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Abstract. Existing parameterizations tend to underpredict
theα-pinene aerosol mass fraction (AMF) or yield by a factor
of 2–5 at low organic aerosol concentrations (<5µg m−3).
A wide range of smog chamber results obtained at various
conditions (low/high NOx, presence/absence of UV radia-
tion, dry/humid conditions, and temperatures ranging from
15–40◦C) collected by various research teams during the last
decade are used to derive new parameterizations of the SOA
formation fromα-pinene ozonolysis. Parameterizations are
developed by fitting experimental data to a basis set of sat-
uration concentrations (from 10−2 to 104 µg m−3) using an
absorptive equilibrium partitioning model. Separate param-
eterizations forα-pinene SOA mass fractions are developed
for: 1) Low NOx, dark, and dry conditions, 2) Low NOx,
UV, and dry conditions, 3) Low NOx, dark, and high RH
conditions, 4) High NOx, dark, and dry conditions, 5) High
NOx, UV, and dry conditions. According to the proposed pa-
rameterizations theα-pinene SOA mass fractions in an atmo-
sphere with 5µg m−3 of organic aerosol range from 0.032 to
0.1 for reactedα-pinene concentrations in the 1 ppt to 5 ppb
range.

1 Introduction

The annual global biogenic volatile organic carbon (VOC)
flux is estimated to be 1150 Tg C, composed of 44% iso-
prene, 11% monoterpenes, 22.5% other reactive VOC, and
22.5% other VOCs (Guenther et al., 1995; Griffin et al.,
1999a). On a global scale,α-pinene emissions are around
50 Tg C y−1 (Guenther et al., 1995). Griffin et al. (1999a)
estimated that 18.5 Tg of SOA atmospheric secondary or-
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ganic aerosol are formed annually from biogenic precursors,
a number smaller than the previously published estimate of
30–270 Tg by Andreae and Crutzen (1997). Tsigaridis and
Kanakidou (2003) argued that the global annual SOA pro-
duction from biogenic VOC might range from 2.5 to 44.5 Tg.
A number of recent studies (de Gouw et al., 2005; Heald et
al., 2005; Volkamer et al., 2006; Takegawa et al., 2006) sug-
gest that the SOA concentrations in both urban and urban-
influenced more remote areas are underestimated by existing
models.

Ozonolysis is one of the majorα-pinene oxidation path-
ways in the troposphere, contributing approximately 80%
of the SOA from theα-pinene degradation (Griffin et al.,
1999a). Smog chamber studies show that theα-pinene/O3
reaction is quite efficient in forming SOA with aerosol mass
fraction (AMF) as high as 0.67 for highα-pinene concentra-
tions (Hoffman et al., 1997). These studies suggest that the
amount of reactedα-pinene, ozone concentration, tempera-
ture, NOx, UV light, relative humidity and the presence of
other organic aerosol can affect the AMF.

In smog chamber experiments, the SOA mass fraction in-
creases with increasingα-pinene concentration (Odum et al.,
1996; Hoffmann et al., 1997; Griffin et al., 1999b; Cocker
et al., 2001; Hoppel et al., 2001; Pathak et al., 2007). Ob-
served AMF trends can be explained by existing gas/particle
partitioning models (Pankow 1994a, b; Odum et al., 1996;
Pankow et al., 2001; Seinfeld et al., 2001; Seinfeld and
Pankow, 2003).

Stanier et al. (2007) reported that the aerosol volume of
α-pinene SOA changes with temperature with concentration-
temperature dependences ranging from 0.6 to 2.9% per◦C.
Pathak et al. (2007) reported a value of 1.6% per◦C (between
15 and 40◦C). A stronger temperature dependence of AMF
on temperature (by a factor of 2) was observed between 0◦C
and 15◦C (Pathak et al., 2007; Saathoff et al., 2004).
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Fig. 1. Experimental data used to developα-pinene SOA AMF pa-
rameterizations plotted in the reactedα-pinene versus temperature
space. Different symbols are used for high/low NOx, darkness or
light and high/low RH.

SOA mass fraction decreases in the presence of both UV
light and high concentrations of NOx. SOA production is
completely suppressed in some cases when both UV light
and significant concentrations of NOx are present (Presto et
al., 2005a, b). SOA formation may depend significantly on
actinic flux, and the final products of ozonolysis depend on
NOx concentration (usually expresses as [VOC]/[NOx] ra-
tio).

