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Abstract. Within the complex dynamics of the solar wind’s
fluctuating plasma parameters, there is a detectable, hidden
order described by a chaotic strange attractor which has a
multifractal structure. The multifractal spectrum has been
investigated using Voyager (magnetic field) data in the outer
heliosphere and using Helios (plasma) data in the inner he-
liosphere. We have also analyzed the spectrum for the solar
wind attractor. The spectrum is found to be consistent with
that for the multifractal measure of the self-similar one-scale
weighted Cantor set with two parameters describing uniform
compression and natural invariant probability measure of the
attractor of the system. In order to further quantify the mul-
tifractality, we also consider a generalized weighted Cantor
set with two different scales describing nonuniform compres-
sion. We investigate the resulting multifractal spectrum de-
pending on two scaling parameters and one probability mea-
sure parameter, especially for asymmetric scaling. We hope
that this generalized model will also be a useful tool for anal-
ysis of intermittent turbulence in space plasmas.

1 Introduction

The question of multifractality is of great importance for he-
liophysics because it allows us to look at intermittent turbu-
lence in the solar wind (e.g.,Marsch and Tu, 1997; Bruno
et al., 2001). Starting from Richardson’s scenario of turbu-
lence, many authors try to recover the observed scaling expo-
nents, using some simple and more advanced models of the
turbulence describing distribution of the energy flux between
cascading eddies on various scales. In particular, the multi-
fractal spectrum has been investigated using Voyager (mag-
netic field) data in the outer heliosphere (e.g.,Burlaga, 1991,
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2001) and using Helios (plasma) data in the inner heliosphere
(e.g.,Marsch et al., 1996).

A direct determination of the multifractal spectrum from
the data is known to be a difficult problem. Indication for
a chaotic attractor in the slow solar wind has been given by
Macek(1998) and byMacek and Redaelli(2000). In particu-
lar,Macek(1998) has calculated the correlation dimension of
the reconstructed attractor in the solar wind and has provided
tests for this measure of complexity including statistical sur-
rogate data tests (Theiler et al., 1992). Further,Macek and
Redaelli(2000) have shown that the Kolmogorov entropy of
the attractor is positive and finite, as it holds for a chaotic
system.

We have extended our previous research on the dimen-
sional time series analysis (Macek, 1998). Namely, we have
applied the technique that allows a realistic calculation of the
generalized dimensions of the solar wind flow directly from
the cleaned experimental signal by using theGrassberger and
Procaccia(1983) method. The resulting spectrum of dimen-
sions shows the multifractal structure of the solar wind in the
inner heliosphere (Macek et al., 2005, 2006; Macek, 2006).
Using a short data sample, we first demonstrate the influence
of noise on these results and show that noise can efficiently
be reduced by a singular-value decomposition filter (Macek,
2002, 2003). Using a longer sample we have shown that
the multifractal spectrum of the solar wind attractor recon-
structed in the phase space is consistent with that for the mul-
tifractal measure of the self-similar weighted baker’s map
corresponding to the Cantor set (Macek et al., 2005; Macek,
2006) and, in particular, with the one-scale weighted Cantor
set (Macek et al., 2006).

In order to further quantify the multifractality, we thus
consider two-scale weighted Cantor set. We investigate the
resulting multifractal spectrum depending on two scaling pa-
rameters and one probability measure parameter, especially
for asymmetric scaling. We hope that this asymmetric model
will be a useful tool for analysis of intermittent turbulence in
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2 Solar Wind Data

In this paper we analyze the Helios 2 data using plasma pa-
rameters measured in situ in the inner heliosphere (Schwenn,
1990). The X-velocity (mainly radial) component of the
plasma flow, v, has been investigated by Macek (1998) and
by Macek and Redaelli (2000). However, various distur-
bances are superimposed on the overall structure of the so-
lar wind, including mainly Alfvén waves. Therefore, we
take into account Alfvénic fluctuations of the flow. Namely,
Macek et al. (2005) analyze the radial (X−)component of
one of the Elsässer variables, x = z+, representing Alfvénic
fluctuations propagating outward from the Sun. We have
z+ = v + vA for the unperturbed magnetic field Bo pointing
to the Sun and z+ = v − vA for Bo pointing away from the
Sun, where vA = B/(µoρ)1/2 is the Alfvénic velocity cal-
culated from the experimental data: the radial component of
the magnetic field of the plasma B and the mass density ρ
(µo is the permeability of free space).

