bu1 and 1008 for stalagmite Bu4 (Fohlmeister
et al., 2012). By means of the age–depth curves (Fig.1),
we obtain proxy time series. These records are unevenly
spaced. (Even if the stalagmites had been sampled at even
depth spacing (which was not the case), the resulting time
series would have been unevenly spaced owing to a vari-
able growth of the archive.) Cave monitoring and general
physical–climatological considerations (Niggemann et al.,
2003; Riechelmann et al., 2011; Fairchild and Baker, 2012;
Fohlmeister et al., 2012) show that for the stalagmites anal-
ysed here,δ18O variations are a proxy for changes in winter
precipitation and temperature, with high (low)δ18O values
indicating dry/cold (wet/warm) conditions (“dry/warm” and
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“wet/cold” combinations can be excluded, as demonstrated
by Fohlmeister et al.(2012)). This certainly holds at the re-
gional spatial scale (western Germany), but likely also be-
yond (Central and Northern Europe, North Atlantic). Note
that “changes in precipitation” refers not only to the amount
but also to the provenance of the precipitation and the trajec-
tory of the air parcel that transported it (Fairchild and Baker,
2012, Ch. 3 therein).

3 Method

Trend is a property of genuine interest in climatology
(Brückner, 1890; Hann, 1901; Köppen, 1923). It describes
the mean state of the atmosphere or other compartments in
the climate system on long timescales (conventionally 30 yr
and longer). We adopt a simple decomposition of a stochastic
climate process in discrete time (Mudelsee, 2010),

X(i) = Xtrend(i) + S · Xnoise(i), (1)

whereX(i) is the climate variable at timeT (i), i is an in-
dex, Xtrend(i) is the trend component andXnoise(i) is the
noise component with zero mean and unity standard devi-
ation. Scaling the noise with a constant variability,S, is
considered a reasonable assumption for our analysis of the
(relatively stable, homoscedastic) Holocene regional climate.
A continuous-time version of the “climate equation” (Eq.1)
is readily written as

X(T ) = Xtrend(T ) + S · Xnoise(T ). (2)

The statistical task is to estimateXtrend(T ) on the basis of the
time series data,{t (i),x(i)}ni=1, wheret (i) are the time and
x(i) theδ18O values.

Instead of identifyingXtrend(T ) with a specific linear or
nonlinear function with parameters to be estimated, the non-
parametric regression or smoothing method estimates the
trend at a time point by, loosely speaking, averaging the data
points X(i) within a time neighbourhood around the time
point. The idea is that the noise values cancel each other out
to some degree and the trend can be extracted. A simple ex-
ample is the running mean, where the points inside a window
are averaged and the window runs along the time axis. Sta-
tistical science (Silverman, 1986; Härdle, 1990; Simonoff,
1996) recommends replacing the non-smooth weighting win-
dow (points inside receive constant, positive weight and
points outside zero weight) by a smooth kernel function,K.
A nonparametric kernel regression estimator of the trend is
given byGasser and M̈uller (1979, 1984),

X̂trend(T ) = h−1
n∑

i=1

 s(i)∫
s(i−1)

K

(
T − y

h

)
dy

 x(i), (3)

where the “hat” indicates the estimation,T is the time for
which the trend is calculated,h is the bandwidth,y is an

auxiliary variable and the sequences(i) fulfils the condition
t (i − 1) ≤ s(i − 1) ≤ t (i).

We use the following discretization:T is calculated over
the sample interval[t (1); t (n)] with an even, fine spacing
of 1 a. We use the following sequence:s(0) = 1.5t (1) −

0.5t (2), s(i − 1) = [t (i − 1) + t (i)]/2 for i = 2, . . . ,n and
s(n) = 1.5t (n) − 0.5t (n − 1).

A measure of the estimation uncertainty, an error band, is
essential for interpreting the results, for judging whether ups
and downs ofX̂trend(T ) are statistically significant or not.
Error-band construction in general has to take into account
typical climate noise properties in the form of non-normal
distributional shape and autocorrelation (also called serial
dependence or persistence). Bootstrap resampling (Efron and
Tibshirani, 1993; Davison and Hinkley, 1997) is a state-of-
the-art approach to achieving this. By resampling from the
regression residuals, the distributional shape is preserved. By
resampling time blocks of residuals, denoted as moving over-
lapping block bootstrap or MBB resampling (Künsch, 1989),
the persistence is preserved.Mudelsee(2010, Algorithm 3.1
therein) gives a description of the MBB accessible to geosci-
entists.