In the presence of water vapor, the distribution of SOA
products from ozonolysis ofα-pinene and the correspond-
ing AMF change (Jang and Kamens 1998; Fick et al., 2003).
Jang and Kamens (1998) reported that the SOA formation
was reduced in wet conditions (58–92% RH) with no inor-
ganic aerosol seeds. However, Cocker et al. (2001) found
that theα-pinene AMF varies little with RH in seed free con-
ditions or in the presence of dry seeds, but the presence of
aqueous salt seeds reduced the SOA mass fraction.

Several modules have been developed to predict SOA for-
mation in atmosphere and are used in chemical transport
models. The Odum/Griffin et al. (1999a) and Carnegie Mel-
lon University/Sonoma Technology Inc. modules (Strader et
al., 1999a, b) represent SOA absorptive partitioning into a
mixture of primary and secondary particulate organic com-
pounds, with some differences in the formulation of the ab-
sorption process, the selection of SOA species, and their pre-
cursors. Empirical representations based on measured lab-
oratory AMF are used for condensable organic products in
both these modules. The Atmospheric and Environmental
Research (AER) module simulates SOA absorption into or-
ganic and aqueous particulate phases, and a representation
based on an explicit gas-phase mechanism is used in the
module developed by Pun et al. (2002). Pun et al. (2003)
showed that these modules predicted SOA concentrations
that can vary by a factor of 10 or more.

In general, smog chamber studies have been performed
with excess of ozone and relatively highα-pinene concen-
trations (>10 ppb). Chemical transport models use parame-
terizations extrapolating from these high concentration SOA
AMFs (or equivalently at high organic aerosol loadings) to
ambient conditions. Presto et al. (2006) argued that these
extrapolations underestimate the SOA AMF by several fac-
tors for atmospherically relevant concentrations ofα-pinene
(<5 ppb or atmospherically relevant organic aerosol levels
<10µg m−3). Most published AMF parameterizations (e.g.
Griffin et al., 1999b; Cocker et al., 2001) are derived by the
empirical fits to the experimental data of a single investigator.

So far there exist noα-pinene SOA parameterizations
which have been developed and tested for lowα-pinene con-
centrations, low ozone, and variable levels of UV, NOx, RH
and temperature. The development of such parameterizations
requires collective treatment of smog chamber data from dif-
ferent series of experiments, enabling much wider coverage
of the parameter space in terms ofα-pinene concentrations,
temperature, VOC/NOx, UV and RH.

In this paper, we use a wide range of SOA AMF mea-
surements obtained at various conditions (low and high NOx,
dark and in the presence of UV light, dry and humid condi-
tions, low and high temperatures) during the last decade from
different chambers. We compliment these existing data with
a few additional new measurements to cover gaps in the pa-
rameter space. We use the basis set of saturation vapor pres-
sures in the range of 10−2 to 104 µg m−3 (1.6 ppt–1.6 ppm
for a molecular weight of 150 g mol−1, 298 K and 1 atm) to
fit the measurements (Donahue et al., 2006). Different pa-
rameterizations are developed to fit the results at various ex-
perimental conditions. Finally, we propose a collection of
AMF parameterizations, which could reproduce all the mea-
surements made in previous smog chamber studies and can
be used in chemical transport models.

2 Experimental data for parameterization

α−pinene SOA AMFs measured by Hoffmann et al. (1997),
Griffin et al. (1999b), Cocker et al. (2001), Winterhalter et
al. (2003), Presto et al. (2005a, b, 2006), Ng et al. (2006),
Lee et al. (2006) and Pathak et al. (2007) are used in this
study. To cover gaps in the available data, we also performed
additional experiments at high NOx at low RH in the dark,
at high NOx in the presence of UV light at low RH, and in
low NOx at high RH in the dark. Dynamic AMFs were esti-
mated from these experiments using real time data (Presto et
al., 2006; Ng et al., 2006; Pathak et al., 2007). The dynamic
AMF is the AMF measured continuously during an experi-
ment, from the SOA produced andα-pinene reacted at that
point of time, while only a fraction of the initialα-pinene
has reacted. The final AMF is the AMF estimated at the end
of experiment, when all of theα-pinene has reacted. The
AMF is used throughout this paper instead of the equivalent
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Table 1. Summary ofα-pinene AMF measurements used in this study.