This analysis focuses on slow wind only and it has been
shown that slow wind does not evolve much compared to
fast wind (e.g., Tu and Marsch , 1990). Therefore, assuming
absence of radial evolution, we have merged two selected
time intervals of data separated by about 0.5 AU as measured
by the Helios 2 spacecraft in 1977 (i) from 116:00 to 121:21
(day:hour) at distances 0.30 - 0.34 AU and (ii) from 348:00
to 357:00 at 0.82 - 0.88 AU from the Sun as shown in Figure
1 (a). These raw data of v and vA, N = 26163 points, with
sampling time of ∆t = 40.5 s, are shown in Figure 1 (a) of
(Macek et al., 2005; Macek, 2006). The first sample of N =
10644 points have been investigated by Macek et al. (2006).

∗Slow trends (i) 344.596− 20.291 t− 0.358 t2, and 88.608−
452.349 t+343.471 t2 (ii) 397.847−291.602 t−241.999 t2, and
−30.050+87.756 t− 77.773 t2 (with t being a fraction of a given
sample) were subtracted from the original data, v(ti) and vA(ti),
in km s−1, and the data were (8-fold) smoothed using moving aver-
ages and singular-value decomposition with five eigenvalues. The
resulting range of data xmax − xmin = 226.4 km s−1.

†The third and fourth moments of the distribution function are
(with average velocity 〈x〉 = 0.622 km s−1 and standard deviation
σ = 33.514 km s−1)
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1

N
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§The autocorrelation time ta is given by (〈x(t)x(t + ta)〉 −
〈x(t)〉2)/σ2 = e−1. We take a delay τ = ta = 174 ∆t, which is
smaller than the first zero of this function, 1250 ∆t.

¶For large enough m, we have a slope of a plateau (q = 2 in
Equation (1)). D2 ≈ ln Cm(r)

ln (r)
, where the correlation function

is given in Equation (3). The average slope for 6 ≤ m ≤ 10 is
taken as D2. Similarly, K2 ≈ 1

3
log2

h
Cm(r)

Cm+3(r)

i
is the q = 2

entropy (base 2) in the same units as λmax (bits per data sample),
8 ≤ m ≤ 10.

Fig. 1. (a) The orbit of Helios 2 spacecraft, which measured the
radial flow velocity with Alfvénic velocity, v and vA, in 1977 from
116:00 to 121:21 (day:hour) at distance 0.3 AU and from 348:00 to
357:00 at distance 0.9 AU from the Sun. (b) The Elsässer variable
z+ = v±vA for Bo pointing to/away from the Sun for the detrended
and filtered data using singular-value decomposition with the five
largest eigenvalues.

TABLE 1 Solar wind velocity fluctuations∗ data
Number of data points, N 26163
Sampling time, ∆t 40.5 s
Skewness†, κ3 0.59
Kurtosis†, κ4 0.37
Minimum frequency 9.4 ×10−7 Hz
Dominant frequency 2.5 ×10−5 Hz
Maximum frequency 1.2 ×10−2 Hz
Autocorrelation time§, ta 7.1 ×103 s
Correlation dimension¶, D2 3.35 ±0.21

Entropy‡¶, (q = 2), K2 0.1
Largest Lyapunov exponent‡¶, λmax 1/4 – 1/3
Predictability horizon time‡ 3 ×104 s

Fig. 1. (a) The orbit of Helios 2 spacecraft, which measured the
radial flow velocity with Alfvénic velocity,v andvA, in 1977 from
116:00 to 121:21 (day:hour) at distance 0.3 AU and from 348:00 to
357:00 at distance 0.9 AU from the Sun.(b) The Els̈asser variable
z+=v±vA for Bo pointing to/away from the Sun for the detrended
and filtered data using singular-value decomposition with the five
largest eigenvalues.

space plasmas. In particular, taking two different scales for
eddies in the cascade, one obtains a more general situation
than in the usualp-model for fully developed turbulence.

2 Solar wind data

In this paper we analyze the Helios 2 data using plasma pa-
rameters measured in situ in the inner heliosphere (Schwenn,
1990). The X-velocity (mainly radial) component of the
plasma flow,v, has been investigated byMacek(1998) and
by Macek and Redaelli(2000). However, various distur-
bances are superimposed on the overall structure of the so-
lar wind, including mainly Alfv́en waves. Therefore, we
take into account Alfv́enic fluctuations of the flow. Namely,
Macek et al.(2005) analyze the radial (X-)component of
one of the Els̈asser variables,x=z+, representing Alfv́enic
fluctuations propagating outward from the Sun. We have
z+=v+vA for the unperturbed magnetic fieldBo pointing

to the Sun andz+=v−vA for Bo pointing away from the
Sun, wherevA=B/(µoρ)1/2 is the Alfvénic velocity calcu-
lated from the experimental data: the radial component of the
magnetic field of the plasmaB and the mass densityρ (µo is
the permeability of free space).

