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Abstract. Bistatic polarimetric radars provide target proper-
ties which just one monostatic system can not reveal. More-
over, augmentation of monostatic systems through the provi-
sion of bistatic receive-only stations can be a cheap way to in-
crease the amount of remote sensing data. However, bistatic
scattering needs to be investigated in order to properly de-
fine target properties such as symmetries and invariance, es-
pecially regarding choices of polarization basis. In this pa-
per we discuss how the geometric theory of polarization, in
which the geometry of the Poincaré sphere is directly related
to 3-D geometry of space rather than the 2-D geometry of the
wavefront plane, can be used to reduce the ambiguities in the
interpretation of data. We also show how in the coherent case
a complex scalar invariant can be determined irrespective of
the basis combinations.

1 Introduction

Bistatic polarimetric radars may potentially increase the
available density of remote sensing radar data significantly,
as relatively cheap secondary receive-only systems, operat-
ing bistatically against a single transmitter can supplement
a conventional monostatic system. Some bistatic geome-
tries for remote sensing have been already proposed, such as
the Cartwheel and pendulum configurations, for SAR inter-
ferometric measurements (Krieger et al., 2003). Moreover,
bistatic phenomena such as the Brewster effect can reveal
target properties that are not really manifest in monostatic
scattering. Nevertheless, the understanding of general tar-
get properties – such as symmetries and invariance – in the
bistatic case is less advanced than is the case for monostatic
radar technique. This broader problem is further compli-
cated by the fact that there are extra degrees of freedom in
the choices of polarization basis, so that equivalent measure-
ments are less readily compared in terms of the matrix prop-
erties alone. The outline of the problem to be addressed is
that for bistatic scattering there is an equivalence relation,

S ∼ UrS0UT
t , (1)
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whereUr andUt are unitary matrices representing polariza-
tion basis transformations at the receiving and the transmit-
ting antenna, respectively. Since the groupU(2) has four
parameters (Murnaghan, 1962), and each of the unitary ma-
trices can be chosen independently, it is very difficult to un-
derstand which properties of the scattering matrix are due to
the scatterer and which are due to the choice of the basis.
Geometry is the right way since it establishes relations inde-
pendently on coordinate systems. Furthermore, some formal
questions have tormented polarimetric people for a long time,
e.g. the incompatibility of Hermitian product for Jones vec-
tors (Wanielik, 1988) or in general for complex spinors and
Euclidean product for vectors inR2 or the choice of the group
theory,SU(2) for change of polarization basis andSO(3) for
rotations.

Geometry offers a single descriptive framework for defin-
ing states of polarization for different wave states and pro-
vides answers to the formal problems. Since Maxwell’s
equations can be reduced to differential geometry (Misner
et al., 1973), it seems very natural to define the state of po-
larization using geometry directly from the electromagnetic
field. Operatively, the use of geometry is translated into the
employment of spinors and their projective “partners”. They
provide a valuable mathematical language which allows to:

– deduce the state of polarization in any frame directly
from the full electromagnetic tensor,

– describe the field with the familiar Jones vector (Jones,
1947) via a reference spinor,

– express scattering matrices within a geometric frame-
work,

– find geometric properties which can be interpreted as
invariant classification for bistatic scattering,

– express directly in space-time the complex objects rep-
resenting polarization,

– relate the Poincaré sphere directly to the 3-D geometry
of the space.
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Fig. 1. Geometric relation between waveplane, vector potential and the electromagnetic field. The left side(a) shows one of the possible
planeAa whose intersection is the sameFab line. The right side(b) shows the planeAa for the Coulomb gauge, the one through the origin.