Experimental
Conditions

Study Number of
Experiments
( Data points)

α-pinene Concentra-
tion Range (ppb)

Temperature Range
(◦C)

High NOx, dark,
and low RH (<10%)

Presto et al. (2005 b) 6 (6) 16–214 22

Presto et al. (2006) 1 (9) 9–11 22
This studya 1 (13) 28–42 15–40

High NOx, UV,
and low RH (<10%)

Presto et al. (2006) 1 (13) 7.5–11 22

This studya 1 (16) 34–42 15–40

Low NOx, dark,
and low RH (<10%)

Cocker et al. (2001) 24 (24) 22–175 28–30

Griffin et al. (1999b) 6 (6) 18–63 35–37
Hoffmann et al. (1997) 6 (6) 37–151 16–49
Lee et al. (2006) 1 (1) 175 19
Ng et al. (2006) 1 (51) 178 20
Pathak et al. (2006) 41 (114) 1–50 0–40
Presto et al. (2005a) 14 (14) 15–207 22
Presto et al. (2006) 4 (4) 13–133 22
Winterhalter et al. (2003) 2 (2) 55–70 35
Yu et al. (1999) 3 (3) 45–65 35

Low NOx, UV,
and low RH (<10%)

Presto et al. (2005a) 6 (6) 8–196 22

Presto et al. (2006) 1 (12) 7–24 22

Low NOx, dark,
and high RH
(50–73%)

Gao et al. (2004)
Ng et al. (2006)

7 (177)
7 (177)

1–132
1–132

20
20

Cocker et al. (2001) 9 (9) 42–176 28–30
This studyb 1 (16) 5–37 15–40

a Theα-pinene ozonolysis took place at 40◦C. After completion of the reaction, the smog chamber temperature was changed to 30◦C, 20◦C
and 15◦C.
b Theα-pinene ozonolysis took place at 15◦C. After completion of the reaction, the smog chamber temperature was changed to 20◦C, 30◦C
and 40◦C.

but rather confusing “aerosol yield” that has been used in
previous studies (Odum et al., 1996). The normalized AMF
assumes a density of 1 g cm−3 for the SOA and should be
multiplied with the actual density to calculate the AMF.

Ng et al. (2006) and Cocker et al. (2001) performed some
of their experiments in high RH conditions (55–65%) and
their results are used to parameterize the RH effects on theα-
pinene AMF. Presto et al. (2005a, b) investigated the effects
of high NOx in presence of UV light at 22◦C. Additional
experiments are reported here to obtain the temperature de-
pendence of these effects. Pathak et al. (2007) performed
α-pinene ozonolysis experiments in the dark at a range of
temperatures from 0◦C to 40◦C. In this study, both the final
and dynamic AMFs from some of the above-mentioned stud-
ies are used to develop theα-pinene SOA parameterizations.

An overview of the availableα-pinene ozonolysis exper-
iments plotted in the temperature-precursor concentration
space is shown in Fig. 1. Table 1 provides a summary of
the various data sources and their experimental conditions.
The available measurements together with the results of pro-
posed parameterizations are shown in Fig. 2. A number of

Fig. 2. SOA AMF as function of SOA mass. Comparison of mea-
surements in various smog chamber studies and predictions by the
existing 2-products parameterizations. The Hoffmann et al. (1997),
Griffin et al. (1999), and Cocker et al. (2001) parameterizations are
denoted by HM, GF and CR, respectively. The experimental condi-
tions for all studies can be found in Table 1.
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Table 2. Summary ofα-pinene experiments in this study.

Exp. No. α-pinene Ozone Temp Seed SOA Mass AMF Experimental
(ppb) (ppb) (◦C) (cm−3) (µg/m3) Conditions

1a 38 250 15 6700 45.97 0.21 63–73% RH,
dark, NOx<3 ppb

2b 42 250 40 8300 5.65 0.025 220 ppb NO2,
dark, RH<10%

3b 42 370 40 8200 5.33 0.023 210 ppb NO2,
UV lights, RH<10%

a Theα-pinene ozonolysis reaction was performed at 15◦C. After the completion of reaction temperature was changed to 20◦C, 30◦C and
40◦C and AMFs were estimated. The RH was around 65% at 15◦C and it decreased to 20% when temperature was increased to 40◦C.
b Theα-pinene ozonolysis reaction was performed at 40◦C. After completion of the reaction, the smog chamber temperature was changed
to 30◦C, 20◦C and 15◦C.

studies with either incomplete published datasets for use in
the parameterization (Fick et al., 2003; Jang et al., 1998) or
for different experimental conditions (Iinuma et al., 2004;
Czoschke and Jang, 2006) were not used in the present study.