This analysis focuses on slow wind only and it has been
shown that slow wind does not evolve much compared to
fast wind (e.g.,Tu and Marsch, 1990). Therefore, assuming
absence of radial evolution, we have merged two selected
time intervals of data separated by about 0.5 AU as measured
by the Helios 2 spacecraft in 1977 (i) from 116:00 to 121:21
(day:hour) at distances 0.30–0.34 AU and (ii) from 348:00
to 357:00 at 0.82–0.88 AU from the Sun as shown in Fig.1a.
These raw data ofv andvA, N=26 163 points, with sampling
time of 1t=40.5 s, are shown in Fig. 1a of (Macek et al.,
2005; Macek, 2006). The first sample ofN=10 644 points
have been investigated byMacek et al.(2006).

In Macek et al.(2005) slow trends were subtracted from
the original datav(ti) andvA(ti), wherei=1, . . . , N . The
data with the initial several-percent noise level were (eight-
fold) smoothed (replacing each data point with the average
of itself and its two nearest neighbors). Next, the data have
been filtered using a method of singular-value decomposition
analysis described byAlbano et al.(1988). As argued by
Macek(1998) we have used five principal eigenvalues. The
detrended and filtered data for the radial component of the
Elsässer variablex=z+ are shown in Fig.1b also taken from
Macek et al.(2005).

Table 1 summarizes selected calculated characteristics of
the detrended data cleaned by using the singular-value de-
composition filter (see,Macek et al., 2005). The probabil-
ity distributions are clearly non-Gaussian. We have a large
skewness of∼0.59 (as compared with its normal standard
deviation 0.02) and a large kurtosis of 0.37, the latter was
small for the analysis with no magnetic field (cf.Macek,
1998). We choose a time delayτ=1741t , equal to the au-
tocorrelation timeta where the autocorrelation function de-
creases to 1/e (cf.Macek, 2003, Fig. 1b). This makes certain
that x(t) andx(t+τ) are at least linearly time independent
(e.g.,Ott, 1993).

3 Generalized dimensions

The generalized dimensions of attractors are important char-
acteristics ofcomplexdynamical systems (e.g.,Grassberger,
1983; Hentschel and Procaccia, 1983). Since these dimen-
sions are related to frequencies with which typical orbits in
phase space visit different regions of the attractors, they pro-
vide information about dynamics of the systems (Ott, 1993).
More precisely, one may distinguish a probability measure
from its geometrical support, which may or may not have
fractal geometry. Then, if the measure has different fractal
dimensions on different parts of the support, the measure is
multifractal (Mandelbrot, 1989).
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Using our time series of equally spaced, de-
trended, and cleaned data, we construct many vectors
X(ti)=[x(ti), x(ti+τ), . . . , x(ti+(m−1)τ ) ] in the embed-
ding phase space of dimensionm, wherei=1, . . . , n with
n=N−(m−1)τ . Then, in this space we construct a large
numberM(r) of hyperspheres of radiusr which cover the
presumed attractor. Ifpj is the probability measure that a
point from a time series falls in a typicalj th hypersphere,
using theq-order function Iq(r)=

∑
(pj )

q , j=1, . . . ,M,
theq-order generalized dimensionDq is given, e.g., byOtt
(1993)

τ(q) ≡ (q − 1)Dq = lim
r→0

ln Iq(r)

ln r
, (1)

whereq is a continuous index,−∞<q<∞. We see from
Eq. (1) that the largerq is, the more strongly are the higher-
probability spheres (visited more frequently by a trajectory)
weighted in the sum forIq(r). Only if q=0, all the hy-
perspheres are counted equally,I0=M, and we recover the
box-counting dimension,D0= limr→0 [ln M(r) / ln(1/r)].
The limit q→1 provides the information dimension,
D1= limr→0 [

∑
(pj ln pj ) / ln r].

