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Abstract: We define a 2-parametric hierarchy ( , )m nCLAP  of bi-hereditary classes of 
graphs, and show that a maximum stable set can be found in polynomial time within each 
class ( , )m nCLAP . The classes can be recognized in polynomial time. 
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1. INTRODUCTION 

A set ( )S V G⊆  in a graph G is stable (or independent) if S does not contain 
adjacent vertices. A stable set of a graph G is called maximal if it is not contained in 
another stable set of G. A stable set of a graph G is called maximum if G does not have a 
stable set containing more vertices. The cardinality of a maximum stable set in G is the 
stability number of G, and it is denoted by ( )Gα . 

 

Decision Problem 1 (Stable Set).  
Instance: A graph G and an integer k. 
Question: Is there a stable set in G with at least k vertices? 

 

This problem is known to be NP-complete (Karp [7], see also Garey and 
Johnson [3]). A class P of graphs is α-polynomial if there exists a polynomial-time 
algorithm to solve Stable Set Problem within P. We shall define a hierarchy 

( , )m nCLAP  of α-polynomial graph classes. The hierarchy covers all graphs. 
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Note that it is easy to find the stability number of graphs in any class without 
large connected induced bipartite subgraphs. In other words, the class ( )NCONNBIP -
free graphs is α-polynomial, where ( )NCONNBIP  is the set of all connected bipartite 
graphs of order N. Lozin and Rautenbach [8] used this fact to produce α-polynomial 
subclasses of ( )NCONNBIP -free graphs defined by a path and a star as forbidden 
subgraphs. Specifically, given m and n, there exists an integer N such that each 

1,( , )n mP K -free triangle-free graph is a ( )NCONNBIP -free graph. 
In our hierarchy we also forbid a path, but we do not forbid a star. Instead, we 

use Hall's theorem to specify a particular family of connected bipartite graphs, thus 
obtaining a more general result. 

2. BI-INDUCED SUBGRAPHS 

The neighborhood of a vertex x in a graph G is denoted by ( ) ( )GN x N x= . For a 
subset X of ( )V G , we denote ( ) ( )G

x X

N X N x
∈

= ∪ . 

Definition 1. A bipartite graph F is called a bi-induced subgraph of a graph G if  
(BI1): F is a subgraph of G [not necessarily induced], and 
(BI2): there exists a bipartition A B∪  of V(F) such that both A and B are stable 
sets in G. 
 

In other words, a bi-induced subgraph F of a graph G is obtained from a 
bipartite induced sub graph F' of G by deleting some edges [possibly, none]. As usual, 
we distinguish bi-induced subgraphs up to isomorphism. 

A class P is bi-hereditary if it is closed under taking bi-induced subgraphs. That 
is, F ∈P  whenever G∈P  and F is a bi-induced subgraph of G. Clearly, a class is bi-
hereditary if and only if it can be characterized in terms of forbidden bi-induced 
subgraphs. Also, a bi-hereditary class with finitely many minimal forbidden bi-induced 
subgraphs can be recognized in polynomial time. 

We define a 2-parametric series ( , )m nCLAP  of bi-hereditary classes of graphs. 
As usual, nP  denotes the n-vertex path. An m-claw is a complete bipartite graph of the 
form 1,mK . If we subdivide every edge of an m-claw by a vertex, we obtain a bipartite 
graph of order 2m + 1 called a subdivided m-claw, 1,mSK  (see Figure 1). 

 
Figure 1: Subdivided m-claw 1,mSK  
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Definition 2. Given integers 1m ≥  and 1n ≥ , the class ( , )m nCLAP  consists of all 
graphs that do not contain 

− 1,mSK  as bi-induced subgraphs, and 
− nP  as induced subgraphs. 

 
Clearly, 

( , )m nCLAP ( 1, )m n⊂ +CLAP , 

( , )m nCLAP ( , 1)m n⊂ +CLAP  

for all 1m ≥  and 1n ≥ , and 

1 1

( , )
m n

m n
∞ ∞

= =
∪∪CLAP  

contains all graphs. Note that membership in each ( , )m nCLAP  can be checked in 
polynomial time, since there is one minimal forbidden induced subgraph and there is one 
minimal forbidden bi-induced subgraph for this class. 

 
 

3. STABILITY IN ( , )m nCLAP  

Here is our main result. 
Theorem 1. For all integers 1m ≥  and 1n ≥ , the class ( , )m nCLAP  is α -polynomial. 
Proof: We define 

2
1

1
( , ) 0.5 0.5( 2) ( 1)

n
d

d
N N m n m m

−
−

=

 
= = + + + 

 
∑  (1) 

if 3n ≥ , and N = 1 if 2n ≤ . Now we apply the following algorithm to an arbitrary graph 
( , )G m n∈CLAP . 

 
Algorithm 1.  

 
Step 0. Set 0S = . 
Step 1. For every stable set ( ) \T V G S⊆  with | | ,T N≤  define ' ( \ ( ))S S N T T= ∪ . If 
| ' | | |,S S>  set 'S S= .  
Step 2. Return S and Stop. 