Based on the collective information on secondary organic
AMFs from α-pinene ozonolysis at different conditions five
parameterizations covering the following parts of the condi-
tion space will be developed:

– Low NOx with variable temperature, low RH, dark

– High NOx with variable temperature, low RH, dark

– UV effects on AMF with variable temperature, low RH,
low NOx

– UV effects on AMF with variable temperature, low RH,
high NOx

– High RH, low NOx, dark

For the purposes of this study we assume that
VOC/NOx>10 ppbC/ppb in the low NOx regime and
that VOC/NOx<3 ppbC/ppb in the high NOx regime.

2.1 Experimental method

Experimental methods are only discussed for the experimen-
tal results not reported elsewhere. Three experiments were
performed in the Carnegie Mellon University smog chamber
using a 10 m3 Teflon reactor (Welch Fluorocarbons). The ex-
periments were conducted at constant temperatures (15◦C or
40◦C). Each constant temperature experiment was followed
by a temperature ramp to investigate temperature-dependent
partitioning. Experiments were carried out at initialα-pinene
concentrations of 38±1.5 ppb. In the low NOx experiments,
NOx concentrations in the bag were less than a few ppb. In
the high NOx experiments, the VOC carbon to NOx concen-
tration ratio was approximately 10. In the high RH experi-
ment, the measured RH was around 65% at 15◦C. However,

as temperature was changed it dropped to approximately
25% at 40◦C. Water vapor was added to the reactor during
the experiment to avoid an even larger change in RH.

The experiments were carried out with an excess of ozone
produced from an ozone generator (Azco HTU500ACPS).
Reactions were carried out in the presence of an OH-
scavenger (2-butanol) in excess (0.5 ml, which is 500–2000
times the initialα-pinene concentration). All experiments
were performed in the presence of polydisperse seed aerosols
generated from 7 mM (0.9 g/L) ammonium sulfate aqueous
solutions. The seed aerosol concentrations were usually
between 4000–6000 particle cm−3. The particle density of
SOA was assumed to be 1 g cm−3 for all calculations in
the paper (normalized AMF). The instrumentation, reagents
used, wall loss correction, and AMF calculation details have
been described by are Pathak et al. (2007). A summary of
the results of these experiments is provided in Table 2.

2.2 Low NOx, dark and low RH AMF

In these experiments, SOA formation during theα-pinene
reaction with O3 has been studied in the dark with very low
NOx concentrations in the temperature range between 0◦C
and 49◦C at low RH (<10%) (Hoffmann et al., 1997; Griffin
et al., 1999b; Yu et al., 1999; Cocker et al., 2001; Winterhal-
ter et al., 2003; Presto et al., 2005a, 2006; Ng et al., 2006;
Lee et al., 2006; Pathak et al., 2007). Measuredα-pinene
SOA AMFs have ranged from 0.005 to 0.45 depending on
the amount ofα-pinene reacted and temperature. For exam-
ple, for reactedα-pinene concentrations from 1 to 40 ppb, the
corresponding AMF ranged from 0.02 to 0.21 at 20◦C. The
AMF increases at lower temperatures (Pathak et al., 2007).

2.3 High NOx, dark and low RH AMF

The SOA mass fraction in theα-pinene/O3/NOx reaction sys-
tem changes quite dramatically with increasing NOx. This
change in AMFs is partially due to the formation of organic
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nitrate compounds with higher vapor pressure, which prefer-
entially remain in the gas phase (Zhang et al., 2007). Presto
et al. (2005b) investigated the SOA formation during the a-
pinene ozonolysis at 22◦C and low RH with variable NOx
concentrations. These authors performed their high NOx ex-
periments at [VOC]o/[NOx]o (ppbC/ppb) ratios of 1–2. Their
results are used for the development of the parameterization
for the high NOx regime defined here as [VOC]o/[NOx]o
(ppbC/ppb)<10 (Presto et al., 2005b). These authors argued
that NO3 was at most a secondary contributor to the observed
chemistry (it contributed less than 20% to theα-pinene re-
moval) in their experiment.

