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Abstract

We introduce an R package, bspmma, which implements a Dirichlet-based random
effects model specific to meta-analysis. In meta-analysis, when combining effect estimates
from several heterogeneous studies, it is common to use a random-effects model. The
usual frequentist or Bayesian models specify a normal distribution for the true effects.
However, in many situations, the effect distribution is not normal, e.g., it can have thick
tails, be skewed, or be multi-modal. A Bayesian nonparametric model based on mixtures
of Dirichlet process priors has been proposed in the literature, for the purpose of accom-
modating the non-normality. We review this model and then describe a competitor, a
semiparametric version which has the feature that it allows for a well-defined centrality
parameter convenient for determining whether the overall effect is significant. This second
Bayesian model is based on a different version of the Dirichlet process prior, and we call
it the “conditional Dirichlet model.” The package contains functions to carry out analyses
based on either the ordinary or the conditional Dirichlet model, functions for calculat-
ing certain Bayes factors that provide a check on the appropriateness of the conditional
Dirichlet model, and functions that enable an empirical Bayes selection of the precision
parameter of the Dirichlet process. We illustrate the use of the package on two examples,
and give an interpretation of the results in these two different scenarios.

Keywords: Dirichlet process, conditional Dirichlet process, meta-analysis, random effects, R
package, Markov chain Monte Carlo.

1. Introduction: Bayesian random effects meta-analysis

1.1. Parametric models

In many medical studies, each of m hospitals or centers investigates the same medical issue,
which we will think of as being a comparison between a new and an old treatment. Sometimes
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the results from the m studies are inconsistent: Some studies are favorable to the new treat-
ment, while others are neutral or negative. The goals of a meta-analysis are then to arrive at
an overall conclusion regarding the benefits of the new treatment, and also to describe and
explain the heterogeneity among the different studies.

Suppose that for each i, center i gathers a summary statistic Di together with a standard
error estimate σ̂i. When heterogeneity among the studies is significant, it is now common to
carry out meta-analyses that are based on random effects models, in which for each center i
there is a center-specific “true effect,” represented by a parameter ψi, and Di has distribution
Pi(ψi). This distribution depends on ψi and also on other quantities, such as the sample size
as well as nuisance parameters specific to the i-th center. In the most common example in
epidemiological studies, ψi is the log of the odds ratio arising in case-control studies, and Di

is either an adjusted log odds ratio based on a logistic regression model that involves relevant
covariates, or simply the usual log odds ratio based on a 2 × 2 table. The traditional model
for dealing with this kind of situation is the following:

conditional on ψi, Di ∼ N (ψi, σ
2
i ), independently, i = 1, . . . ,m, (1a)

ψi
iid∼ N (µ, τ2), i = 1, . . . ,m. (1b)

In (1b), µ and τ are unknown parameters. (The σi’s are also unknown but, typically, estima-
tion of these is of secondary interest, and sample sizes are sufficiently large so that using the
σ̂i’s instead of the σi’s does not cause any problems.) In a frequentist analysis µ and τ are
estimated by maximum likelihood (DerSimonian and Laird 1986) and in a Bayesian analysis
µ and τ2 are given a prior distribution, typically a normal/inverse gamma prior, because this
conjugate form results in simplifications when estimating the posterior distribution.

1.2. Bayesian nonparametric and semiparametric models

The approximation of Pi(ψi) by a normal distribution in (1a) is typically supported by some
theoretical result, for example the asymptotic normality of the observed log odds ratio or,
more generally, the asymptotic normality of maximum likelihood estimates. By contrast,
the normality statement in (1b) is a modelling assumption, which generally is made for the
sake of convenience and does not have any theoretical justification. A number of authors
have encountered meta-analyses in which the distribution of the study effects appears to be
non-normal—for example because some studies appear to be outliers—and have suggested
that in (1b) the normal distribution be replaced by a distribution that accommodates out-
liers. Sharples (1990) discusses normal contamination models in a classical Bayesian one-way
random effects model. Weiss, Cho, and Yanuzzi (1999) develop a Markov chain Monte Carlo
(MCMC) approach for fitting models in which either the likelihood or the prior is a mixture
of two normals. Dozens of authors have considered t distributions. While t distributions
accommodate outliers better than do normals, the distribution of the random effects may
deviate from normality in ways that do not involve heaviness of tails. In fact, in one of the
examples in the present paper, the distribution of the study effects appears to be multimodal.

This leads us to consider a model of the form

conditional on ψi, Di ∼ N (ψi, σ
2
i ), independently, i = 1, . . . ,m, (2a)

conditional on F, ψi
iid∼ F, i = 1, . . . ,m, (2b)

F ∼ π, (2c)
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where π is a nonparametric prior on the family of all distribution functions. A natural
approach is to take π to be a Dirichlet process (see Ferguson 1973, 1974, for a formal treatment,
or the beginning of Section 2 of the present paper for an informal review) and indeed this
is done by Mallick and Walker (1997). They take π to be Dα, the Dirichlet process with
parameter measure α = M ·H, where H is the centering distribution and M is the precision
parameter, and they give a method for estimating posterior distributions based on this prior.
A key drawback of this approach is that the user must specify the centering distribution
H exactly. A more flexible approach involves using a model based on mixtures of Dirichlet
processes as introduced by Antoniak (1974). In the context of the meta-analysis model,
Model (2), one can take π to be a mixture of Dirichlet process priors with parameter consisting
of the triple ({Hϑ}ϑ∈Ω,M, λ), where {Hϑ}ϑ∈Ω is a parametric family of distributions, M is a
precision parameter, and λ is a prior on Ω. An important particular case, which we discuss
further below, is to take {Hϑ}ϑ∈Ω to be the two-parameter family of normal distributions
N (µ, τ2), and take λ to be the normal/inverse gamma prior on ϑ = (µ, τ). Thus, (2c)
becomes

conditional on µ, τ, F ∼ DMN (µ,τ2),

(µ, τ) ∼ λ.
(3)

Consider now Model (1). For this model, the parameter µ has a clear interpretation as the
mean or median of the N (µ, τ2) distribution (and if we replace the normal with a t then µ
also has a clear interpretation as the median of the distribution). In contrast, in Model (3)
the parameter µ is not equal to

∫
x dF (x), the mean of F . (If F is chosen from a Dirichlet

process with centering distribution H, then even if H is symmetric about µ, the probability
that F is symmetric about µ is 0.) In fact, µ does not play the role of any location parameter
for F . This is a problem in certain situations where there is no overwhelming evidence that
the treatment is better than the control, and one is interested primarily not in estimation of
the center-specific ψi’s, but rather in resolving the basic question of whether the overall mean
µ is different from 0, as this may for example justify carrying out further studies. For this
reason, Burr and Doss (2005) propose using a “mixture of conditional Dirichlet processes” as
the prior π in (2c). Loosely speaking, if F ∼ DMN (µ,τ2), then the distribution of F conditional
on the event that the median of F is µ is called a conditional Dirichlet, and we will denote it
by Dµ

MN (µ,τ2)
. By construction, if F ∼ Dµ

MN (µ,τ2)
, then with probability one µ is the median

of F , so we have a parameter µ with a clear interpretation, and we can proceed to carry out
inference about this parameter.