Writing Iq(r)=
∑

pj (pj )
q−1 as a weighted average

〈(pj )
q−1

〉, one can associate bulk with the generalized aver-

age probability per hypersphereµ=
q−1
√

〈(pj )q−1〉, and iden-

tify Dq as a scaling of bulk with size,µ∝rDq . Since the data
cannot constrain well the capacity dimensionD0, we look for
higher-order dimensions, which quantify the multifractality
of the probability measure of the attractor. For example, the
limit q→1 leads to a geometrical average, and the informa-
tion dimension isD1≈〈ln pj 〉 / ln r. Forq=2 the generalized
average is the ordinary arithmetic average, with the standard
correlation dimensionD2≈ ln〈pj 〉 / ln r, and forq=3 it is
a root-mean-square average. In practice, the probability for
a j th hypersphere of radiusr is the ratio of the number of
distances from a chosen vectorX(tj ) that are less thanr to
the total number of distances between this vector and other
vectors

pj '
1

n − 2nc − 1

n∑
i=nc+1

θ(r− | X(ti) − X(tj ) |) (2)

with θ(x) being the unit step function, andnc is the Theiler’s
(1986) correction (nc=4 is chosen). Finally, for a givenm,
Iq(r) is taken to be equal to the generalizedq-point correla-
tion sum (Grassberger and Procaccia, 1983)

Cq,m(r) =
1

nref

nref∑
j=1

(pj )
q−1, (3)

wherenref is the number of reference vectors (nref=5000 is
taken). For large dimensionsm and small distancesr in the
scaling region it can be argued thatCq,m(r)∝rτ(q), where
τ(q) is an approximation of the ideal limitr→0 in Eq. (1)
for a givenq (Grassberger and Procaccia, 1983).

Table 1. Solar wind velocity fluctuations1 data.

Number of data points,N 26 163
Sampling time,1t 40.5 s
Skewness2, κ3 0.59
Kurtosis2, κ4 0.37
Minimum frequency 9.4×10−7 Hz
Dominant frequency 2.5×10−5 Hz
Maximum frequency 1.2×10−2 Hz
Autocorrelation time4, ta 7.1×103 s
Correlation dimension5, D2 3.35±0.21
Entropy3,5, (q=2), K2 0.1
Largest Lyapunov exponent3,5, λmax 1/4–1/3
Predictability horizon time3 3×104 s

1 Slow trends (i) 344.596−20.291t−0.358t2, and
88.608−452.349t+343.471t2

(ii) 397.847−291.602t−241.999t2, and
−30.050+87.756t−77.773t2 (with t being a fraction of a given
sample) were subtracted from the original data,v(ti) andvA(ti), in
km s−1, and the data were (8-fold) smoothed using moving aver-
ages and singular-value decomposition with five eigenvalues. The
resulting range of dataxmax−xmin=226.4 km s−1.
2 The third and fourth moments of the distribution function are
(with average velocity〈x〉=0.622 km s−1 and standard deviation
σ=33.514 km s−1)

κ3 =
1

N

N∑
i=1

[
xi− < x >

σ

]3
, κ4 =

1

N

N∑
i=1

[
xi− < x >

σ

]4
− 3

3 Approximately.
4 The autocorrelation timeta is given by
(〈x(t)x(t+ta)〉−〈x(t)〉2)/σ2

=e−1. We take a delayτ=ta=1741t ,
which is smaller than the first zero of this function, 12501t .
5 For large enoughm, we have a slope of a plateau (q=2 in
Eq.1). D2≈

ln Cm(r)
ln (r)

, where the correlation function is given in
Eq. (3). The average slope for 6≤m≤10 is taken asD2. Similarly,

K2≈
1
3 log2

[
Cm(r)

Cm+3(r)

]
is theq=2 entropy (base 2) in the same

units asλmax (bits per data sample), 8≤m≤10.

4 Dimensions and multifractality

We first calculate the natural logarithm of the generalized
correlation sumCq,m(r) of Eq. (3) versus lnr (normal-
ized) for variousq and embedding dimensions (cf.Macek,
2002, Fig. 2). We have verified that forq>0 the slopes
Dq,m(r)=d[ln Cq,m(r)]/d(ln r)/(q−1) in the scaling region
of ln r do not change substantially with the number of points
used, providing that the dimension of the attractor is well
below 2 log10N≈9, for N=26 163 (Eckmann and Ruelle,
1992). The results obtained using the moving average fil-
ter and singular-value decomposition linear filter for stan-
dardq=2 are given byMacek et al.(2005, Fig. 2), and are
compared withq=−2 in Figs. 2a and b ofMacek (2006),
correspondingly, while those obtained for somewhat shorter
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Fig. 2. Generalized two-scale weighted Cantor set model for solar
wind turbulence.

samples (N=4514) have been discussed byMacek (1998)
and by Macek and Redaelli(2000), using the nonlinear
Schreiber filters.