The bootstrap involves repeating the estimation (Eq.3)
on each of theB resampled time series (Fig.2). With the
adopted recommendation ofB = 2000 (Efron and Tibshi-
rani, 1993) and the typical data sizes of the stalagmite records
(Sect. 2.3), the Fortran implementation of kernel estima-
tion with MBB resampling means only minor computational
costs (a few seconds on a modern PC).

Further technical details are as follows.

1. We adapt the source code from the University of Zurich,
Division of Biostatistics (http://www.biostat.unizh.
ch/research/software/kernel.html, last access: 3 May
2007). It utilizes a parabolic kernel function and lets
the bandwidth shrink towards the interval boundaries:
h → 0 for T → t (1) or T → t (n); andh = const.> 0
elsewhere.

2. We use the block length selector vian and the parame-
ter of a first-order autoregression for uneven time spac-
ing (Mudelsee, 2002) fitted to the residuals (Mudelsee,
2010, Eq. 3.28 therein).

Timescale errors

Up to now in this section on nonparametric regression, we
have assumed that in a stochastic, discrete-time process
{T (i),X(i)}ni=1, the timesT (i) are exactly known, whereas
we have conceded some noise from measurement, proxy and
climate uncertainties, described by the time-dependent ran-
dom variableXnoise(i), to the climate variableX(i). In the
nonparametric regression problem, this assumption leads to
Eq. (3) with the regressor “time” fixed and known. This
model is called fixed-regressor model.

www.clim-past.net/8/1637/2012/ Clim. Past, 8, 1637–1648, 2012
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Fig. 2. Kernel trend estimation and MBB resampling illustrated by
means of the Bu1δ18O record (blue dots, upper panel) during the
interval from 0.55 to 0.85 ka on the StalAge-derived timescale. Also
shown are trend estimate (blue line), regression residuals (indicated
by the shading), parabolic kernel functionK with a bandwidth of
h = 250 a (black line, lower panel) and one block of lengthl = 32
for MBB resampling.

For several types of climate time series with exactly known
T (i) (e.g. climate model output or instrumental observa-
tions), the fixed-regressor model is adequate. On the other
hand, for the climate archives studied here, the assump-
tion T (i) = Ttrue(i) (true time value) cannot be maintained
(Sect.2.2). In principle, we have to write the measured times
as

T (i) = Ttrue(i) + Tnoise(i), (4)

i = 1, . . . ,n, whereTnoise(i) is the error owing to age uncer-
tainties, and we have to insert this expression into the calcu-
lation of thes(i) sequence for the estimation (Eq.3). The re-
sulting regression model is called errors-in-variables model.

Since the typical size of the dating errors is rather small
against the spread of the time points, the effects on the es-
timation itself (e.g. bias) are likely negligible (Mudelsee,
2010). For example, the AH-1 chronology has an average
1-σ dating error of 67 a (Table1), and the time points for AH-
1 constructed with StalAge have a 1-σ standard deviation or

spread of
{
n−1∑n

i=1

[
t (i) − n−1∑n

i=1 t (i)
]2

}1/2
≈ 1838 a.

However, it is the objective of this paper to take into ac-
count timescale errors for the construction of error bands.
This can be achieved by augmenting MBB resampling with
parametric timescale simulation. This leads to the algorithm
used for the calculations (Fig.3). The idea behind this al-
gorithm is roughly as follows. Whereas the usual MBB
(Mudelsee, 2010) consists in doing steps 1–5 and then using
in step 7 the original timest (i) instead of the simulated times
t∗(i), our adaptation includes timescale simulation (step 6)
and using in step 7 thet∗(i). We show (Sect.4.2) that ignor-
ing timescale errors usually leads to error bands that are too
narrow.
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Fig. 3. Algorithm for construction of standard-error bands for non-
parametric regression estimates under consideration of timescale er-
rors. The MBB (step 4) draws with replacement random blocks of
lengthl from the residuals untiln values have been resampled.