To summarize, Burr and Doss (2005) consider the hierarchical model

conditional on ψi, Di ∼ N (ψi, σ
2
i ), independently, i = 1, . . . ,m, (4a)

conditional on F, ψi
iid∼ F, i = 1, . . . ,m, (4b)

conditional on µ, τ, F ∼ Dµ
MN (µ,τ2)

, (4c)

conditional on τ, µ ∼ N (d3, d4τ
2), (4d)

γ = 1/τ2 ∼ Gamma(d1, d2). (4e)

In (4d) and (4e), d1, d2, d4 > 0, d3 ∈ R, and the resulting prior on (µ, τ) is the normal/inverse
gamma prior, which we will denote λd. For the purpose of giving a dispersed prior on µ
and τ , they take d1 = 0.1, d2 = 0.1, d3 = 0, and d4 = 1000. (For this choice, the marginal
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distribution of µ is a t distribution with 0.2 degrees of freedom, median 0, and scale parameter
10001/2, which is a fairly diffuse prior.) Burr and Doss (2005) develop a Markov chain Monte
Carlo algorithm for estimating the posterior distribution of the vector (ψ1, . . . , ψm, µ, τ) in
this model. The purpose of this paper is to present and describe the R package bspmma,
which implements the algorithms developed in Burr and Doss (2005), and to illustrate the
use of these algorithms. The package bspmma is available from the Comprehensive R Archive
Network at http://CRAN.R-project.org/package=bspmma.

The rest of the paper is organized as follows. In Section 2, we give a review of Dirichlet and
conditional Dirichlet processes and their mixtures, and give motivation for their use. Then
we describe a method for determining whether the model based on mixtures of conditional
Dirichlet processes fits the data as well or better than does a model based on ordinary mixtures
of Dirichlet processes. A by-product of our model validation method is a procedure for
carrying out an empirical Bayes selection of the Dirichlet precision parameter M . In Section 3,
we show how to use the package on two examples.

Several other packages are available for conducting meta-analyses in the R language (R De-
velopment Core Team 2012). We mention rmeta (Lumley 2009), meta (Schwarzer 2010), and
metafor (Viechtbauer 2010), which enable frequentist analyses, and assume that the effect
distribution is normal; also, the metafor package allows meta-regression. These packages
have extensive functions for plotting and producing summary statistics.

The DPpackage (Jara, Hanson, Quintana, Müller, and Rosner 2011; Jara 2007) is a very broad
package for implementing Bayesian semiparametric models. It fits certain hierarchical models
of the sort (2) where π is a mixture of ordinary Dirichlet processes, and also handles models
from a variety of areas such as density estimation, survival analysis, and generalized linear
mixed models. Branscum and Hanson (2008) also consider Bayesian semiparametric models
for meta-analysis, and their prior on the effect distribution is a (finite) Polya tree, rather than
a Dirichlet-based process. More specifically they consider a model similar to (4), except that
in line (4c), the conditional Dirichlet process is replaced by a“median-constrained”Polya tree.
The DPpackage function PTmeta implements the model in Branscum and Hanson (2008). In
Section 4 we further discuss the Polya tree prior used in Branscum and Hanson (2008) and
discuss the relationship between the model they use and the model used here. The bspmma
package is not a general-purpose package for fitting Bayesian nonparametric or semiparametric
models. It deals only with random-effects meta-analysis, and focuses specifically on inference
for particular parameters of interest in meta-analysis, and on hyperparameter selection and
model assessment.

2. Ordinary and conditional Dirichlet processes

2.1. Background

Let P be the set of all probability distributions on the real line. A parametric family Hϑ, ϑ ∈
Ω ⊂ Rp may be viewed as a finite-dimensional subset of the infinite-dimensional space P, and
a prior on Ω induces a prior on P which gives all its mass to the finite-dimensional family
Hϑ, ϑ ∈ Ω. When there is no reason to think that any particular parametric model is exactly
true, a desirable feature of a prior on P is that it be “nonparametric,” i.e., does not give all its
mass to any finite-dimensional subset of P. (More formally, having specified a topology on P,

http://CRAN.R-project.org/package=bspmma
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we would like the prior to have the “full support property,” i.e., it gives positive probability
to any open set.)

The most commonly used nonparametric priors are mixtures of Dirichlet processes. Standard
definitions are Ferguson (1973, 1974), and Antoniak (1974), but here we give a brief intuitive
review of those properties of this class of priors that are directly relevant to the present
situation. Before describing mixtures of Dirichlet processes, we first discuss (single) Dirichlet
processes. A Dirichlet process is a distribution on the space P, and is parameterized by a
pair (H,M), where H is a distribution function and M is a positive number. The product
α = MH is a finite measure, and the Dirichlet process is denoted by Dα (the measure α
determines and is determined by the pair (H,M)). For the purpose of understanding the
modelling assumptions when we use a Dirichlet process in the present context, the best way

to explain this prior is through the construction of Sethuraman (1994). Generate B1, B2, . . .
iid∼

Beta(1,M), and independently generate V1, V2, . . .
iid∼ H. Let Pj = Bj

∏j−1
r=1(1−Br), and form

the random distribution

F =

∞∑
j=1

PjδVj , (5)

where δa denotes the probability measure giving unit mass to the point a. Sethuraman (1994)
showed that F defined by (5) is distributed according to the Dirichlet process with parameter
measure α, as defined in Ferguson (1973).

Key properties of the Dirichlet process are: (i) The “center” is H in the sense that for every t,
we have E(F (t)) = H(t); (ii) M is a precision parameter which determines the concentration
of the prior around H: for large M , the distribution of F (t) is tightly concentrated around
H(t) for every t, while for small values of M , the distribution is more diffuse; and (iii) the
Dirichlet process is a nonparametric prior in the following sense: if the support of H is the
entire real line, then the Dirichlet process has the full support property referred to earlier.

Note that if we first choose F from Dα and then generate ψ1, . . . , ψn
iid∼ F , then since F is

discrete, with positive probability there will be ties among the ψi’s; that is, the ψi’s will form
clumps. When M is small, the first few Pj ’s add up to nearly 1, and therefore the probability
of ties is higher. This leads to important consequences regarding the posterior distribution
of ψ1, . . . , ψn given the data D1, . . . , Dn. Consider the distribution of ψi. As is standard in
hierarchical models, conditioning on the data and ψj , j 6= i results in shrinkage towards Di

and toward a grand mean. But because of the propensity for clumping, the posterior is also
shrunk towards those ψj ’s that are close to Di (the extent of the shrinking is determined in
part by the standard error σi). This last results in a way of pooling information that involves
weighing results of similar studies more heavily.