Next, the generalized dimensionsDq in Eq. (1) as a func-
tion of q with the statistical errors of the average slopes (ob-
tained using weighted least squares fitting) over the scaling
range are shown in Fig.3a (cf.Macek et al., 2005, Fig. 3).

In order to quantify the multifractality we use a simple
two-dimensional analytical model of the dynamical system.
Namely, we consider the generalized self-similar baker’s
map acting on the unit square using three parametersl1, l2,
andp describing nonuniform compression and natural invari-
ant measure of the attractor of the system, correspondingly
(e.g.,Ott, 1993):

xn+1 =

{
l1xn

(1 − l2) + l2xn

for yn < p

for yn ≥ p

yn+1 =

{
yn

p
yn−p
1−p

for yn < p

for yn ≥ p

(4)

where the probability of visiting one region of the square isp

(say,p≤1/2), and for the remaining region is 1−p. The pa-
rametersl1 andl2, wherel1+l2≤1 describe both the stretch-
ing and folding in the phase space and are related to dissipa-
tion (no dissipation forl1+l2=1). Applying n iterations of
Eq. (4) we obtain

(
n
k

)
vertical strips of widthlm1 ln−k

2 , where
k=1, . . . , n, visited with various probabilities. The resulting
strange attractor (of 2n strips forn→∞) is the generalized
weighted two-scale Cantor set of narrow strips of various
widths and probabilities as schematically shown in Fig.2.
This action of this map exhibits stretching and folding prop-
erties leading to sensitive dependence on initial conditions.
For the generalized dimensions of the attractor projected onto
one axis, for anyq in Eq. (1), one obtainsDq=τ(q)/(q−1)

by solving numerically the following transcendental equation
(e.g.,Ott, 1993)

pq l
−τ(q)

1 + (1 − p)q l
−τ(q)

2 = 1 (5)

The multifractal singularity spectrumf (α) is also obtained
from Eq. (5) by the following Legendre transformation

α(q) =
d [τ(q)]

dq
(6)

f (α) = qα(q) − τ(q) (7)

When both the stretching and the compression are uniform,
l1=l2=s, Eq. (5) can be solved explicitly to give the formula
for the generalized dimensions of the attractor projected onto
one axis (Macek, 2006)

τ(q) ≡ (q − 1)Dq =
ln[pq

+ (1 − p)q ]

ln s
. (8)

In the absence of dissipation (s=1/2) one recovers the for-
mula for the multifractal cascadep-model for fully devel-
oped turbulence (Meneveau and Sreenivasan, 1987), which
obviously corresponds to the weighted one-scale Cantor set
(Hentschel and Procaccia, 1983), (cf. Macek, 2002, Fig. 3)
and (Macek et al., 2006, Fig. 3b). The difference of the max-
imum and minimum dimensions, associated with the least-
dense and most-dense points on the attractor, correspond-
ingly, is D−∞−D+∞=ln(1/p−1)/ln(1/s) and in the limit
p→0 this difference rises to infinity. Hence, for a givens the
parameterp can be regarded as a degree of multifractality. In
particular, the usual middle one-third Cantor set without any
multifractality is recovered withp=1/2 ands=1/3.

In Fig. 3b we show the singularity spectrumf (α), which
follows from Eq. (8) by using Eqs. (6) and (7). It is well
known that forq<0 the spheres (or cubes) visited less fre-
quently by a trajectory of the system are more important, and
we have some basic statistical problems, as seen in Fig. 2b
of Macek(2006). Nevertheless, in spite of large statistical
errors in Figs.3a and b, especially forq<0, the multifractal
character of the measure can still be discerned. Therefore,
one can say that the spectrum of dimensions still exhibits the
multifractal structure of the slow solar wind in the inner he-
liosphere.