In the present study, an additional experiment was per-
formed for a [VOC]o/[NOx]o (ppbC/ppb) ratio of about 2 at
40◦C (Table 2). The final SOA mass fraction was 0.025 for
42 ppb reactedα-pinene. The temperature of the chamber
was then reduced and we measured AMFs at 30, 20 and 15◦C
equal to 0.053, 0.066, and 0.067, respectively. This change
corresponds to an effective heat of vaporization of approxi-
mately 30 kJ mol−1, a value consistent with the 33 kJ mol−1

measured by Offenburg et al. (2006) at high NOx conditions

2.4 UV effect on AMF in low and high NOx conditions

Presto et al. (2005a) measured the SOA concentrations
formed from theα-pinene/O3 reaction with the chamber UV
lights turned on with variable NOx concentrations (from low
to high [VOC]o/[NOx]o ratio: 0.5 to 100) at 22◦C and low
RH. The SOA AMF decreased in the presence of UV light.
The AMFs decreased almost by a constant fraction of 0.03 ir-
respective of the amount ofα-pinene reacted in the low NOx
regime. No SOA was formed for reactedα-pinene concen-
tration less than 6 ppb in this low NOx case. The effect of UV
was similar in the high NOx case resulting in reduced AMFs.
For example, for 10 ppb of reactedα-pinene, the measured
AMF in the high NOx regime decreased from 0.01 (dark) to
0.0035 (UV lights).

In this study, an additional experiment was performed in
the high NOx regime at 40◦C, and the SOA concentration
was measured at different temperatures (15◦C, 20◦C and
30◦C) after the completion of the reaction.

2.5 AMF for high RH and low NOx in the dark

Cocker et al. (2001), Gao et al. (2004) and Ng et al. (2006)
and have reported AMFs for this system at 50–65% RH, un-
der low NOx conditions in the dark in the 20–30◦C temper-
ature range (Table 1). One additional experiment was per-
formed in this study at 65% RH at 15◦C and after the com-
pletion of the ozonolysis reaction the SOA concentration was
measured at 20◦C, 30◦C and 40◦C.

The AMFs that have measured in the high RH regime ex-
ceed those that have measured at dry conditions by a factor
of 1.5 or so. Under high RH conditions, theα-pinene SOA
concentration shows a rather strong temperature dependence

Fig. 3. SOA mass fraction as a function of temperature for reacted
a-pinene concentrations around 35 ppb. For this study the reaction
was carried out at 15◦C and then temperature was increased to 20,
30 and 40◦C. The initial RH of our experiment at 15◦C was 65%,
while the final RH at 40◦C was 25%. The Ng et al. (2006) measure-
ments were at 55%, while the Cocker et al. (2001) measurements
were at 50%.

(Fig. 3), with the AMFs decreasing almost by a factor of 2
as temperature increased from 15◦C to 30◦C. The water con-
tent of the a-pinene SOA when the RH is less than 65% is
less than 20% (Koo et al., 2003) therefore it plays a rela-
tively small role in the measured changes of the AMF with
increasing temperature. The relatively good agreement of the
results of the experiments where the reaction took place at a
20◦C and 30◦C respectively, with the results of our study (the
reaction took place at 15◦C and then the chamber was heated
to 20◦C and 30◦C) suggests that the change in the partition-
ing of the SOA products dominates the measured changes
of the AMF with temperature. The potential changes in the
yields of the different products at different temperatures and
the changes in aerosol water content appear to play a sec-
ondary role.

3 AMF parameterization

A major challenge in modeling SOA partitioning behavior is
the complexity of multi-component aerosol mixture, which
contains tens or even hundreds of individual components,
each with its unique partitioning properties. A practical ap-
proach is to approximate the detailed SOA mixture with a
few surrogate compounds. The surrogate compounds are
not real, but simply a numerical representation of the actual
aerosol components.

Most SOA AMF parameterizations have been derived
from empirical fits of experimental data using two surrogate
products (Odum et al., 1996). In these parameterizations,
essentially, one product represents more volatile compounds
while the other describes the low volatility products (Odum
et al., 1996; Hoffmann et al., 1997; Griffin et al., 1999b;
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Table 3. Summary of parameterizations and their evaluation.

