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Abstract. Within the complex dynamics of the solar wind’s 2001) and using Helios (plasma) data in the inner heliosphere
fluctuating plasma parameters, there is a detectable, hiddefe.g.,Marsch et al.1996.
order described by a chaotic strange attractor which has a A direct determination of the multifractal spectrum from
multifractal structure. The multifractal spectrum has beenthe data is known to be a difficult problem. Indication for
investigated using Voyager (magnetic field) data in the outera chaotic attractor in the slow solar wind has been given by
heliosphere and using Helios (plasma) data in the inner heMacek(1998 and byMacek and Redael{2000. In particu-
liosphere. We have also analyzed the spectrum for the solaar, Macek(1998 has calculated the correlation dimension of
wind attractor. The spectrum is found to be consistent withthe reconstructed attractor in the solar wind and has provided
that for the multifractal measure of the self-similar one-scaletests for this measure of complexity including statistical sur-
weighted Cantor set with two parameters describing uniformrogate data testdheiler et al, 1992. Further,Macek and
compression and natural invariant probability measure of theRedaelli(2000 have shown that the Kolmogorov entropy of
attractor of the system. In order to further quantify the mul- the attractor is positive and finite, as it holds for a chaotic
tifractality, we also consider a generalized weighted Cantorsystem.
set with two different scales describing nonuniform compres-  We have extended our previous research on the dimen-
sion. We investigate the resulting multifractal spectrum de-sjonal time series analysisMéacek 1998. Namely, we have
pending on two scaling parameters and one probability meaapplied the technique that allows a realistic calculation of the
sure parameter, especially for asymmetric scaling. We hopgeneralized dimensions of the solar wind flow directly from
that this generalized model will also be a useful tool for anal-the cleaned experimental signal by using@rassberger and
ysis of intermittent turbulence in space plasmas. Procaccig1983 method. The resulting spectrum of dimen-
sions shows the multifractal structure of the solar wind in the
inner heliosphereMacek et al. 2005 2006 Macek 20086.
Using a short data sample, we first demonstrate the influence
1 Introduction of noise on these results and show that noise can efficiently
be reduced by a singular-value decomposition filkéacek
The question of multifractality is of great importance for he- 2002 2003. Using a longer sample we have shown that
liophysics because it allows us to look at intermittent turbu-the multifractal spectrum of the solar wind attractor recon-
lence in the solar wind (e.gMarsch and Tu1997 Bruno structed in the phase space is consistent with that for the mul-
et al, 2007). Starting from Richardson’s scenario of turbu- tifractal measure of the self-similar weighted baker's map
lence, many authors try to recover the observed scaling expocorresponding to the Cantor sddcek et al. 2005 Macek
nents, using some simple and more advanced models of the00§ and, in particular, with the one-scale weighted Cantor
turbulence describing distribution of the energy flux betweenset Macek et al. 2006.
cascading eddies on various scales. In particular, the multi- In order to further quantify the multifractality, we thus
fractal spectrum has been investigated using Voyager (mageonsider two-scale weighted Cantor set. We investigate the
netic field) data in the outer heliosphere (eRurlaga 1991, resulting multifractal spectrum depending on two scaling pa-
rameters and one probability measure parameter, especially
Correspondence tdV. M. Macek for asymmetric scaling. We hope that this asymmetric model
(macek@cbk.waw.pl) will be a useful tool for analysis of intermittent turbulence in
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to the Sun and=v—wvy4 for B, pointing away from the

1 - @ Sun, wherevs=B/(uop)Y2 is the Alfvénic velocity calcu-
lated from the experimental data: the radial component of the
magnetic field of the plasm& and the mass densigy(u, is

0.5 -
the permeability of free space).
K > This analysis focuses on slow wind only and it has been
Sun .
0 shown that slow wind does not evolve much compared to
/ fast wind (e.g.;Tu and Marsch 1990. Therefore, assuming
Helios 2 absence of radial evolution, we have merged two selected
05 time intervals of data separated by about 0.5 AU as measured
by the Helios 2 spacecraft in 1977 (i) from 116:00 to 121:21
(day:hour) at distances 0.30-0.34 AU and (ii) from 348:00
Earth to 357:00 at 0.82—0.88 AU from the Sun as shown in Ea.
lDetrer?&?ed On(()j Smo%?hed dlotAoU These raw data af andv 4, N=26 163 points, with sampling
; : ‘ ‘ : time of Art=40.5s, are shown in Fig. 1a oMacek et al.