2 Projective representation of polarization states

Polarization states can be defined directly from the electro-
magnetic field for harmonic waves which can be described in
terms of the 4-vector potential (Post, 1997) as

Fab = i(kaAb − kbAa), (2)

where Fab is the skew-symmetric field tensor,Aa the
4-vector potential andka is the wave 4-vector with space-
time components:

ka =

(ω

c
, k1, k2, k3

)
, (3)

where ω is the angular frequency,c the light speed,
and (k1, k2, k3) the components of the conventional wave
3-vectork. The definition of the polarization state is em-
bedded in Eq. (2) and it comes out from the projective inter-
pretation of this relation. If the four coordinates of the wave
covariant 4-vectorka (Rindler, 1991) are considered not as
space-time coordinates but as homogeneous projective coor-
dinates (Semple and Kneebone, 1952), the wave 4-vector can
be visualized as a tangent plane to the wave sphere:

kaka = 0 ⇒


k0

k1

k2

k3


T 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




k0

k1

k2

k3

 = 0, (4)

where the superscriptT denotes the transpose operation.
This relation expresses that the wave 4-vector is null and it
can be interpreted as the homogeneous equation forka . Simi-
larly, the 4-vector potential is a covariant vector, and the rela-
tion (2) states that the electromagnetic field tensorFab is the
intersection of the planeka and the planeAa that is a line, as
shown in Fig.1.

Since for harmonic waves, the Maxwell equations imply

kaFab = 0, (5)

the lineFab goes through the pointka , polar (contravariant
version of the wave 4-vector) to the planeka (Semple and
Kneebone, 1952). From Fig.1a we can notice that the same
Fab results from anyAa that has theka component added,
hinging aroundFab. This is the geometric manifestation of
the gauge freedom (Landau and Lifshitz, 1995). For har-
monic fields, the appropriate choice for this degree of free-
dom is the so-called Coulomb gauge. It can be expressed
as:

ωaA
a

≡


1
0
0
0




0
A1

A2

A3

 = 0 = ωaAa . (6)

This relation can be geometrically interpreted with the fol-
lowing statements:

– the pointAa belongs to the planeωa ,

– the planeAa goes through the origin of the sphereωa

(the plane shows in Fig.1b),

since any covariant vector, likeAa is represented by a plane
and any contravariant vector likeAa by a point being polar to
the plane with respect to the sphere (Semple and Kneebone,
1952). We are now ready to define the polarization state for
any wave state using this plane at infinity, the polar to the
origin of the sphere. In this plane,ka is projected as a line of
intersection withka a plane tangent to the sphere. Fixing one
wave vector, the potential is also fixed as a point on this line
belonging to the plane at infinity as shown in Fig.2. Since the
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Fig. 2. The definition of the polarization for all possible wave di-
rections as a pointAa on the lineka on the plane at infinity.

gauge has been fixed, the only information contained in the
potential is the polarization of the wave which is defined as
a complex pointρ on a line describing a wave direction. On
each line it is always possible to find reference points that
build the polarization basis, finding the intersection of the
line with the conic generated by the intersection of the plane
A0=0 with the wave sphere. Any other polarization can be
obtained as linear combination of the reference points.

3 The scattering in the Argand plane

Once the polarization has been defined, the general bistatic
scattering can be introduced on the plane at infinity as a 1:1
relation between points on two different lines as shown in
Fig. 3.

In order to establish such relation, we can recall the Moe-
bius mapping between non-singular 2×2 complex matrices
and bilinear transformations (Ahlfors, 1985). The scattering
matrix turns out to be proportional to a matrix whose ele-
ments are the coefficients of the transformation of polariza-
tion ratio, the complex numberρ:

ρ =
αρ0 + β

γρ0 + δ
, (7)

that can be written as the homogeneous equation:

γρ0ρ − αρ0 + δρ − β = 0. (8)

This equation has a very important physical interpretation:
in the bistatic case to every transmitting antenna stateρ0 cor-
responds a received polarizationρ for which the voltage is
null. In this way, Eq. (7) defines a 1:1 relation between the
pointsρ0 andρ on different lines in the plane.

4 The bistatic scattering as a homography

So as to define the bistatic scattering we have to find the geo-
metric object representing Eq. (7) and then physically inter-
pret its geometric properties. The Eqs. (7) or (8) describes a
homography, a 1:1 relationship between points on two lines
in the projective plane. Homographies have two important
properties (Semple and Kneebone, 1952):

Fig. 3. Geometric representation of bistatic scattering.