As mentioned in Section 1, a mixture of Dirichlet processes involves a parametric family
Hϑ, ϑ ∈ Ω ⊂ Rp, a precision parameter M > 0, and a distribution λ on Ω. Formally, it
is the integral

∫
DMHϑ

λ(dϑ). We think of it as arising in a two-stage process, where in
the first stage we pick the parameter ϑ according to λ, and in the second stage we pick F
from the Dirichlet distribution with parameter MHϑ. A mixture of conditional Dirichlet
processes is defined in the obvious way, i.e., the Dirichlet process in the integrand is replaced
by a conditional Dirichlet process. In the situation considered in this paper, {Hϑ}ϑ∈Ω is the
two-parameter family of normal distributions. The role of the precision parameter may be
described intuitively as follows. The parametric family {Hϑ}ϑ∈Ω is a (p-dimensional) “line”
in the infinite-dimensional space of probability measures on the real line, and we imagine a
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“tube”around this line. Large values of M correspond to a narrow tube (which we interpret as
an expression of confidence that the normal model holds), and small values of M correspond
to a wider tube. (Sethuraman and Tiwari 1982 give a careful description of the proper
interpretation of the Dirichlet process when M is very small.) It should be mentioned that
when M is large, for any µ and τ the distributions DMN (µ,τ2) and Dµ

MN (µ,τ2)
are close, since

they are both nearly equal to the point mass at theN (µ, τ2) distribution and, consequently, for
large M the λ-mixture of Dirichlet processes and λ-mixture of conditional Dirichlet processes
are close. A measure-theoretic discussion of this point is given in Doss (1985).

2.2. Model assessment and hyperparameter selection

In Section 1 we discussed conditional Dirichlet processes as a tool that enables us to make
inference about a location parameter of the distribution of the latent effects. While there are
inferential reasons for using a model based on these priors, it is nevertheless natural to ask if
such a model provides a good fit for the data. More precisely, it is natural to ask if a model
based on mixtures of conditional Dirichlet processes provides a better fit than does a model
based on ordinary mixtures of Dirichlet processes.

In Model (4) the unknown parameter is effectively θ = (ψ, µ, τ), where ψ = (ψ1, . . . , ψm) is
the vector of latent variables (F plays a role only in the sense that it induces a distribution on
the latent variables). Different prior distributions on θ induce different models for the data
vector D. Generally speaking, when deciding between two models M1 and M2 for the data
D, it is standard to consider the marginal likelihoods mM1(D) and mM2(D) which, in the
framework of the present paper, are defined by

mMi(D) =

∫
`D(θ) dνi(θ) i = 1, 2. (6)

In (6), `D(θ) is the likelihood function, and νi is the prior distribution of θ under model
Mi. (The marginal likelihood is just the likelihood of the data with the unknown parameter
integrated out.) If these marginal likelihoods can be computed, it is common practice to select
the model for which the marginal likelihood is greater. In our situation, we fix some value
of the precision parameter M , some value d = (d1, d2, d3, d4) of the hyperparameter vector
of the normal/inverse gamma prior on (µ, τ), and M1 will be the mixture of conditional
Dirichlet processes and M2 the mixture of ordinary Dirichlet processes, each based on the
hyperparameter specification h = (M,d). It will be more convenient to denote these models
by Mc

h and Mo
h, respectively. Also, νch and νoh will denote the (prior) distribution of θ under

Mc
h and Mo

h, respectively, and mc
h and mo

h will denote the marginal likelihoods of the data
underMc

h andMo
h, respectively. Now selecting the model for which the marginal likelihood is

greater is of course equivalent to selectingMc
h if and only if the ratio B(Mc

h,Mo
h) := mc

h/m
o
h

is greater than 1. The ratio B(Mc
h,Mo

h) is commonly referred to as the Bayes factor of Mc
h

relative to Mo
h.

Unfortunately, it is impossible to calculate the two marginal likelihoods mc
h and mo

h exactly,
and very difficult to estimate them accurately. However, as we now show, it is possible
to estimate their ratio, i.e., the Bayes factor. In fact, we will show that it is possible to
estimate mc

h/m
o
h for all h from a single Markov chain, run under model Mo

h1
, where h1 is
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some prespecified value of the hyperparameter h1 = (M1, d1). Let us write

mc
h

mo
h

=
mc
h

mo
h1

(
mo
h

mo
h1

)−1

. (7)

We will estimate mc
h/m

o
h by estimating mc

h/m
o
h1

and mo
h/m

o
h1

, and taking the ratio.

Let νch,D and νoh,D denote the posterior distributions of θ when the priors are νch and νoh,
respectively. We note that the marginal likelihood is simply the normalizing constant in the
statement “the posterior is proportional to the likelihood times the prior.” Proceeding as in
Doss (2012), we write

νch,D(dθ) = `D(θ)νch(dθ)/mc
h and νoh1,D(dθ) = `D(θ)νoh1(dθ)/mo

h1 ,

and using the fact that ∫ [
dνch,D
dνoh1,D

]
(θ) νoh1,D(dθ) = 1, (8)

we obtain the identity ∫ [
dνch
dνoh1

]
(θ) νoh1,D(dθ) =

mc
h

mo
h1

. (9)

Note: In (8) and (9), we have used the formalism of Radon-Nikodym derivatives instead of
writing the ratio of densities, and we now digress briefly to explain this. When we have the
parametric model corresponding to the case M = ∞, i.e., model (4) except that lines (4b)

and (4c) are replaced by the single line ψi
iid∼ N (µ, τ2), the distribution of θ has a density on

Rm+2 (with respect to Lebesgue measure), and (8) is just the trivial formula∫
νch,D(θ)

νoh1,D(θ)
νoh1,D(θ) dθ = 1,

which involves only densities. When M <∞, the distributions νch, νch,D, νoh1 , and νoh1,D do not

have densities with respect to Lebesgue measure on Rm+2, since there is positive probability
that the ψj ’s have ties, and in (8) [dνch,D/dν

o
h1,D

] is the “Radon-Nikodym derivative of νch,D
with respect to νoh1,D.” Loosely speaking, for θ ∈ Rm+2, the Radon-Nikodym derivative is
given by [

dνch,D
dνoh1,D

]
(θ) = lim

ε→0

νch,D(Bε
θ)

νoh1,D(Bε
θ)
,

where Bε
θ is the ball in Rm+2 centered at θ and with radius ε, and this is the measure-theoretic

equivalent of the “ratio of densities.” A more detailed discussion is given in the Appendix of
Burr and Doss (2005).