~_ |

e () 2005 Macek 2006. The first sample oN=10 644 points
100 ] have been investigated acek et al(2006.
. i ] In Macek et al.(2009 slow trends were subtracted from
" LNy ] the original datav(t;) and v, (t;), wherei=1,..., N. The
§/ 0| ' E data with the initial several-percent noise level were (eight-
K ] fold) smoothed (replacing each data point with the average
~100 E of itself and its two nearest neighbors). Next, the data have
] been filtered using a method of singular-value decomposition
500 analysis described bglbano et al.(1988. As argued by

0 50 150 150 250 2}30 300 Macek(1998 we have used five principal eigenvalues. The
Time (hours) detrended and filtered data for the radial component of the
Elsasser variable=z, are shown in Figlb also taken from
Macek et al(2005.

Fig. 1. (a) The orbit of Helios 2 spacecraft, which measured the

radial flow velocity with Alfvénic velocity,s andu 4. in 1977 from Table 1 summarizes selected calculated characteristics of

116:00 to 121:21 (day:hour) at distance 0.3 AU and from 348:00 wolhe detr?.ndegl data Cleanedk by usggothe _Is_glgmart_)vag.llje de-
357:00 at distance 0.9 AU from the Sufin) The Elsasser variable composition filter (seeMacek et al, 3 € probabii-

z4+=v+v, for B, pointing to/away from the Sun for the detrended Ity distributions are clearly non-Gaussian. We have a large
and filtered data using singular-value decomposition with the fiveSkewness 0f-0.59 (as compared with its normal standard

largest eigenvalues. deviation 0.02) and a large kurtosis of 0.37, the latter was
small for the analysis with no magnetic field (dflacek
1998. We choose a time delay=174 At, equal to the au-

space plasmas. In particular, taking two different scales fortocorrelation timer; where the autocorrelation function de-

eddies in the cascade, one obtains a more general situatiareases to fe (cf. Macek 2003 Fig. 1b). This makes certain

than in the usugb-model for fully developed turbulence. thatx () andx(t+t) are at least linearly time independent
(e.g.,Ott, 1993.

2 Solar wind data

3 Generalized dimensions
In this paper we analyze the Helios 2 data using plasma pa-
rameters measured in situ in the inner heliosph8olfvenn  The generalized dimensions of attractors are important char-
1990. The X-velocity (mainly radial) component of the acteristics otomplexdynamical systems (e.g3rassberger
plasma flow,v, has been investigated acek (1998 and 1983 Hentschel and Procac¢i@a983. Since these dimen-
by Macek and Redaell{2000. However, various distur- sions are related to frequencies with which typical orbits in
bances are superimposed on the overall structure of the sghase space visit different regions of the attractors, they pro-
lar wind, including mainly Alf\én waves. Therefore, we vide information about dynamics of the syster@st(1993.
take into account Alfénic fluctuations of the flow. Namely, More precisely, one may distinguish a probability measure
Macek et al.(2005 analyze the radialX-)component of from its geometrical support, which may or may not have
one of the Elasser variabless=z, representing Alféenic  fractal geometry. Then, if the measure has different fractal
fluctuations propagating outward from the Sun. We havedimensions on different parts of the support, the measure is
z+=v+vy4 for the unperturbed magnetic fielBl, pointing multifractal Mandelbrof 1989.
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Using our time series of equally spaced, de- ) . .
trended, and cleaned data, we construct many vector-s[alble 1. Solar wind velocity fluctuatiorfsdata.
X@&)=[x@), x(t;+1), ..., x(t;+(m—1)71)] In the embed- :
ding phase space of dimension wherei=1, ..., n with gumble_zr Oft_data pointsy ig 263
n=N-—(m—1)r. Then, in this space we construct a large Ssmplngélmem o ,'595
numberM (r) of hyperspheres of radiuswhich cover the eWNe>S, i3 '