Experimental Conditions Number of c◦ values (µg m3) α (Stoichiometric Coefficients) values 1Hevap Relative
and Parameterizations products (kJ mol−1) Errors (%)

Co
1 Co

2 Co
3 Co

4 Co
5 Co

6 Co
7 α1 α2 α3 α4 α5 α6 α7

Low NOx, dark,
low RH (this study)

7 0.01 0.1 1 10 100 1000 10000 0.001 0.012 0.037 0.088 0.099 0.250 0.800 30 16

4 1 10 100 1000 0.070 0.038 0.179 0.300 30 15

High NOx, dark,
low RH (this study)

7 0.01 0.1 1 10 100 1000 10000 0.000 0.002 0.003 0.065 0.080 0.250 0.800 30 16

4 1 10 100 1000 0.008 0.050 0.100 0.250 30 16

High NOx, UV,
low RH (this study)

7 0.01 0.1 1 10 100 1000 10000 0.0 0.001 0.001 .06 .075 0.245 0.795 30 17

4 1 10 100 1000 0.005 0.05 0.1 0.25 30 17

Low NOx, dark,
high RH (this study)

7 0.01 0.1 1 10 100 1000 10000 0.001 0.012 0.04 0.07 0.15 0.35 0.700 70 16

4 1 10 100 1000 0.035 0.099 0.162 0.384 70 17

Low NOx, UV,
low RH (this study)

7 0.01 0.1 1 10 100 1000 10000 0.000 0.000 0.024 0.078 0.060 0.222 0.770 30 9

4 1 10 100 1000 0.024 0.078 0.080 0.300 30 9

Low NOx, dark,
low RH
(Hoffman et al., 1997)

2 5 200 0.12 0.19 30* 17

Low NOx, dark,
low RH
(Griffin et al., 1999 )

2 11.4 12.7 0.125 0.102 30* 24

Low NOx, dark, low RH
(Cocker et al., 2001 )

2 23.8 1000 0.239 0.169 30∗ 33

* 1Hevapof 30 kJ mol−1is used to predict AMFs at different temperatures. This value was not part of the original parameterizations.

Cocker et al., 2001). Saturation concentration (co) and sto-
ichiometric coefficients (α) for theα-pinene AMF provided
by Hoffmann et al. (1997), Griffin et al. (1999b) and Cocker
et al. (2001) are listed in Table 3. For simplicity, Hoffmann
et al. (1997), Griffin et al. (1999b) and Cocker et al. (2001)
parameterizations are denoted as HM, GF and CR, respec-
tively, in the rest of the paper. Each of these parameteriza-
tions was derived from the measured AMF at one temper-
ature (or a very narrow range of temperatures) for relatively
highα-pinene concentrations. The HM parameterization was
derived from the AMFs for higherα-pinene concentrations
(88–154 ppb) at higher temperature (48◦C), and in experi-
ments without an OH radical scavenger. The GF parameter-
ization was derived from data at lowerα-pinene concentra-
tions (15–65 ppb), lower temperature (32–37◦C) and in pres-
ence of 2-butanol as OH scavenger. The CR parameteriza-
tion was developed from a range ofα-pinene concentrations
(23–163 ppb), almost covering the range of both HM and GR
parameterizations, in the presence of an OH scavenger (2-
butanol), at the lowest temperature (28–30◦C) among them.
As a result of the above differences in conditions, their pa-
rameters (co

i andαi) differ significantly (Table 3). As dis-
cussed by Presto and Donahue (2006), the measured dy-
namic AMFs at low organic aerosol mass concentrations
(<5µg m−3) are higher than the AMFs predicted by these
older parameterizations by a factor of 2–5 (Fig. 2). These
differences illustrate the difficulty in extrapolating from high
to low concentrations and support the need for new parame-

terizations, which can reproduce both the old and new mea-
surements.

3.1 Multiple products-basis set approach

Donahue et al. (2006) proposed the use of a basis set of surro-
gate compounds (predetermined rather than fitted saturation
concentrations) rather than the procedure common in previ-
ous published parameterizations of using fitted yields and fit-
ted saturation concentrations. The lower and upper ends of
the volatility range too are selected to cover the range of at-
mospheric conditions and to keep the parameterization error
below a threshold. The selection of the saturation concen-
trations is predetermined using a fixed basis set (lognormally
spaced from 0.01 to 105 µg m−3) and stoichiometric coef-
ficients (αi) are fit to reproduce the measured AMFs. In
this study we will be using the fixed saturation concentration
from the 4- and 7-products basis sets to develop the newα-
pinene AMF parameterizations. In this basis-set formulation
the stoichiometric coefficients (αi) are assumed to be temper-
ature independent over the temperature range of applicability
of the parameterization.