For illustration the results forDq+3 andf (α), fitted to
the experimental values of the generalized dimensions with
p=0.12 ands=0.47 in Eq. (8) (see,Macek et al., 2005,
Fig. 3), are also shown here by dashed lines in Figs.3a and
b, correspondingly. We expect that intermittency and the de-
gree of multifractality should be stronger for the model with
two different scaling parameters. Therefore, a somewhat bet-
ter fit (for q<0) to the values of the generalized dimensions
is obtained numerically from Eq. (5) for the weighted two-
scale Cantor set with an asymmetric scaling usingp=0.20
andl1=0.60, l2=0.25 as is shown in Fig.4a by dashed line.
The values of the singularity spectrumf (α) projected onto
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Fig. 3. (a)The generalized dimensionsDq in Eq. (1) as a function
of q. The correlation dimension isD2=3.4±0.2 (see Table 1). The
values ofDq+3 are calculated analytically for the weighted baker’s
map withp=0.12 ands=0.47 (dashed line).(b) The singularity
spectrumf (α) as a function ofα. The values off (α) projected
onto one axis for the weighted baker’s map with the same parame-
ters (dashed), taken from (Macek, 2006).

one axis for the generalized two-scale Cantor set as a func-
tion of α with the same parameters are shown by dashed line
in Fig. 4b.

We see that the multifractal spectrum of the solar wind
is roughly consistent with that for the multifractal measure
of the self-similar weighted symmetric baker’s map or one-
scale weighted Cantor set. This spectrum is also in a very
good agreement with two-scale asymmetric weighted Cantor
set schematically shown in Fig.2. In particular, taking two
different scales for eddies in the cascade, one obtains a more
general situation than in the usualp-model ofMeneveau and
Sreenivasan(1987) for fully developed turbulence, especially
for an asymmetric scaling,l1 6=l2. We expect that intermittent
pulses should be stronger in this case. Hence we hope that
this generalized model will be a useful tool for analysis of
intermittent turbulence in space plasmas.

Naturally, the value of parameterp (within some factor) is
related to the usual models, which starting from Richardson’s
version of turbulence, try to recover the observed scaling ex-
ponents, which is based on thep-model of turbulence (e.g.,

Fig. 4. (a)The generalized dimensionsDq in Eq. (1) as a function
of q. The correlation dimension isD2=3.4±0.2 (see Table 1). The
values ofDq+3 are calculated analytically for the weighted two-
scale Cantor set withp=0.20 andl1=0.60, l2=0.25 (dashed line).
(b) The singularity spectrumf (α) as a function ofα. The values of
f (α) projected onto one axis for two-scale Cantor set with the same
parameters (dashed).

Meneveau and Sreenivasan, 1987). The value ofp=0.12 ob-
tained here is roughly consistent with the fitted value in the
literature both for laboratory and the solar wind turbulence,
which is in the range 0.13≤p≤0.3 (e.g.,Burlaga, 1991; Car-
bone, 1993; Carbone and Bruno, 1996; Marsch et al., 1996).
One should only bear in mind that here we take probability
measure for the solar wind attractor, which quantifies multi-
fractal nonuniformity of visiting various parts of the attractor
in the phase space, while the usualp-model is related to the
solar wind turbulence cascade for the dissipation rate, which
resides in the physical space.

5 Conclusions

We have shown that the multifractal spectrum of the
solar wind attractor is consistent with that for the
multifractal measure of the self-similar weighted baker’s
map corresponding to the generalized two-scale weighted
Cantor set. The values of the parameters fitted demonstrate

www.nonlin-processes-geophys.net/14/695/2007/ Nonlin. Processes Geophys., 14, 695–700, 2007
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small dissipation of the complex solar wind plasma and show
that some parts of the attractor in phase space are visited
at least one order of magnitudes more frequently than other
parts as illustrated in Fig. 5 ofMacek(1998). We think that
this more genaral model will be a useful tool for analysis of
intermittent turbulence in space plasmas. In particular, tak-
ing two different scales for eddies in the cascade, one obtains
a more general situation than in the usualp-model for fully
developed turbulence. We expect that intermittency and mul-
tifractality should be stronger for asymmetric scaling and a
somewhat better agreement with the solar wind data could be
obtained.

Thus our results provide direct supporting evidence that
the complex solar wind is likely to have multifractal struc-
ture. In this way, we have further supported our previous
conjecture that trajectories describing the system in the in-
ertial manifold of phase space asymptotically approach the
attractor of low-dimension (Macek, 1998). One can expect
that the attractor in the low-speed solar wind plasma should
contain information about the dynamic variations of the coro-
nal streamers. It is also possible that it represents a structure
of the time sequence of near-Sun coronal fine-stream tubes,
seeMacek(1998) and references therein.
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