. - Kurtosi<, x4 0.37

presumed attractor. Ip; is the probability measure that a - 5

. . > J . - Minimum frequency 9.410 "Hz
point from a time series falls in a typicagkh hypersphere, . 5

. - . Dominant frequency 2%107°Hz
using theg-order function I, (r)=> (p;)4, j=1,..., M, . )
h d lized di q% AT DOt Maximum frequency 1.210 % Hz
1Sg-or er generalized dimensiaD, is given, e.g., byO Autocorrelation timé, 7 7 1x10%s
(1993 Correlation dimensioh D5 3.35+0.21

_Inl,(r) Entropy?>, (¢=2), K> 0.1
t(q) =(q - 1Dy = rlino nr 1) Largest Lyapunov exponeht, Amax 1/4-1/3
Predictability horizon tim@ 3x10%s

wheregq is a continuous index;-oco<g<oo. We see from
Eqg. (1) that the largey is, the more strongly are the higher-
probability spheres (visited more frequently by a trajectory)
weighted in the sum fod, (r). Only if g=0, all the hy-

perspheres are counted equally=M, and we recover the  _30,050487.756:—77.773/2 (with ¢ being a fraction of a given

box-counting dimensionDo=1im,_.o [INM(r) / In(1/r)].  sample) were subtracted from the original da@;) anduv4 (#;), in

The limit g—1 provides the information dimension, kms™1, and the data were (8-fold) smoothed using moving aver-

Di=lim,_o [> (pj Inp;) / Inr]. ages and singular-value decomposition with five eigenvalues. The
Writing 1,(r)=Y_pj(p;)?~1 as a weighted average resulting range of datémax—xmin=2264 km st

<(pj)11*1>, one can associate bulk with the genera]ized aver.2 The third and fourth moments of the distribution function are
(with average velocity(x)=0.622kms 1 and standard deviation

6=33514kms1)
1N 3
| | =
i=1

Approximately.

The autocorrelation timg, is given by
&(x(t)x(z+ta))—(x(t))z)/crz=e*1. We take a delay=ra=174 At,
which is smaller than the first zero of this function, 1250

5 For large enoughn, we have a slope of a plateag=£2 in
'iEq.l). DZ%%, where the correlation function is given in

1 Slow trends (i) 344696-20.291/—0.358:2, and
88.608-452349¢+343471¢2
(ii) 397.847—291602¢—241.999¢2, and

age probability per hypersphere= -7 ((p;)4~1), and iden-

tify D, as a scaling of bulk with sizeyocrPa . Since the data
cannot constrain well the capacity dimensiog we look for
higher-order dimensions, which quantify the multifractality
of the probability measure of the attractor. For example, the3
limit g— 1 leads to a geometrical average, and the informa-,
tion dimensionisD1~(In p;) /Inr. Forg=2 the generalized
average is the ordinary arithmetic average, with the standar
correlation dimensiorD~In{p;) /Inr, and forg=3 it is

a root-mean-square average. In practice, the probability fo

Xji— < x>

o

a jth hypersphere of radiusis the ratio of the number of
distances from a chosen vec®(s;) that are less than to

the total number of distances between this vector and othe

vectors

Eqg. 3). The average slope for<6n <10 is taken afy. Similarly,

Kzz% logy [ % ] is theq=2 entropy (base 2) in the same

units asimax (bits per data sample)<8n<10.