The fitting problem is formulated in terms ofm smog
chamber experiments, each with an AMFYj , temperature
Tj , and consumed reactant concentration1ROGj . The most
general model usesn surrogate components defined by their
stoichiometric yield vector (α), saturation concentration vec-
tor (co), molecular weight vector (M) and enthalpy of vapor-
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Fig. 4. Comparison of measured and predicted AMFs by 7 product (circles) and 4 product (asterisks) parameterizations in this study for:(a)
high NOx, UV, and low RH,(b) high NOx, dark, and low RH,(c) low NOx, UV, and low RH,(d) low NOx, dark, and high RH and(e) low
NOx, dark, and low RH.

ization vector (1H evap). In the general case, the predicted
AMF depends on:

Yj,fitted = f
(
1ROGj , Tj , α, co, M, 1H evap

)
(1)

An enthalpy of vaporization (1Hevap), the same for the entire
basis set, is selected so that the temperature dependence of
AMF values matches that seen in the Carnegie Mellon cham-
ber (Stanier et al., 2007; Pathak et al., 2007). The error intro-
duced by the use of a single1Hevapvalue and temperature-
independent stoichiometric coefficients can be estimated by
comparing the fitted results at different temperatures with the
measurements. The1Hevap used here should be viewed as
an “effective” enthalpy of vaporization accounting for the
various temperature effects on the AMF. In this work, the
reference temperature (Tref) for the basis set saturation con-

centrations is 298 K and the values for molecular weights of
organic aerosol are assumed to be 150 g mol−1. The sum of
the square errors∑
j=1,2...m

(
Yj,measured− Yj,fitted

)2 (2)

is minimized to determine the vector with the stoichiometric
coefficients (αi). For some experiments where the SOA yield
was measured as a function of time, multiple values were
used in the fitting.

3.2 Collective parameterizations forα-pinene/ozone SOA
mass fraction

Theα-pinene SOA mass fraction depends on multiple vari-
ables (temperature, RH, NOx, etc.), as described in previous
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Fig. 5. Predicted SOA AMF by this study (7 product basis set) and
existing parameterizations as a function ofα-pinene reacted in low
NOx, dark and low RH conditions at 298 K.

sections. It is always desirable to synthesize a single parame-
terization, which can reproduce all the measurements. How-
ever, as the environmental variables change the distribution
of the products or chemistry of SOA formation changes, e.g.
in high NOx conditions more volatile products are formed
compared to low NOx. Therefore, development of a single
super-parameterization may not be possible with the avail-
able set of measurements. Nevertheless, a collection of pa-
rameterizations for various conditions of SOA formation can
be developed. To achieve this objective, we choose the fixed
basis sets of 4 and 7 surrogate products with saturation con-
centrations (1, 10, 100 and 1000µg m−3) and (0.01, 0.1, 1,
10, 100, 1000 and 10 000µg m−3), respectively. Using these
basis sets, we optimize the objective function in Eq. (2) to fit
the measured AMFs for five cases: 1) Low NOx, dark, and
dry conditions, 2) Low NOx, UV, and dry conditions, 3) Low
NOx, dark, and high RH conditions 4) High NOx, dark, and
dry conditions 5) High NOx, UV, and dry conditions. In all
the above cases, temperature was variable. For all five cases,
the enthalpies of vaporization (1Hevap) were obtained from
the temperature dependence of the measured AMFs. The re-
sults are summarized in Table 3. The predicted AMFs are
compared to the available measurements in Fig. 4. The errors
are in the order of 15–20% that is similar to the experimental
errors of typical smog chamber experiments (Pathak et al.,
2007). This agreement indicates that the proposed param-
eterizations reproduce adequately both the older and newer
measurements from different studies. The performance of
the both the 4- and 7-product basis set parameterizations is
similar for practically all data points. The good performance
of the parameterization at the different temperatures suggests
that our simplifications with the use of one effective vapor-
ization enthalpy and temperature independent stoichiometric
coefficients are reasonable approximations of the real behav-
ior of the system.

Fig. 6. Predicted SOA AMF by the proposed 7-product parameter-
ization for various conditions as a function ofα-pinene reacted at
different conditions at 25◦C.

Comparison of the stoichiometric coefficients for the low
and high NOx, dry, dark cases suggests that three of them
(compounds 5–7) are very similar to each other, while the
other four (compounds 1–4) are quite different. The much
higher yields of the low volatility products for the low NOx
case result in a much higher AMF at low organic aerosol
levels (less than 10µg m−3) where the high volatility com-
ponents play a negligible role. In this cases, the yields of
the components 5–7 in the high NOx case are not well-
constrained because there are almost no experiments avail-
able where these components are a major fraction of the ob-
served SOA. So the similarity in their yields may be real or
may be just a numerical coincidence. The opposite behavior
is observed with the low NOx dry and wet regimes. In this
case the low volatility products have similar yields but the
high volatility products have different ones. This results in
similar behavior in the relevant low concentration regime but
different AMFs at the higher concentration range.