4 Results and discussion

We first look in a more qualitative manner at the overall re-
sults (Sect.4.1). The effects of the dating errors are then
studied separately for each of the two age–depth curve con-
struction tools (Sect.4.2). The next, critical point is how re-
sults depend on the type of age–depth model construction
(Sect.4.3). To study this dependence in detail, we perform
a new simulation experiment. With the knowledge generated
by this procedure, we look again at the overall results, the
regional climate during the Holocene, in a more quantitative
manner (Sect.4.4).

4.1 Qualitative inspection

At first sight, the agreement of resulting trends among the
three stalagmiteδ18O records AH-1, Bu1 and Bu4 is re-
markable for each of the two age–depth construction tools
(StalAge, Fig.4a; iscam, Fig.4b). We emphasize that no shift
or correction has been applied to theδ18O values – neverthe-
less their overall levels and the amplitudes of the trends are
rather similar. It appears that the deviations between the AH-
1 and each of the Bunker Cave records (Bu1 and Bu4) are
larger than those between Bu1 and Bu4.

Note that the time series plots (Figs.2, 4, 5, 6, 7 and8)
conventionally show timet on the horizontal and time series
valuex on the vertical axis.
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Fig. 4. Results. Trend estimation of stalagmite time series for age–
depth construction algorithms StalAge(a) and iscam(b). Data
points (dots), trends (thick solid lines) and 1-σ standard-error bands
(shaded) are shown for stalagmites AH-1 (green), Bu1 (blue) and
Bu4 (red). The early and late parts of the Bu1 series are analysed
separately. The trends are calculated with a kernel bandwidth of
h = 250 a and the standard-error bands with a number of MBB re-
samplings ofB = 2000 and taking dating errors into account. The
block lengths for MBB resampling are for(a): l = 1 (AH-1), 33
(Bu1, late part), 32 (Bu1, early part) and 22 (Bu4); and for(b): l = 1
(AH-1), 32 (Bu1, late part), 33 (Bu1, early part) and 22 (Bu4).

4.2 Effects of dating errors I

The nonparametric regression residuals (Fig.2) are reali-
sations of one class of noise: uncertainties of thex val-
ues in the form of measurement noise, proxy error and un-
known/unresolved climate variability. The MBB algorithm
(Fig. 3) takes this noise class fully into account (i.e. it pre-
serves distributional shape and persistence) by means of the
resample valuesx∗(i) for calculating the error band around
the nonparametric trend estimate. The second class of noise
is on thet values in the form of dating errors at the con-
struction of the age–depth curve. The error-band construc-
tion algorithm (Fig.3) takes this into account by means of
the resample valuest∗(i) generated by the timescale simula-
tions (Sect.2.2). We now study the pure effects of timescale
errors by comparing two versions of error-band construc-
tion: one with timescale errors, the other without (i.e. setting
t∗(i) = t (i) for i = 1, . . . ,n in Fig. 3 at step 6).

Fig. 5. Results. Effects of timescale errors on centennial- to
millennial-scale trend estimation of stalagmite time series, in-
terval from 6.0 to 6.7 ka, for age–depth construction algorithm
StalAge. Cf. Fig.4a; 1-σ standard-error bands resulting from tak-
ing timescale errors into account (shaded) and standard-error bands
from ignoring timescale errors (thin solid lines).

The effects of timescale errors, exemplified by a zoom of
the interval from 6.0 to 6.7 ka (Fig.5), are not large. The
conclusion for this time interval, namely that trends for the
two records Bu1 and Bu4 from the same cave are rather
close to each other while the record AH-1 from the other
cave exhibits a trend with about 0.4 ‰ lighterδ18O values at
around 6.3 ka, is almost unaffected. The average contribution
over the 6.0–6.7 ka interval from dating errors to the over-
all error band for algorithm StalAge is only 20.5 % (Bu1),
14.6 % (Bu4) and 8.2 % (AH-1). The average contribution
over the same time interval for algorithm iscam is 2.4 %
(Bu1), 11.3 % (Bu4) and 0.4 % (AH-1). Although the scat-
ter among those percentages is considerable, it appears clear
that timescale errors do not contribute much to the overall
error of the estimation.