n

D 00— X(t) — X)) )

i=nc+1

1

n—2nc—1 @)

pj= 4 Dimensions and multifractality

We first calculate the natural logarithm of the generalized
correlation sumCy ,,(r) of Eq. 3) versus In- (normal-
ized) for variousg and embedding dimensions (&flacek
2002 Fig. 2). We have verified that fof>0 the slopes
Dy m(r)=d[In Cy ,,(r)]/d(Inr)/(g—1) in the scaling region

of Inr do not change substantially with the number of points
used, providing that the dimension of the attractor is well
below 2logyN~9, for N=26163 Eckmann and Ruelle
1992. The results obtained using the moving average fil-
ter and singular-value decomposition linear filter for stan-
dardg=2 are given byMacek et al.(2005 Fig. 2), and are
compared withy=—2 in Figs. 2a and b oMacek (2006,
correspondingly, while those obtained for somewhat shorter

with 6 (x) being the unit step function, amd is the Theiler's
(1986) correctionic=4 is chosen). Finally, for a givem,
I,(r) is taken to be equal to the generalizegoint correla-
tion sum Grassberger and Procaccl®83

Nref

- — -1
Cq,m(r) = Moot ;(Pj) s 3

wherenyet is the number of reference vectorg=5000 is
taken). For large dimensioms and small distancesin the
scaling region it can be argued th@} , (r)or™@, where
7(g) is an approximation of the ideal limit—0 in Eq. @)
for a giveng (Grassberger and Procaccl®83.
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by solving numerically the following transcendental equation
(e.g.,0Ott, 1993
pq IIT(Q) + (1_ p)q lz_f(q) =1 (5)

The multifractal singularity spectruryi(«) is also obtained
from Eqg. 6) by the following Legendre transformation

d
atq) = S ©
g
fla) = qalg) —t(q) (7

When both the stretching and the compression are uniform,
l1=I>=s, EQq. B) can be solved explicitly to give the formula
for the generalized dimensions of the attractor projected onto
one axis Macek 2006

Fig. 2. Generalized two-scale weighted Cantor set model for solar

wind turbulence.

samples ¥=4514) have been discussed bhacek (1999
and by Macek and Redaell{2000, using the nonlinear
Schreiber filters.

Next, the generalized dimensiof, in Eq. (1) as a func-
tion of ¢ with the statistical errors of the average slopes (ob-
tained using weighted least squares fitting) over the scalin
range are shown in Fi@a (cf. Macek et al. 2005 Fig. 3).

In order to quantify the multifractality we use a simple
two-dimensional analytical model of the dynamical system.

In[p? + (1 — p)?]
In s '

(q)=(q—1)Dy = 8

In the absence of dissipation£1/2) one recovers the for-
mula for the multifractal cascade-model for fully devel-
oped turbulenceMeneveau and Sreenivasdr®87), which
obviously corresponds to the weighted one-scale Cantor set
(Hentschel and Procac¢ia983, (cf. Macek 2002 Fig. 3)
and (Macek et al.2006 Fig. 3b). The difference of the max-

9mum and minimum dimensions, associated with the least-

dense and most-dense points on the attractor, correspond-
ingly, is D_oo—D40o=In(1/p—21)/In(1/s) and in the limit
p— 0 this difference rises to infinity. Hence, for a givethe

Namely, we consider the generalized self-similar baker'sy,rametep can be regarded as a degree of multifractality. In

map acting on the unit square using three parameéiefs,
andp describing nonuniform compression and natural invari-

particular, the usual middle one-third Cantor set without any
multifractality is recovered witlp=1/2 ands=1/3.

ant measure of the attractor of the system, correspondingly |, Fig. 3b we show the singularity spectruii), which

(e.g.,Ott, 1993:

. | hxy fory, <p

" A=) +lox, fory, = p
4)