The error of the proposed expressions for the correspond-
ing parts of the full dataset is lower than that of the HM,
GF, and CR parameterizations in the regime (low NOx, low
RH, dark) for which their parameters were estimated (Ta-
ble 3). Applications of these older parameterizations in the
other regimes results in even larger discrepancies with the
available measurements.

4 Predicted SOA formation from α-pinene/O3

All existing older parameterizations predict that there would
be no SOA formation ifα-pinene concentrations were less
than 3.5 ppb in dark, low NOx and dry conditions (Fig. 5).
However, the proposed 7 product parameterization predicts
that a-pinene SOA formation should start after the consump-
tion of approximately 1 ppb ofα-pinene under the same con-
ditions. The formation of a-pinene SOA at these lower levels
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Fig. 7. Predicted SOA AMF by the 7-product parameterizations for
5µg m−3 of pre-existing organic aerosol as a function of reacted
α-pinene at different conditions at 25◦C.

of reacted a-pinene has been observed by Pathak et al. (2007)
adding support to the existence of products with much lower
saturation concentrations than those used in the older pa-
rameterizations. In general, the proposed parameterization
for these conditions predicts higher AMFs than the older ex-
pressions for low reacted a-pinene concentrations (or equiv-
alently organic aerosol levels lower than 3µg m−3).

A comparison of the predictions of the 5 proposed param-
eterizations is shown in Fig. 6. For a system with no pre-
existing organic aerosol approximately 1 ppb ofα-pinene is
needed to react with ozone in the low NOx dark case to sat-
urate the gas phase with semivolatile compounds and to start
the SOA formation. The threshold increases to 5 ppb in the
presence of sunlight, and 9–20 ppb in the high NOx case. The
predicted AMF is quite variable varying from zero to 0.12
with the presence of NOx and UV reducing the predicted
AMF. Nevertheless, these calculations while applicable to
the smog chamber do not represent realistic atmospheric con-
ditions where there is always some background preexisting
organic aerosol.

For a more realistic case we assume that there is 5µg m−3

preexisting non-volatile organic aerosol of mean molecular
weight of 150 g mol−1 and that the a-pinene SOA can form
with it a pseudo-ideal solution. In this case there is no
threshold for the formation of SOA; reaction of even a small
amount ofα-pinene results in the formation of SOA (Fig. 7).
For α-pinene concentrations of 0.1 to 10 ppb, the predicted
corresponding SOA mass fractions vary from 0.08 to 0.13 at
25◦C in low NOx, dark and low RH conditions. The AMF in
this presence of organic aerosol varies of a relatively narrow
range (0.1±25%) for this case. Similar AMFs were predicted
for higher RH. In the presence of high NOx and UV, pre-
dicted AMFs are in the range of 0.03 to 0.06 covering once
more a relatively narrow range of values.

In the atmosphere, the background organic aerosol
concentrations usually range from approximately 1 to

Fig. 8. Predicted SOA AMF by the 7-product parameterizations
for 0.1 ppb of reactedα-pinene as a function of preexisting organic
aerosol concentration at different conditions at 25◦C.

20µg m−3. The predicted AMFs at 25◦C range from 0.01
to 0.13 depending on the atmospheric conditions (Fig. 8).
The SOA concentration is predicted to be more sensitive to
the concentration of organic aerosol participating in the for-
mation of the organic solution than to the reactedα-pinene
concentration.

5 Summary and conclusions

Smog chamber results from a collection of different cham-
bers and representing a wide variety of reaction conditions
(low/high NOx, dark/UV light, dry/humid, low/high temper-
atures) are used to derive a new set of parameterizations of
the SOA formed duringα-pinene ozonolysis. The basis set of
saturation concentrations in the range of 10−2 to 104 µg m−3

is used to fit the measurements from all experiments for: (a)
low NOx, dark, and dry conditions, (b) low NOx, UV, and dry
conditions, (c) low NOx, dark, and high RH conditions, (d)
high NOx, dark, and dry conditions, and (e) high NOx, UV,
and dry conditions. The proposed 4 and 7-productα-pinene
SOA parameterizations were able to reproduce all the mea-
surements included in this study within experimental error
(∼15%). The set of parameterizations can be used in chemi-
cal transport models, using the appropriate set of parameters
for the corresponding atmospheric conditions.
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