Fig. 4. The homographic correspondence between points of two
lines.

– cross axis theorem: given a set of corresponding points
PQ, P ′Q′, etc., lines joining cross pointsPQ′ and
P ′Q intersect on the axisLM which passes through the
points of the conic tangent to the two lines, as shown in
Fig. 4,

– lines joining corresponding points between homograph-
ically related ranges envelop a conic. In this way, the
conic can be used to obtain the corresponding points.

Now we are ready to physically interpret these geometric
statements: for any pair of wave vectorsk0 and k, corre-
sponding pointsP andQ, solutions of Eq. (8), are the mu-
tually nulled antenna polarization statesρ0 (transmitting an-
tenna state) andρ (receiving antenna state), such that the line
joining them is tangential to a conic.

It is very important to notice that the relation found exists
independent of any choice of coordinates, and we can assert
that any invariant property of a homography is characteristic
of the scattering matrix in the general bistatic case.
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Fig. 5. Geometric representation of bistatic scattering.

5 Canonical basis, canonical decomposition and the
complex scalar invariant

For the general bistatic case, we can define a triangle whose
vertices are the special pointsL, the intersection of the two
linesk0 andk, tangent to the conic,M andN special points
belonging to the conic, as shown in Fig.5. We can express
points onk0 andk (that is polarization states) usingN andL

for k0 andN andM for k as reference points. We can also
define the scattering matrix, represented by the conicS using
this basis in a very simple form. However, it can be shown
that this basis is not generally unitary. Using properties of
homographies, a suitable change of basis can be applied to
move from the basis related to the triangle of reference to
pairs of unitarily orthogonal states. It is necessary to cre-
ate for each wave vector a reflexive homography that maps
the characteristic polarizations to pairs of orthogonal states,
for example circular polarizations1. The resulting homogra-
phy acting on the local basis turns out to be symmetric and
produce symmetric matrices. The canonical decomposition
of the natural basis bistatic scattering matrix can be summa-
rized as:

S = SrS0St , (9)

whereSr andSt are symmetric scattering matrices andS0 is
canonical:

S0 =

[
0 ζ

−1 0

]
, (10)

and the complex parameterζ characterizing the matrixS0
can be measured. The matricesSr andSt are symmetric and
they can be related to the characteristic polarizations. In or-
der to construct them, we consider the physical meaning of
N , L andM:

– N is determined by thek wave vectors: it represents the
intersection between two wave planes, that is the normal
to the scattering plane,

– L andM can be determined using the tangent property
defined in Sect.4. The tangent pointsL andM are those

1It can be shown that this choice is not arbitrary.

that correspond toN : transmitting a linear polarization
alongN , the same antenna will receive a null voltage
for the polarizationL (or M).

The characteristic polarizations are enough to build the sym-
metric scattering matricesSr andSt . It is possible to show
that the conicS0 is completely characterized by the complex
scalarζ and the theory of invariance of conics establishes
thatζ is a projective invariant (Semple and Kneebone, 1952).
ζ can be considered as a polarimetric invariant independently
of unitary transformations of transmitting or receiving polar-
ization basis for a specific scattering mechanism.

6 Backscattering case

For backscattering,k0 and k are coincident lines of oppo-
site direction relating antennas pointing in the same direc-
tion. The conicS0 degenerates becoming a pair of points
which characterizes completely the scattering matrix. This
pair of points is the pair of copolar nullsµA, νA from which
the scattering matrix can be built, up to a scale (Bebbington,
1997):

SAB =
1

2
(µAνB + νAµB). (11)

In this way, the backscattering case can be easily represented
in this geometric framework.

7 Conclusions

Geometric polarimetry represents an integrated approach to
the theory of electromagnetic polarization. The use of ge-
ometry in polarimetry has been shown to be very effective
for both formal questions and practical issues. The main re-
sult is that a complex scalar invariantζ can be defined us-
ing the canonical form of the bistatic scattering matrix and
measured, in addition to the extensive unitary invariants of a
scattering matrix, such as power or energy.
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