From (9) we see that if θ1, θ2, . . . is an ergodic Markov chain with stationary distribution
νoh1,D, we have

1

n

n∑
i=1

[
dνch
dνoh1

]
(θi)

a.s.−→
mc
h

mo
h1

, (10)

where “
a.s.−→ ” means “converges almost surely.” An explicit formula for [dνch/dν

o
h] was obtained

in Burr and Doss (2005) and was extended in Doss (2012) to the case [dνch/dν
o
h1

], where h
and h1 are not necessarily equal.
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In a similar way, we have the identity∫ [
dνoh
dνoh1

]
(θ) νoh1,D(dθ) =

mo
h

mo
h1

,

and for the same Markov chain θ1, θ2, . . . with stationary distribution νoh1,D, we have

1

n

n∑
i=1

[
dνoh
dνoh1

]
(θi)

a.s.−→
mo
h

mo
h1

. (11)

An explicit formula for [dνoh/dν
o
h1

] is given in Theorem 1 of Doss (2012). Combining (7), (10),
and (11), we obtain that ∑n

i=1[dνch/dν
o
h1

](θi)∑n
i=1[dνoh/dν

o
h1

](θi)

a.s.−→
mc
h

mo
h

. (12)

In the present situation, we will keep the prior λ on (µ, τ) fixed and vary M ; specifically, we
will fix d at (0.1, 0.1, 0, 1000), and we will be interested in estimating the ratio mc

M,d/m
o
M,d

which, by a slight abuse of notation, we will denote by mc
M/m

o
M . In the illustration in

Section 3.3, we give a plot of the estimate of this ratio. To summarize, the discussion above
provides a method for estimating this ratio simultaneously for all M , which gives a tool for
comparing the conditional Dirichlet model with the ordinary Dirichlet model.

It is also natural to ask how does one select a value for M . We consider first the unconditional
Dirichlet model. As before, d is fixed at (0.1, 0.1, 0, 1000) and so is not in the picture, and
by slight abuse of notation we will write mo

M instead of mo
h, mc

M instead of mc
h, etc. As

noted in Doss (2012), if M1 is fixed at an arbitrary value, then maximizing mo
M/m

o
M1

as a
function of M is equivalent to maximizing mo

M as a function of M , and the maximizing value
of M is by definition the empirical Bayes choice of M for the unconditional Dirichlet model.
Therefore a plot of the estimate of mo

M/m
o
M1

given by the left side of (11) enables us to obtain
an empirical Bayes choice of the precision parameter M for the ordinary Dirichlet model.
We can also form an empirical Bayes estimate of M for the conditional Dirichlet model—
again based on a run from an ergodic Markov chain with stationary distribution νoM1,D

—by
proceeding as follows. We note that (i) maximizing mc

M/m
o
M1

with respect to M is equivalent
to maximizing mc

M , (ii) the common maximizing value is the empirical Bayes choice of M
for the conditional Dirichlet model, and (iii) an estimate of the function mc

M/m
o
M1

from a
Markov chain with stationary distribution νoM1,D

is provided by the left side of (10). Section 3
provides an illustration of obtaining the empirical Bayes choice of the precision parameter M .
To summarize, the discussion above provides a method for carrying out an empirical Bayes
selection of the precision parameter M , whether we are using the unconditional or conditional
Dirichlet model. In Section 3 we explain why estimates based on a single Markov chain can
be unstable when the range of M is large, and discuss improvements which involve using
multiple chains.

We mention briefly that under moment conditions on [dνch/dν
o
h1

] and [dνoh/dν
o
h1

] and mixing
conditions on the chain, the pair(

1

n

n∑
i=1

[
dνch
dνoh1

]
(θi),

1

n

n∑
i=1

[
dνoh
dνoh1

]
(θi)

)
satisfies a bivariate central limit theorem. Therefore, the averages on the left side of (10)
and (11) satisfy a central limit theorem, and by the delta method applied to the function
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g(u, v) = u/v, we also have a central limit theorem for the ratio on the left side of (12).
Consequently we are able to form standard errors for all the estimates discussed above.

Markov chain Monte Carlo Details regarding an MCMC algorithm for estimating the
posterior under Model (4) (mixture of conditional Dirichlets) are given in Burr and Doss
(2005). It is important to note that the chain is a (m+ 1)-cycle Gibbs sampler which cycles
through the vector of ψi’s and the pair (µ, τ), and that the main part of the computational
burden is in the first part of the cycle, the generation of the vector of ψi’s.

3. Usage

In this section we illustrate the functions available in bspmma through two examples. The
main function, dirichlet.c, carries out the MCMC algorithm to simulate data from the pos-
terior distribution under the conditional Dirichlet model, Model (4). A corresponding func-
tion, dirichlet.o, simulates output when the prior on F is the mixture of ordinary Dirichlets
given by Model (3). For comparison of posterior distributions for several different values of the
Dirichlet precision parameter M , the package provides the functions draw.post (for overlaid
graphs of the posteriors) and describe.post (for side-by-side summary statistics). For de-
termining whether the conditional or ordinary Dirichlet model is preferred, the functions bf1,
bf2, bf.c.o, and draw.bf do the computations and produce the plot of Bayes factors for the
conditional Dirichlet model, Model (4) vs. the ordinary Dirichlet model, Model (3). Finally,
the functions bf.c and bf.o can be used to compute Bayes factors appropriate for selecting
the maximizing value of M for the conditional or ordinary Dirichlet model, respectively.

Output from the main bspmma functions can be analyzed further using routines in the R
packages boa (Smith 2007) and coda (Plummer, Best, Cowles, and Vines 2006), which have
functions for diagnosis of convergence, and for providing graphical and statistical summaries,
of MCMC output. The two packages implement a similar set of published methods and can
be applied to output from the bspmma functions dirichlet.c and dirichlet.o. The boa
package has a menu-driven interface, and due to our focus on use of source code, we chose to
illustrate application of the coda package here.

3.1. Example 1: Effect of NSAIDs on breast cancer

The hypothesis that use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk
of breast cancer is currently of considerable interest and controversy in the medical literature
(Harris et al. 2003; Terry et al. 2004; Zhang, Coogan, Palmer, Strom, and Rosenberg 2005).
Because NSAIDs must be taken regularly for many years to have this beneficial effect, it is
not possible to carry out randomized, controlled experiments in healthy populations. There
have been many studies on the effect of NSAIDs on breast cancer (and other cancers) during
the last 15 years; the studies that have been done are either at the epidemiological or at
the cellular and molecular level, and several have strongly suggested that long-term use of
NSAIDs significantly decreases the risk of breast cancer. However, this result is not seen in all
studies; some suggest only a slight risk reduction and others in fact suggest no risk reduction
at all. Harris, Beebe-Donk, Doss, and Burr (2005) give a review of this work and discuss the
epidemiological studies that have appeared in the medical literature. Each study reports a
risk ratio for NSAIDs use vs. no NSAIDs use. This risk ratio is either simply an odds ratio
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obtained from a case-control study or an odds ratio based on a multiple logistic regression
analysis that takes into account important risk factors for breast cancer.