It is interesting to note that timescale errors on non-
parametric trend estimates do not always widen the error
bands. The error band for the AH-1 record on the StalAge-
derived timescale (Fig.6) shows for the interval around
1.3 ka a clearly narrower band than from ignoring timescale
errors. The explanation of this effect is as follows. Trend
estimates are more accurate for “high-density” data regions
(Silverman, 1986; Härdle, 1990; Simonoff, 1996), where the
time-dependent temporal spacing is small. The AH-1 series
on the StalAge-derived timescale has such a high-density
region at around 1.7 ka (Fig.6). The average StalAge sim-
ulation shifts the region at around 1.7 ka systematically to
smaller ages, by an amount of approximately 0.4 ka (Fig.1a,
circle). This means a shift of the high-accuracy region from
1.7 to 1.3 ka. The resulting narrowing effect on error bands
at around 1.3 ka is stronger than the widening effect of the
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Fig. 6. Results. Effects of timescale errors on trend estimation of
stalagmite time series, interval from 0.8 to 1.8 ka, for age–depth
construction algorithm StalAge and stalagmite AH-1. Cf. Fig.4a.

inclusion of timescale errors. We emphasize that this may in
general only happen when the timescale simulation produces
systematic shifts.

The main climatological objective of this paper is to study
centennial- to millennial-scale trends in regional climate. For
this purpose we have selected a bandwidth ofh = 250 a for
the trend estimation (Figs.2 and4). These estimations yield
error bands that are rather robust against the presence of
timescale errors; see Figs.5 and6 as well as the second para-
graph in this Sect.4.2. Let us look at decadal-scale trends
by means of selecting a bandwidth ofh = 30 a. Several
new “wiggles” appear (Fig.7) compared to usingh = 250 a
(Fig. 5). The immediate question relates to the statistical sig-
nificance of these additional wiggles. The expectation of a re-
duced robustness against the presence of timescale errors is
quantitatively confirmed (Fig.7). For the 6.0–6.7 ka inter-
val, the average contribution from dating errors to the over-
all error band for algorithm StalAge is as large as 39.4 %
(Bu1), 55.8 % (Bu4) and 22.7 % (AH-1). The average con-
tribution over the same time interval for algorithm iscam is
20.9 % (Bu1), 56.8 % (Bu4) and 6.6 % (AH-1). It is difficult
to see significant decadal-scale trends when timescale errors
are of similar (decadal) size (Fig.1). Notwithstanding this
verdict, there may be agreement on decadal-scale trends be-
tween the two Bunker Cave records Bu1 and Bu4; we note
the wet/warm peak in both records at around 6.25 ka, pre-
ceded by a dry/cold peak at around 6.30 ka (Fig.7). The dif-
ficulty to find significant peaks in decadal-scale climate is
likely exacerbated when also considering “age–depth model
uncertainty” (Sect.4.3).

Fig. 7. Results. Effects of timescale errors on decadal-scale trend
estimation of stalagmite time series, interval from 6.0 to 6.7 ka, for
age–depth construction algorithm StalAge. The trends are calcu-
lated with a kernel bandwidth ofh = 30 a. Cf. Figs.4a and5; block
lengths:l = 1 (AH-1), 12 (Bu1, early part) and 6 (Bu4).

4.3 Effects of dating errors II

Let us take a rational, critical, scientific standpoint (Kant,
1781; Popper, 1935; Einstein, 1949) and consider that a true
but unknown age–depth curve exists and that the task of
curve construction (Sect.2.2) is to infer the true age–depth
curve. The problem then is that different algorithms for
achieving this task can be used, which lead to different infer-
ence results and also to different timescale uncertainties. The
question which model to use (for age–depth curve construc-
tion) is referred to in the statistical literature as model un-
certainty; seeChatfield(1995), Draper(1995), Candolo et al.
(2003) andChatfield(2004, Sect. 13.5 therein). It appears to
us that it should be solved not entirely by means of statistical
model-selection criteria but rather be considered at a deeper
level, touching areas of philosophy of science. In fact, an irra-
tional, “post-normal” standpoint (Ravetz, n.d.; Fleck, 1980),
which holds that truth is a sociological construct, seems not
to lead to a way of advancing our understanding. These re-
marks do of course apply not only to age–depth construction
for stalagmite records but to a wider class of inferential prob-
lems in climatology (“unknown unknowns”), for example the
question of how to deal with uncertainties in greenhouse-gas
emissions for climate forecasting.