 
The algorithm runs in polynomial time, since N is a constant. It produces a set 

( )S V G⊆ . Suppose that S is not a maximum stable set. 
 

Claim 1. S is a stable set in G, and there exists a stable set ( ) \T V G S⊆  with | | .T N>  
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Proof: Initially, 0S =  is a stable set. Also, the set ' ( \ ( ))S S N T T= ∪  [on Step 2] is 
stable. Thus S is a stable set in G. 

Since S is not a maximum stable set, there exists a stable set I in G with 
| | | |I S> . We denote \T I S= . Since | | | |S I<  we have | \ | | |S I T< , and therefore 

| ( ) | | \ | | |N T S S I T≤ <∩ . 

Step 1 of the algorithm implies that | |T N> . ♦ 
 

According to Claim 1, there exists a set ( ) \T V G S⊆  such that 
(Tl): | |T N> , and 

(T2): | ' | | |,S S>  where ' ( \ ( ))S S N T T= ∪ . 
We assume that T has the minimum cardinality among all sets that satisfy (Tl) and (T2). 
Let H be a bipartite graph induced by ,T U∪  where \U S I= . 

 
Claim 2. (i) For every vertex u T∈ , there exists a matching M in H - u that covers U, 
and 
(ii) | | | | 1T U= + . 
 
Proof: (i) Each proper subset T' of T does not satisfy (T2) [with T' instead of T]. Indeed, 
if | ' | ,T N≤  then it follows from Step 1 of the algorithm. If | |T N>  then it follows from 
minimality of T. 

Let u T∈ . Each subset of ' \{ }T T u=  does not have property (T2). In other 

words, for every 'X T⊆ , we have | ( ) | | |N X X≤  in H – u. By Hall's theorem (Hall [5], 
see also Hall [4]), there exists a matching M in H – u that covers T'. In particular, 
| ' | | | .T U≤  The condition (T2) for T implies that | | | |T U> . Therefore | ' | | |,T U=  and 
M must cover U as well. 

(ii) The statement follows directly from (i). ♦ 
 
As usual, ( )G∆  is the maximum vertex degree in G. 

Claim 3. ( ) 2H m∆ ≤ + . 
Proof: Suppose that there exists a vertex ( )u V H∈  of degree m + 2. First let u T∈ . Let 
u is adjacent to pairwise distinct vertices 1 2, ,..., mv v v U∈ . By Claim 2(i), there exists a 
matching M in H – u that covers U. We consider the edges of M that are incident to 

1 2, ,..., mv v v . Clearly, H – u contains 1,mSK  as a hi-induced subgraph. 
Now let u U∈ . Let u is adjacent to pairwise distinct vertices 1 2 2, ,..., mu u u T+ ∈ . 

We apply Claim 2(i) to the graph 2' :mH H u += −  there exists a matching M in 'H  that 
covers U. At most one edge of M is incident to the vertex u. We see that 'H  contains 

1,mSK  as a hi-induced subgraph. 
It remains to note that a hi-induced subgraph in an induced subgraph of G is also 

a hi-induced subgraph of G. ♦ 
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Note that Claim 2 implies connectedness of H. Indeed, if H is not connected 

then there is a component K in H such that one part is larger than the other, and therefore 
deleting a vertex \ ( )u T V K∈  produces a graph without perfect matching. 

 
Claim 4. H contains nP  as an induced subgraph. 
Proof: According to (Tl), | | 1.T N≥ +  By Claim 2(ii), | | | | 1 .U T N= − ≥  Thus,  

| ( ) | 2 1V H N≥ + . (2) 

If 2n ≥  then 1N =  and 2 1 3N + = , and the result follows.  
Suppose that 3n ≥ . Using (2) and (1), we obtain 

2
1

1
| ( ) | 2 1 2 ( 2) ( 1)

n
d

d
V H N m m

−
−

=

≥ + ≥ + + +∑  (3) 

Then (3) and Claim 3 imply 
2

1

1
| ( ) | 2 ( 1)

n
d

d
V H

−
−

=

≥ + ∆ ∆ −∑ . (4) 

Let ( )u V H∈ . There are at most 1( 1)d −∆ ∆ −  vertices at distance 1d ≥  from u. 
Since H is a connected graph, (4) implies that there exists a vertex v at distance n – 1 
from u. A shortest ( , )u v -path is an induced nP . 

Claim 4 produces a contradiction to the condition that ( , )G m n∈CLAP . This 
contradiction shows that S is a maximum stable set in G. ♦ 

 
Theorem 1 implies the following results on α-polynomial classes: 5 1,( , )nP K -

free graphs (Mosca [10]), a subclass of 5 1,4( , )P K -free graphs (Branstädt and Hammer 
[2]), 5 2,3( , , )P P K -free graphs (Mahadev [9], see Figure 2), and 2 3 1,( , )nP P K∪ -free 
graphs (Alekseev [1]). 

 

 

Figure 2: 5P , P and 2,3K  
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