It is not surprising that the studies give inconsistent results, since there is heterogeneity in
the subject pools (characteristics such as age, ethnicity, and health status vary across the
studies), and in the way the data were obtained (covariates collected, statistical method used,
etc.). It is certainly of interest to carry out a meta-analysis of these studies, and because of
the heterogeneity, it seems clear that the meta-analysis should be based on a random effects
model. There have been some meta-analyses in the epidemiological literature. Khuder and
Mutgi (2001) find fifteen studies and point out that the studies have heterogeneous effect
estimates; they then form several sub-groups of the data, and carry out fixed-effects analyses
of homogeneous sub-groups and random-effects analyses of heterogeneous groups. Gonzalez-
Perez, Rodriguez, and Lopez-Ridaura (2003) use the classical random-effects meta-analysis
for each of six cancers including breast cancer. For ten different cancers including breast
cancer, Harris et al. (2005) do fixed-effects meta-regression with one study-level covariate—
dose of NSAID—using just the subset of studies for which dose information is available. All
the random-effects meta-analyses we have seen assume normality of the distribution of effects,
but without justification.

Columns 2–3 of Table 1 give the data from Harris et al. (2005) for each of the 17 studies
that pertain to the particular NSAID aspirin. These columns give the reported risk ratio and
a confidence interval for the risk ratio. Although these authors consider dose as well, and
therefore consider only the 14 out of the 17 studies which contain dose information, we ignore
dose in this analysis. It would be of interest to also carry out another analysis that includes
dose.

For each study j, let Lj and σj denote the observed log risk ratio and its standard error,
respectively, for that study. Let ψj denote the true log risk ratio, i.e., ψj is the log risk ratio
that would be obtained if the sample size for study j were infinite. Standard asymptotic
theory justifies writing Lj ∼ N (ψj , σ

2
j ). Therefore, if we let F represent the distribution of

unknown shape of the ψj ’s, we are led to precisely Model (2), with Dj = Lj having standard
deviation σj . Column 4 of Table 1 gives Lj (the observed log risk ratio) and column 5 gives
σj (the standard error of Lj). Harris et al. (2005) do not give the σj ’s, but these can be
obtained from the confidence intervals for the risk ratios, which are given in column 3.

The package includes the dataframe breast.17, which gives the log risk ratios and their
standard errors (columns 4 and 5 from Table 1). To prepare to run the main functions in
the package, we first set up the data as a matrix with two columns, where the first column
contains the log risk ratios and the second column contains the standard errors, as follows:

R> library("bspmma")

R> data("breast.17")

R> breast.data <- as.matrix(breast.17)

The next two commands show how to use the conditional Dirichlet MCMC function, first
setting the precision parameter value to be M = 5 and then M = 1000. The seed is set
(to 1) so that the example can be reproduced exactly. The algorithm to run MCMC for the
conditional Dirichlet model, Model (4) completes 4000 cycles in about 14 seconds (as timed
by R function system.time), on an Intel 2.8 GHz Q9550 running Linux.

R> set.seed(1)
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j RR CI Lj σj
1 0.96 (0.70, 1.50) −0.04 0.161
2 0.88 (0.62, 1.24) −0.13 0.179
3 0.70 (0.50, 0.96) −0.36 0.172
4 1.01 (0.80, 1.27) 0.01 0.119
5 0.64 (0.45, 0.90) −0.45 0.180
6 0.71 (0.58, 0.87) −0.34 0.103
7 0.79 (0.66, 1.04) −0.24 0.092
8 0.60 (0.37, 0.96) −0.51 0.247
9 0.80 (0.60, 1.00) −0.22 0.147

10 0.69 (0.46, 0.99) −0.37 0.207
11 0.80 (0.35, 1.80) −0.22 0.422
12 0.70 (0.50, 0.80) −0.36 0.172
13 0.76 (0.63, 0.92) −0.27 0.096
14 0.73 (0.61, 0.87) −0.31 0.092
15 1.10 (0.92, 1.30) 0.10 0.091
16 1.00 (0.80, 1.10) 0.00 0.114
17 0.40 (0.30, 0.60) −0.92 0.147

Table 1: Summary data from 17 studies on aspirin and breast cancer: RR is the risk ratio
for aspirin vs. no aspirin; CI is the associated confidence interval; Lj is the observed log risk
ratio; and σj is the estimated standard error of Lj .

R> breast.c1 <- dirichlet.c(breast.data, ncycles = 4000, M = 5)

R> set.seed(1)

R> breast.c2 <- dirichlet.c(breast.data, ncycles = 4000, M = 1000)

Another argument to the function is the hyperparameter vector d of the normal/inverse
gamma prior on (µ, τ), which in the above runs is taken by default to be d = (0.1, 0.1, 0, 1000);
there is also an argument start, which allows the user to supply starting values for the
parameters. By default, the starting value for ψi is the individual study estimate Di, for
i = 1, . . . ,m; and the starting values for µ and τ are the mean and standard deviation of the
Di’s, respectively.

The output of dirichlet.c is a list with several components; the main component, called
chain, is a matrix such that each row contains the output of a single iteration of the Monte
Carlo simulation. In the above runs the matrix is of dimension 4001 × 19. The first row
contains initial parameter values; each of the remaining 4000 rows contains a set of parameter
values for one iteration of the chain. The columns contain the simulated values of the param-
eters of Model (4). Columns 1–17 contain the individual ψi’s, that is, the log risk ratios for
studies 1 through 17. Column 18 contains µ, the median of the distribution of the ψi’s (and
the mean of the centering normal distribution of the conditional Dirichlet model, Model (4)),
and column 19 contains τ (the standard deviation of the centering normal distribution of the
conditional Dirichlet model).

For each of the runs above taken separately, the MCMC output can be checked for convergence
by any of the diagnostic functions in coda. This requires using the chain component of the
bspmma output as an argument to the desired coda function, after first converting it to an
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object of class mcmc in coda. For the first chain above, with M = 5, we use coda to get
the autocorrelation plot for the last three ψi’s and for µ and τ . The reason for examining
the autocorrelation plots for these particular ψi’s is that they include the two most unusual
studies. The study by “Langman” (in column 15) had the only positive estimate of the log
odds ratio, and the study by “Moorman” (in column 17) had the estimate farthest from the
mean, the most extreme negative estimate.

R> library("coda")

R> breast.coda <- mcmc(breast.c1$chain)

R> autocorr.plot(breast.coda[, 15:19])

In the resulting plots (not shown), the autocorrelations are 0 (for practical purposes) for all
lags greater than three; thus this particular diagnostic does not provide evidence of a problem
with the chain. There are many other functions in coda, for posterior inference as well as for
convergence diagnosis, which can be applied in a similar manner.