The stalagmite problem is that the two different mod-
els of age–depth curve construction lead to two different
Holocene climate trend estimates and error bands: model
StalAge (Fig. 4a) and model iscam (Fig.4b). The two
schools of statistical thinking may inspire following prac-
tical approaches to tackle this model-uncertainty problem.
Bayesian model averaging attaches prior probabilities to the
age-model candidates.Chatfield(1995, p. 48) reports: “The
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Fig. 8.Results. Trend estimation of stalagmite time series for a com-
bination of age–depth construction algorithms StalAge and iscam.
Cf. Fig.4; block lengths:l = 1 (AH-1), 32 (Bu1, late part), 33 (Bu1,
early part) and 22 (Bu4).

data are then used to evaluate posterior probabilities for
the various models. Models with “low” posterior probabili-
ties may be discarded to keep the problem manageable, and
then a weighted sum of the remaining competing models is
taken”. Since we have not taken the Bayesian approach but
one based on resampling (Fig.3), we prefer to bootstrap
the modelling process; see, for example,Efron and Gong
(1983) or Roberts and Martin(2010). In detail (cf. the algo-
rithm in Fig. 3): first, at step 1, we average the time values,
t (i) = 0.5[tStalAge(i)+ tiscam(i)], i = 1, . . . ,n, where the sub-
script denotes the timescale model; second, at step 6, we take
the firstB/2 timescale resamplest∗(i) from StalAge and the
secondB/2 from iscam. Thus, our procedure corresponds to
a uniform prior or an unweighted resampling.

The resulting nonparametric trend estimates (Fig.8) show
some mild widening (relative to results shown in Fig.4) of
the error bands owing to model uncertainty. A larger effect
is on the result for the late part of theδ18O record from Bu4,
on which individual StalAge and iscam results display con-
siderable age deviations (Fig.4).

4.4 Quantitative interpretation

On the basis of the trend estimation with a full consideration
of the various error sources (measurement, proxy, timescale,
model uncertainty), we infer the significant features of the
climate evolution in western Germany over the past 8.6 ka
(Fig. 8).

The early part of the analysed time interval does not show
signs of a “recovery” from the previous glacial climatic state
(Davis et al., 2003; Davis and Brewer, 2009) in the form of
a long-term warming trend. This is likely due only to the rel-
atively late start of our analysed records; older speleothems
from Bunker Cave do show an early-Holocene warming
trend (Fohlmeister et al., 2012).

Around the middle of the Holocene, all three records go
into a swing from warm (T ≈ 6.5 ka) to cold (T ≈ 6.0 ka)
and again to warm (T ≈ 5.1 ka), with warm–cold ampli-
tudes of around 0.5 ‰. Strictly speaking, we should write
“wet/warm” instead of “warm” and “dry/cold“ instead of
“cold”. We should also bear in mind that kernel smoothing
is not without bias (Härdle, 1990) and that the amplitude es-
timate of 0.5 ‰ may be too small. It therefore seems prema-
ture to assign certain temperature amplitudes to the observed
swings. Nevertheless, this is a significant feature of winter-
climate evolution in Europe. Note that the “Holocene climate
optimum” between 5 and 9 ka regards another climate ele-
ment, namely Northern Hemisphere summer (Jansen et al.,
2007). It is an interesting question whether records from
other locations in Europe do reveal a similar double swing
in winter climate when examined with advanced methods of
time series analysis.

The interval from approximately 5 to 1 ka, covered by only
one stalagmite from Bunker Cave (Bu4) and the other from
Atta Cave (AH-1), experienced “wiggly” trends of longer
wettening/warming interrupted by phases of reduced dry-
ing/cooling (Fig.8). Evidence of a quantitative agreement
between Bu4 and AH-1 is not strong; AH-1 has generally
lighter δ18O values than Bu4, and Bu4 shows, unlike AH-1,
a clear dry/cold peak at around 3 ka. A considerable amount
of local climate influences and even inter-cave variability
seems to prevail.

The warming trends described in the previous paragraph
reach a maximum; for AH-1 this maximum is atT ≈ 1.4 ka
or AD 550 andδ18O ≈ −6.4 ‰, for Bu4 it is atT ≈ 0.85ka
or AD 1100 andδ18O ≈ −5.9 ‰ and for Bu1, which com-
menced to grow again at around 1.5 ka, this wet/warm max-
imum is atT ≈ 0.95 ka or AD 1000 andδ18O ≈ −6.2 ‰.
The scatter among these peak values again reflects local cli-
matic influences; it also illustrates “taxonomic difficulties”
in defining an MWP (Medieval Warm Period) or Medieval
Climate Anomaly (Jansen et al., 2007, Box 6.4 therein).