_ %, fory, <p

S for y, > p

where the probability of visiting one region of the squarg is
(say, p<1/2), and for the remaining region is-Jp. The pa-
rameterd; andl>, wherel1+I2<1 describe both the stretch-

follows from Eq. @) by using Egs.€) and (7). It is well
known that forg <0 the spheres (or cubes) visited less fre-
quently by a trajectory of the system are more important, and
we have some basic statistical problems, as seen in Fig. 2b
of Macek (2006. Nevertheless, in spite of large statistical
errors in Figs3a and b, especially fay <0, the multifractal
character of the measure can still be discerned. Therefore,
one can say that the spectrum of dimensions still exhibits the
multifractal structure of the slow solar wind in the inner he-
liosphere.

For illustration the results foD,+3 and f (), fitted to

ing and folding in the phase space and are related to dissipahe experimental values of the generalized dimensions with

tion (no dissipation foi1+i,=1). Applying n iterations of
Eq. (4) we obtain(}) vertical strips of width}';*, where
k=1, ..., n, visited with various probabilities. The resulting
strange attractor (of"2strips forn— o0) is the generalized
weighted two-scale Cantor set of narrow strips of various
widths and probabilities as schematically shown in Fg.
This action of this map exhibits stretching and folding prop-
erties leading to sensitive dependence on initial conditions

p=0.12 ands=0.47 in Eq. B) (see,Macek et al. 2005

Fig. 3), are also shown here by dashed lines in RBgsand

b, correspondingly. We expect that intermittency and the de-
gree of multifractality should be stronger for the model with
two different scaling parameters. Therefore, a somewhat bet-
ter fit (for ¢ <0) to the values of the generalized dimensions
is obtained numerically from Eq5) for the weighted two-
scale Cantor set with an asymmetric scaling usirgd.20

For the generalized dimensions of the attractor projected ontand/;=0.60, [,=0.25 as is shown in Figda by dashed line.

one axis, for any; in Eq. (1), one obtaing,=1(q)/(g—1)

Nonlin. Processes Geophys., 14, 6886 2007

The values of the singularity spectruyfite) projected onto
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Generalized dimensions
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Generalized dimensions
‘
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Fig. 3. (a)The generalized dimensio, in Eq. (1) as a function  Fig. 4. (a)The generalized dimensio, in Eq. (1) as a function

of ¢g. The correlation dimension B8,=3.4+0.2 (see Table 1). The of ¢g. The correlation dimension 8,=3.4+0.2 (see Table 1). The
values ofD,+-3 are calculated analytically for the weighted baker's values ofD,+3 are calculated analytically for the weighted two-
map with p=0.12 ands=0.47 (dashed line).(b) The singularity =~ scale Cantor set withp=0.20 andl{=0.60, [ob=0.25 (dashed line).
spectrumf(«) as a function okx. The values off («) projected (b) The singularity spectrunf («) as a function of. The values of
onto one axis for the weighted baker’'s map with the same parame+ («) projected onto one axis for two-scale Cantor set with the same
ters (dashed), taken from (Macek, 2006). parameters (dashed).

one axis for the generalized two-scale Cantor set as a funcvieneveau and Sreenivasd®87. The value ofp=0.12 ob-

tion of & with the same parameters are shown by dashed lingained here is roughly consistent with the fitted value in the

in Fig. 4b. literature both for laboratory and the solar wind turbulence,
We see that the multifractal spectrum of the solar wind which is in the range A3<p<0.3 (e.g.,Burlaga 1991, Car-

is roughly consistent with that for the multifractal measure bong 1993 Carbone and Brund 996 Marsch et al.1996.

of the self-similar weighted symmetric baker’s map or one-One should only bear in mind that here we take probability

scale weighted Cantor set. This spectrum is also in a verymeasure for the solar wind attractor, which quantifies multi-

good agreement with two-scale asymmetric weighted Cantofractal nonuniformity of visiting various parts of the attractor

set schematically shown in Fig. In particular, taking two  in the phase space, while the uspamodel is related to the

different scales for eddies in the cascade, one obtains a morsolar wind turbulence cascade for the dissipation rate, which

general situation than in the usymimodel ofMeneveau and resides in the physical space.