In addition, there are two user-accessible functions in bspmma which are useful for exploration
of models corresponding to different values of the Dirichlet precision parameter M . The
function draw.post may be used to produce superimposed graphs for several M values, of
the distributions of the hyperparameters µ and τ and, optionally, of the individual ψi’s. The
function uses the R function density to compute the kernel density estimate of the posteriors
and the function matplot to produce the superimposed plots. The function has one required
input argument, which is a list object, each element of which is the chain component of the
output from dirichlet.c or dirichlet.o. These chain components are matrices of MCMC
output and are assumed to correspond to different values of the Dirichlet precision parameter
M . The names of the list elements will go into legend labels. An optional argument, burnin,
with default value 1000, specifies how many of the initial runs to omit. Below is sample code
which produces plots of the distributions of µ and τ , but not the ψi’s, for the breast cancer
data. The graphs produced by this code are shown in Figure 1.

R> breast.c1c2 <- list("5" = breast.c1$chain, "1000" = breast.c2$chain)

R> draw.post(breast.c1c2, burnin = 100)

The value of M = 1000 corresponds closely to a parametric model, whereas the value M = 5
is a typical value that would be used in practice. From the shapes of the two distributions
in both of the above graphs, for µ and τ , we see that as expected, there is greater certainty
or precision expressed in the parametric analysis. In addition, the centers of the posterior
distributions arising from the parametric and semiparametric models, are different. To look at
a brief comparison of the quantitative conclusions for differentM values, we can get descriptive
statistics of the posterior distributions using the function describe.post as follows:

R> describe.post(breast.c1c2, burnin = 100)

The output is the posterior means, and the probabilities that the risk ratios are less than 1:

Table of Posterior Means

Paganin Thun et Schrein Egan et Harris Johnson Harris Harris Rosenbu

5 -0.11 -0.18 -0.32 -0.045 -0.37 -0.33 -0.25 -0.38 -0.24

1000 -0.11 -0.18 -0.32 -0.045 -0.38 -0.33 -0.24 -0.38 -0.23
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Figure 1: Posterior distributions of parameters of conditional Dirichlet model for the log risk
ratios of breast cancer for NSAIDS vs. no NSAIDS. Left panel is for the median µ, and the
right panel is for the standard deviation τ .

Harris Neuget Coogan Sharpe Cotterc Langman Meier e Moorman mu

5 -0.32 -0.27 -0.32 -0.28 -0.31 0.030 -0.050 -0.76 -0.29

1000 -0.32 -0.24 -0.32 -0.27 -0.31 0.048 -0.051 -0.74 -0.26

tau

5 0.32

1000 0.25

Table of Posterior P(RR < 1)

Paganin Thun et Schrein Egan et Harris Johnson Harris Harris Rosenbu

5 0.76 0.86 0.99 0.63 1 1 1 0.98 0.96

1000 0.79 0.89 0.99 0.66 1 1 1 0.99 0.96

Harris Neuget Coogan Sharpe Cotterc Langman Meier e Moorman mu

5 0.97 0.87 0.99 1 1 0.37 0.65 1 0.99

1000 0.98 0.88 0.99 1 1 0.30 0.69 1 1.00

For the overall conclusion about the parameter µ, both the parametric and the semiparametric
model show very high significance of the result so that with either model one concludes that
long-term use of NSAIDs appears to be associated with reduction of the risk of breast cancer,
at least at the study level.

3.2. Example 2: Decontamination of the digestive tract

Burr and Doss (2005) summarize the background for this dataset, which appeared in Selective
Decontamination of the Digestive Tract Trialists’ Collaborative Group (1993). The dataset
in the package, ddtm.s, consists of fourteen rows corresponding to fourteen different studies
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of the effect of a combined regimen of topical and systemic antibiotics on mortality from
infection in intensive care units. The dataset has four columns, giving counts of deaths and
total sample sizes, first for the treatment group and then for the control group. Each row
of counts must be converted to an odds ratio and its standard error. This data is accessed
(the first four rows are shown), and then converted to the appropriate form for doing the
meta-analysis, as follows:

R> library("bspmma")

R> data("ddtm.s")

R> ddtm.s

treat.deaths treat.total cont.deaths cont.total

1 14 45 23 46

2 22 55 33 57

3 27 74 40 77

4 11 75 16 75

...

R> ddtm.s$treat.deaths <- ddtm.s$treat.deaths + 0.5

R> ddtm.s$treat.total <- ddtm.s$treat.total + 1

R> ddtm.s$cont.deaths <- ddtm.s$cont.deaths + 0.5

R> ddtm.s$cont.total <- ddtm.s$cont.total + 1

R> attach(ddtm.s)

R> or <- (treat.deaths / (treat.total - treat.deaths)) /

+ (cont.deaths / (cont.total - cont.deaths))

R> lor <- log(or)

R> se.lor <- ((treat.total / (treat.deaths * (treat.total - treat.deaths))) +

+ (cont.total / (cont.deaths * (cont.total - cont.deaths))))^0.5

R> ddtm.14 <- data.frame(psi.hat = lor, se.psi.hat = se.lor)

Next we run the Markov chain for the conditional Dirichlet model, Model (4), using several
values of the precision parameter M . Below we show the code for values of M = 5, M = 20,
and M = 100, plot the posterior distributions of µ and τ (see Figure 2), and compute the sum-
mary statistics. The algorithm to run MCMC for the conditional Dirichlet model, Model (4),
completes 4000 cycles in about 11 seconds (as timed by the R function system.time), on an
Intel 2.8 GHz Q9550 running Linux.

R> ddtm.s.data <- as.matrix(ddtm.14)

R> set.seed(1)

R> ddtm.s.c1 <- dirichlet.c(ddtm.s.data, ncycles = 4000, M = 5)

R> set.seed(1)

R> ddtm.s.c2 <- dirichlet.c(ddtm.s.data, ncycles = 4000, M = 20)

R> set.seed(1)

R> ddtm.s.c3 <- dirichlet.c(ddtm.s.data, ncycles = 4000, M = 100)

R> ddtm.s.l1 <- list("5" = ddtm.s.c1$chain, "20" = ddtm.s.c2$chain,

+ "100" = ddtm.s.c3$chain)

R> draw.post(ddtm.s.l1, burnin = 100)

R> describe.post(ddtm.s.l1, burnin = 100)
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Figure 2: Posterior distributions of parameters of conditional Dirichlet model for the log risk
ratios of mortality for treatment vs. control groups in the decontamination of the digestive
tract dataset. Left panel is for the median µ, right panel is for the standard deviation τ .