The inter- and intra-record spread of values is rather
small for the most recent centennial-scale cold, the LIA
(Little Ice Age). It peaked atT ≈ AD 1550 andδ18O ≈

−5.6 ‰ (AH-1), T ≈ AD 1550 andδ18O ≈ −5.5 ‰ (Bu1)
and T ≈ AD 1450 and δ18O ≈ −5.3 ‰ (Bu4). Since the
LIA, a warming trend, enhanced by anthropogenic contribu-
tions (Solomon et al., 2007), has persisted to the present. The
warming is rather fast, although it is not straightforward to
place realistic error bars around the rate of warming. How-
ever, such an estimation target (first derivative) is accessi-
ble to a quantitative analysis by means of kernel smoothing
(Gasser and M̈uller, 1984). As regards the often discussed
levels of the current warmth in relation to MWP levels, the
results (Fig.8) allow us only to conclude that current warmth
is stronger (lighterδ18O) than MWP for stalagmite Bu4,
about the same for Bu1 and weaker for stalagmite AH-1.

Finally, we want to emphasize that at least parts of the
δ18O signal could have been altered by changes in the
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strength of kinetic isotope fractionation (Fairchild and Baker,
2012) between the two caves. This may be the reason for dif-
ferences in the trends between AH-1 and both Bunker Cave
stalagmites. Even when we use iscam for the age modelling,
there are periods where differences in the timing of the trends
occur (e.g. from 2.5 to 2 ka). As shown for Bunker Cave,
the artificial cave opening in the late 19th century had no
influence on the oxygen isotopic composition of the calcite
(Fohlmeister et al., 2012). Therefore, a rapid opening or clos-
ing of the cave does not seem to have had an influence on the
degree of kinetic fractionation, whereas stalagmite-growth
modelling studies (Mühlinghaus et al., 2009; Scholz et al.,
2009; Dreybrodt and Scholz, 2011) suggest that changes in
drip rate may indeed have an influence.

5 Conclusions

1. To assess the significance of climate trends requires in
general the construction of error bands that capture fully
the error sources. For proxy records from speleothems,
the error sources regard measurement, proxy quality,
dating and age–depth curve construction.

2. The three analysed stalagmiteδ18O time series reflect
regional, western-Germany winter climate over the past
8.6 ka. The error influences on centennial- to millennial-
scale trend estimation are not excessively large, allow-
ing us to infer real climatic features. One such ap-
parently previously less well recognized feature is the
“mid-Holocene climate double swing” from warm to
cold to warm winter conditions (6.5 ka to 6.0 ka to
5.1 ka). We also quantify the MWP and LIA as ex-
pressed in the stalagmite records.

3. One should be aware of a general potential for circular
reasoning regarding results from age–depth construc-
tion algorithm iscam. Since iscam employs two series
and assumes a correlation between them to construct an
age–depth curve, a good agreement between trends may
also result from the stretching and shifting of timescales
imposed by iscam. In case of the results shown in the
present paper, however, the danger of circular reasoning
is rather small owing to the fact that also the other age–
depth construction algorithm (StalAge) yields trends
that exhibit a similar amount of agreement among dif-
ferent stalagmites.

4. Differences between trends shown by Atta Cave (AH-
1) on the one hand and Bunker Cave (Bu1 and Bu4) on
the other likely reflect varying small-scale climatic and
hydrological influences and possibly also effects of ki-
netic fractionation. Variations in terms of provenance or
trajectories (Sect.2.3) are an unlikely explanation since
both caves are as close as about 39 km to each other
(Sect.2).

5. Construction of age–depth curves for climate archives
on the basis of dating points, constraints (e.g. strictly
monotonically increasing curves) and the physics rele-
vant for describing the archive’s growth is a challenging
task. It is currently being tackled by means of Bayesian
and other simulation-based approaches. Construction of
these curves is, however, not a means in itself. Age–
depth modelling must also provide simulated curves,
which can then be fed into modern resampling meth-
ods of climate time series analysis, resulting in realistic
measures of uncertainty in our knowledge about the cli-
mate.

Supplementary material related to this article is
available online at:http://www.clim-past.net/8/1637/
2012/cp-8-1637-2012-supplement.zip.
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