Sreenivasa(il987) for fully developed turbulence, especially

for an asymmetric scaling, #72. We expect that intermittent

pulses should be stronger in this case. Hence we hope th& Conclusions

this generalized model will be a useful tool for analysis of

intermittent turbulence in space plasmas. We have shown that the multifractal spectrum of the
Naturally, the value of parametpr(within some factor) is  solar wind attractor is consistent with that for the

related to the usual models, which starting from Richardson’smultifractal measure of the self-similar weighted baker’s

version of turbulence, try to recover the observed scaling eximap corresponding to the generalized two-scale weighted

ponents, which is based on tlpemodel of turbulence (e.g., Cantor set. The values of the parameters fitted demonstrate

www.nonlin-processes-geophys.net/14/695/2007/ Nonlin. Processes Geophys., 700626067
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small dissipation of the complex solar wind plasma and showGrassberger, P.: Generalized dimensions of strange attractors, Phys.
that some parts of the attractor in phase space are visited Lett. A, 97, 227-230, 1983.

at least one order of magnitudes more frequently than othefrassberger P. and Procaccia, I.: Measuring the strangeness of
parts as illustrated in Fig. 5 dflacek(1998. We think that strange attractors, Physica D, 9, 189-208, 1983.

this more genaral model will be a useful tool for analysis of Hasey. T- C., Jensen, M. H., Kadanoff, L. P, Procaccia, 1., and
intermittent turbulence in space plasmas. In particular, tak- S:ra'mtan_’ Bt'. : '?aftal meast“re;hand éheur:mgsulalnltfls. 112?
ing two different scales for eddies in the cascade, one obtains igggac erization ot strange Sefts, Fhys. Rev. A, 23, - ‘
a more general situation than in the u;pahodel for fully Hentschel, H. G. E. and Procaccia, |.: The infinite number of gen-
developed turbulence. We expect that intermittency and mul- - erajized dimensions of fractals and strange attractors, Physica D,
tifractality should be stronger for asymmetric scaling and a g 435-444, 1983.

somewhat better agreement with the solar wind data could b&lacek, W. M.: Testing for an attractor in the solar wind flow, Phys-
obtained. ica D, 122, 254—-264, 1998.

Thus our results provide direct supporting evidence thatMacek, W. M.: Multifractality and chaos in the solar wind, in: Ex-
the complex solar wind is likely to have multifractal struc- ~ perimental Chaos, edited by: Boccaletti, S., Gluckman, B. J.,
ture. In this way, we have further supported our previous Kurths, J., Pecora, L. M., and Spano, M. L., 622, American In-
conjecture that trajectories describing the system in the in- _Stitute of Physics, New York, pp. 74-79, 2002. _
ertial manifold of phase space asymptotically approach théw?ﬁ?légﬁr'\\A/\'/inzhleom:(;ti'tf;céa;_ S\?;ﬁtr;m fBorL::)e ;Okgnvg'rll/?afl?r‘g’
attractor of Iow-dllmensmnl\ﬂacek 1998. O,ne can expect F., 679, American Institute of Physics, New York, pp. 530-533,
that the attractor in the low-speed solar wind plasma should 5405
contain information about the dynamic variations of the coro-pjacek, W. M.: Modeling multifractality of the solar wind, Space
nal streamers. It is also possible that it represents a structure s¢j. Rev., 122, 329-337, doi:10.1007/s11214-006-8185-z, 2006.
of the time sequence of near-Sun coronal fine-stream tubesfacek W. M. and Redaelli, S.: Estimation of the entropy of the
seeMacek(1998 and references therein. solar wind flow, Phys. Rev. E, 62, 6496-6504, 2000.
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