Table of Posterior Means

1 2 3 4 5 6 7 8 9 10 11 12

5 -0.37 -0.37 -0.37 -0.27 -0.23 -0.25 -0.25 -0.23 -0.18 -0.13 -0.12 -0.047

20 -0.35 -0.36 -0.36 -0.26 -0.22 -0.25 -0.24 -0.23 -0.18 -0.13 -0.13 -0.059

100 -0.37 -0.37 -0.37 -0.28 -0.23 -0.26 -0.24 -0.24 -0.19 -0.13 -0.13 -0.061

13 14 mu tau

5 -0.0033 0.015 -0.20 0.33

20 -0.0174 0.010 -0.20 0.28

100 -0.0117 0.018 -0.20 0.28

Table of Posterior P(RR < 1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 0.92 0.93 0.94 0.84 0.79 0.89 0.86 0.85 0.75 0.69 0.67 0.59 0.51 0.47

20 0.93 0.94 0.95 0.86 0.80 0.91 0.87 0.87 0.77 0.71 0.71 0.62 0.55 0.47

100 0.93 0.95 0.95 0.87 0.80 0.92 0.88 0.87 0.77 0.72 0.71 0.62 0.52 0.47

mu

5 0.88

20 0.94

100 0.95

For M = 5 the posterior probability that µ is less than 1 is 0.88, whereas for M = 20 and
M = 100, the probabilities are 0.94 and 0.95, respectively. Thus whereas the parametric
model gives significant results, the semiparametric model suggests that there is not enough
evidence to conclude that the combined antibiotic treatment reduces the risk of mortality.
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3.3. Bayes factors for breast cancer data

Package functions bf1 and bf2 estimate the Bayes factors for conditional vs. ordinary Dirichlet
models, for a series of M values, by applying (12). This requires formulas for the Radon-
Nikodym derivatives on the left-hand side of (12), and it requires generation of MCMC
samples from the posterior distribution of θ under the ordinary Dirichlet model with specified
hyperparameter h1.

Formulas for the Radon-Nikodym derivatives [dνoh/dν
o
h1

](θ) and [dνch/dν
o
h1

](θ) are taken from
Doss (2012). They are computed by functions lr and pnew.pold for ordinary Dirichlet vs.
ordinary Dirichlet, and by functions lr.c.o and pnew.pold.c.o for conditional Dirichlet vs.
ordinary Dirichlet. These functions are provided in the package, but are not user-accessible.

Regarding the hyperparameter value h1 = (M1, d1) under which the Markov chain will be run
to estimate the Bayes factors for a range of M ’s, in principle, any value of h1 can be used, but
in practice one would like to use a value of M1 that is “close” to all values of M for which the
Bayes factor mc

h/m
o
h will be estimated, keeping in mind that in the practical sense, M = 1 is

farther away from M1 = 4 than is M = 10. In fact, for better accuracy of the estimates, it
is preferable to run multiple Markov chains corresponding to several values of h1. Buta and
Doss (2011) motivate and develop the use of multiple chains in a general context, and Doss
(2012) gives a discussion focused on the present situation involving Dirichlet processes; in
particular, he gives guidelines regarding the selection of the multiple values of h1. We do not
give a theoretical discussion of these issues in the present paper, but mention only that doing
importance sampling with respect to multiple chains results in a very significant increase in the
accuracy of the estimates. We follow the recommendations given in Doss (2012) and use values
of the Dirichlet precision parameter M starting from 2−2 = 0.25 and increasing to 26 = 64 in
multiples of 2, for a total of nine values. These values of M1 should yield accurate estimates
unless the user wishes to estimate the Bayes factor for values of M that are very small (M less
than 0.25), which is generally considered dubious (Sethuraman and Tiwari 1982). Very large
values of M are “covered” since for most data sets, the posteriors corresponding to M = ∞
and M = 64 are close. The nine simulations are carried out by the user-accessible function
bf1. The only required argument is the data, in the form of a two-column matrix, as for the
function dirichlet.c, illustrated in Section 3.1 and Section 3.2.

There are two steps controlled by the user in the package implementation of the multi-chain
algorithm. First, we need the constants for the denominator on the left side of Equation 2.5
in Doss (2012). This requires output from the nine Markov chains produced by bf1, and
then, a call to the function bf2 to use the MCMC output to compute the constants. It is not
necessary to understand the role of these constants nor the method needed to compute them
in order to use bf1 and bf2, and the user can view these functions as a “black box.” The
necessary commands for this preliminary step are illustrated below for the breast cancer data.
In our analysis we fix the hyperparameter vector of the normal/inverse gamma prior on (µ, τ)
to be (0.1, 0.1, 0, 1000), which is the default value in the function bf1. The total number of
cycles for each of the nine chains is indicated by the argument ncycles, and the number of
simulations dropped for each chain is given by the argument burnin; in this example, the
object returned by bf1 is a list of nine matrices, each having 5000 − 1000 = 4000 rows of
MCMC output. Calls to bf1 with ncycles set at 5000 take about 1.5 minutes to run on an
Intel 2.8 GHz Q9550 running Linux; calls to bf2 take about 7 seconds in examples this size.

R> data("breast.17")
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Figure 3: Bayes factors for conditional Dirichlet vs. ordinary Dirichlet for breast cancer data.

R> breast.data <- as.matrix(breast.17)

R> chain1.list <- bf1(breast.data, ncycles = 5000, burnin = 1000)

R> cc <- bf2(chain1.list)

The next step is another set of nine MCMC simulations independent of the previous set (we
use a different seed value). These will be used for the final computation of the sequence of
Bayes factors.

R> chain2.list <- bf1(breast.data, seed = 2, ncycles = 5000, burnin = 1000)

In general, this method of estimating Bayes factors produces accurate estimates for M ranging
from a little less than 0.25 to infinity; however, for this breast cancer dataset, after experi-
mentation, we determined that the only real information in the Bayes factor plot occurs for
M ≤ 20; after that, the graph levels off. The commands to produce the plot for values of M
from 0.8 to 20 are shown below; this command required about 3 minutes on an Intel 2.8 GHz
Q9550 running Linux.

R> breast.bfco <- bf.c.o(from = 0.8, incr = 0.2, to = 20, cc = cc,

+ mat.list = chain2.list)

R> draw.bf(breast.bfco)

The resulting graph is shown in Figure 3. Note that at the right end of the graph, the value
of the Bayes factor is 1 for M =∞, since the two models are the same: They are both equal
to the parametric model; thus M = ∞ serves as a reference point. For this particular data
set, the Bayes factors are always less than 1, and thus the ordinary Dirichlet model is always
preferred to the conditional model, although the preference is hardly strong, particularly when
M ≥ 8.

For selection of the value of M , the package has the function bf.o for the ordinary model
and bf.c for the conditional model. Since for this dataset the ordinary Dirichlet model is
preferred to the conditional, we next illustrate how to select the value of M in the ordinary
model. The steps to carry out the multi-chain algorithm are the same as given above, and for
convenience, we will use the same sets of chains and constants as before; the only change is
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Figure 4: Bayes factors for selection of M in the ordinary Dirichlet model for breast cancer
data.

in the final two commands, which are shown below. The call to bf.o takes about 1.5 minutes
to run on an Intel 2.8 GHz Q9550 running Linux.

R> breast.bfo <- bf.o(from = 0.8, incr = 0.2, to = 20,cc = cc,

+ mat.list = chain2.list)

R> draw.bf(breast.bfo)

The resulting graph is shown in Figure 4. The relevant features are the shape of the graph,
and the point of the maximum, which occurs in this case at M = 2.4. Then, the Bayes factor
for M = 2.4 vs. M =∞ may be obtained by taking the ratio of the appropriate elements in
the object breast.bfo, as shown below.

R> breast.bfo$y[9] / breast.bfo$yinfinity

[1] 1.7541

The value of 1.75 for the Bayes factor suggests a slight preference for the nonparametric model
over the parametric for the breast cancer dataset.

Since for this dataset the conditional model is not preferred to the ordinary, we created a
hypothetical dataset by changing three of the points in such a way as to make the data more
clumped. Figure 5 displays the original and modified versions of the breast cancer data for
the 17 studies. The locations of the vertical lines are the observed log odds ratios, and their
heights are proportional to the reciprocals of the estimated standard errors. The distribution
is estimated using a kernel density approach (as implemented in the R function density)
based on the observed log odds ratios, with weights proportional to the estimated standard
errors. This density estimate is exploratory and should be viewed with caution, since the
observed log odds ratios are only estimates of the true log odds ratios. Figure 6 shows the
new Bayes factors, which now indicate that the conditional Dirichlet model is preferred to
the ordinary model. From a wide range of experiments we have carried out, we have noticed
that the Bayes factor plot seems to favor the model based on conditional Dirichlets for data
sets which have outliers and also have clusters (although it is very difficult to come up with
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Figure 5: Estimate of distribution of the study-specific effect ψ for the breast cancer data,
original and modified. Data are represented by vertical lines, whose locations are the estimates
of the log odds ratios and whose heights are proportional to the reciprocals of the estimated
standard errors.
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Figure 6: Bayes factors for conditional Dirichlet vs. ordinary Dirichlet for breast cancer data
with two points modified to make clumps in the distribution.

a mathematical explanation for this phenomenon). In general it is hard to tell by visual
inspection of a data set which model will be favored, and the only way to tell for sure is to
look at the Bayes factor plot.

4. Discussion

The core contributions of bspmma are: (i) a suite of functions which implement meta-analysis
when the effect distribution has as prior a mixture of conditional Dirichlet processes, (ii) func-
tions to carry out a comparison between a model based on a mixture of conditional Dirichlets
vs. a model based on a mixture of ordinary Dirichlets, and (iii) functions to carry out an
empirical Bayes selection of the precision parameter M of the Dirichlet process. It should be
noted that (iii) effectively enables a decision on whether to use a semiparametric model or



20 bspmma: Bayesian Semiparametric Models for Meta-Analysis in R

use a parametric model: an empirical Bayes choice of M =∞ indicates that there is no com-
pelling reason to use a more complicated semiparametric model, and that the parsimonious
choice of a parametric model is adequate.

As mentioned in Section 1, it is possible to use mixtures of finite Polya trees instead of mixtures
of conditional Dirichlets in model (4). This is done in Branscum and Hanson (2008), which
also gives a comparison of Polya tree and conditional Dirichlet models on the digestive tract
dataset of Section 3.2. In order to be able to comment on their approach we very briefly
review the construction they use. Let {Hϑ}ϑ∈Ω be a parametric family of distributions on
R, let ρ be a function mapping the positive integers into the positive real numbers, and let
c > 0. We initially view ϑ as fixed. The real line is first split into two intervals, with the split
point being the median of Hϑ; then each interval is further split into two subintervals, with
split points being Hϑ(1/4) and Hϑ(3/4); and this process is continued indefinitely. At the
j-th level, when the k-th interval is split (k = 1, . . . , 2j), we form a random variable p(j, k)
with the beta distribution Beta(cρ(j), cρ(j)). These random variables are all independent.
At any level j, an interval at that level has (random) probability given by the product of
all the beta random variables along the branch of the tree leading to that set. It can be
shown that this process specifies a distribution on the set of cumulative distributions on the
real line, and that if F is distributed according to this distribution, then for every t ∈ R,
E(F (t)) = Hϑ(t). This distribution is called a Polya tree, and a mixture of Polya trees
results when ϑ is random, and a probability distribution λ is assigned to it. In principle, the
function ρ can be very general but, Branscum and Hanson (2008) consider the interesting
one-parameter family given by ρν(j) = 2−νj . Roughly speaking, small values of ν give rise
to distributions which are smooth, while large values of ν give rise to distributions which are
discrete. For instance, if ν < 0, the Polya tree gives probability 1 to the set of distributions
which are absolutely continuous with respect to Lebesgue measure, while the case ν = 1 gives
exactly the Dirichlet process. By taking the random variable associated with the first split
to be deterministically equal to 1/2 (i.e., p(1, 1) = p(1, 2) = 1/2), one guarantees that if F is
distributed according to the Polya tree, the median of F is equal to the median of Hϑ, which
gives a direct analogue to the conditional Dirichlet process.

Of course a Polya tree is a probability distribution on an infinite-dimensional space, and for
computational purposes it is necessary to take the number of levels J to be finite. Hanson
(2006) gives recommendations for the value of J based on empirical evidence, but there are
no theoretical results for the choice of J . Inference based on Polya trees can depend on
the sequence of binary partitions used to define the tree. It is worth mentioning that the
construction of the Dirichlet process does not depend on a sequence of partitions of the real
line, and the Markov chain algorithm used in bspmma is exact, i.e., the stationary distribution
of θ = (ψ, µ, τ) is exactly the conditional distribution of θ given the data for model (4), and
the only error incurred is the Monte Carlo error associated with the rate of convergence of
the chain.

The class of Polya trees is overwhelmingly large, and this makes it necessary—and difficult—
to make a choice of a particular Polya tree to use. The choice ρν(j) = 2−νj makes a reduction
to a one-parameter family, which contains the conditional Dirichlet processes used in this
paper. It would be interesting to develop methods for creating Bayes factor plots similar
to those given in Section 2, for the purpose of enabling an empirical Bayes estimate of the
hyperparameter ν. More specifically, let mν be the marginal likelihood of the data when
we use a Polya tree with parameter ν, and let B(ν) = mν/m1. Suppose we can develop
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an estimate B̂(ν) for a range of values of ν that includes ν = 1. If the maximum of the
estimated function is achieved at or near 1, then this would be viewed as evidence that the
Dirichlet-based model holds, while if the maximum occurs at a point that is far away from 1,
the Dirichlet-based model would be viewed as inadequate.
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