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Increasing thermal efficiency in diesel engines through low heat rejection concept
is a feasible technique. In low heat rejection engines the high heat evolution is
achieved by insulating the combustion chamber surfaces and coolant side of the
cylinder with partially stabilized zirconia of 0.5 mm thickness and the effective utili-
zation of this heat depend on the engine design and operating conditions. To make
the low heat rejection engines more suitable for automobile and stationary applica-
tions, the extended expansion was introduced by modifying the inlet cam for late
closing of intake valve through Miller's cycle for extended expansion. Through the
extended expansion concept the actual work done increases, exhaust blow-down
loss reduced and the thermal efficiency of the low heat rejection engine is improved.
In low heat rejection engines, the formation of nitric oxide is more, to reduce the ni-
tric oxide emission, the internal exhaust gas re-circulation is incorporated using
modified exhaust cam with secondary lobe. Modifications of gas exchange with in-
ternal exhaust gas re-circulation resulted in decrease in nitric oxide emissions. In
this work, the parametric studies were carried out both theoretically and experi-
mentally. The combustion, performance and emission parameters were studied and
were found to be satisfactory.

Key words: low heat rejection, Miller cycle, exhaust gas re-circulation,
oxides of nitrogen

Introduction

Low heat rejection (LHR) is one of the energy conservation concepts used in turbo-
charged diesel engines which results in low fuel consumption for the same power output,
thereby reducing its size and aids to eliminate the cooling system. The diesel engine with its
combustion chamber walls are insulated by heat flow resistant coating is referred to as LHR en-
gine. The heat resistant coating reduces the heat transfer to the coolant system and improves the
thermal efficiency by increasing the energy availability in the exhaust [1-7]. Turbocharging can
prevent the deterioration in volumetric efficiency of the LHR engine and that there can be more
effective utilization of the exhaust gas energy [8-10].

The engine with higher expansion ratio than compression ratio is referred to as ex-
tended expanded engine (EEE) [11]. The fundamental aim of extended expansion concept is to
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achieve higher work done by decreasing the compression work done, which in turn leads to
higher thermal efficiency. This concept is compatible with the application of turbocharger and
LHR engine. The short compression stroke is achieved by closing the intake valve early in the
cycle before bottom dead centre (BDC) or by closing it late after BDC. The advantages of an ex-
tended expansion cycle includes, reduced specific fuel consumption and increased power output
without increasing the cylinder peak pressure [12, 13]. LHR engine with exhaust gas re-circula-
tion (EGR) gives good agreement in view of performance and emission characteristics [14, 15].
Also, the extended expansion cycle has the potential for NO, emission control due to lower cyl-
inder gas temperature but better results can be obtained by reducing intake oxygen concentra-
tion with EGR [16-18]. Internal EGR (iEGR) can be achieved by delaying the opening of ex-
haust valve, early closing of the exhaust valve and secondary opening of the exhaust valve
during the intake stroke [19, 20].

In the present work, the combined potential of extended expansion cycle and iEGR in
LHR turbocharged engine has been assessed. As a part of the investigation, initially a simulation
program was run to optimize the inlet valve closing timing and percentage of iEGR for LHR
turbocharged engine for better performance and lower NO, emission levels. Finally, experi-
mental investigations were performed to validate the predicted values of combustion, heat trans-
fer process, performance and emission characteristics.

Computer simulation using combustion,
gas heat transfer and wall heat transfer models

The combustion model is based on the Whitehouse and Way model [21] through
which the preparation rate and reaction rate were estimated and subsequently the heat release
was calculated [22]. Annand's combined heat transfer model [23, 24] was used to estimate the
total heat transfer. The Wall heat transfer model is based on the thermal network analogy pro-
posed by Amann [25] and Miyairi [26]. The nitric oxide concentration was obtained using mod-
ified Zeldovich mechanism through equilibrium reaction kinetics [27]. Using the first law of
thermodynamics along with various energy and enthalpy coefficients the cylinder pressure, heat
release and temperatures are calculated [28].

In this simulation during the start of compression, the mole of different species that are
considered to be present includes oxygen, nitrogen from intake and carbon dioxide. Water (gas-
eous), nitrogen and oxygen from the residual gases.

Heat transfer

The gas-wall heat transfer is found out using Annand's convective heat transfer model.
A wall heat transfer model is used to find out the instantaneous wall temperature. First term of
this equation shows that Prandtl number for the gases forming the cylinder contents will be ap-
proximately constant at a value 0.7, claims that Reynolds number is the major parameter affect-
ing convection. The second is a straightforward radiation term assuming gray body radiation:

b
d—Q:akRi(TC—TW)+c(TC4—T\;‘/) (1)
dr d

Wall heat transfer model

This model is used to find out conductive heat transfer through cylinder to the coolant
and thereby to find instantaneous wall temperature. Initial temperature is found out using the
following expression:
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The total conductive resistance offered by the cylinder liner, piston rings, cylinder
head, ceramic coating and piston for the heat transfer from cylinder gases to coolant is calcu-
lated using the expression:

3 5
R= ! + ! +log, i +log, 4
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Mass of fuel injected

Considering that nozzle open area is constant during the injection period, mass of the
fuel injected for each crank angle is calculated using the following expression:

AO
me=CpA, +2p:AP| —— 5
f DAnVEP £ (3 CON j (5)
Preparation rate

The preparation rate depends on the mass of fuel injected in the cylinder upto the time
of calculation and part of the fuel still available for preparation with respect to partial pressure of
oxygen. The preparation rate was calculated using the following equation [21]:

P = KM[“"‘)M;‘POLZ (6)

K =0085N 0414 py1.414 p-1.414 |, —1.414 ]-3.644 (7)

Reaction rate

The reaction rate depends on the delay period, velocity of gas molecules, oxygen den-
sity and mass of unburnt fuel. The effect of delay period was evaluated by introducing a chemi-
cal reaction rate using an Arrhenius type expression. Assuming that the velocity of the gas mol-
ecule is proportional to the square root of the temperature, the density of oxygen is proportional
to the partial pressure divided by the temperature, the unburnt fuel is given by | (Pyg+1)— Ry)d0.
The reaction rate was calculated using the following expression [21]:

Y —act

K'Fy,
Ry =—=¢ T [(Prg.1) —Ry))d0 (3

NAT

where K'is the reaction rate constant (87-10' K"?/bars) and act — the activation energy for the
total species (1.65-10* K).
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Nitric oxide formation

Initial nitric oxide formation rate is given by:

d[NO] _6-10' _ (—69090
TR ex T j\H()z]E[PJz]e )

1=
NO
d[NOJ _ [NO. (10)
dr 1+ [NO]., R,
[NO] R, +R,
Nitric oxide equilibrium concentrations are calculated by:
[NOJ, =203 exp -2 [0, 1.IN; ], (1)

Gas exchange process

When the cylinder is open to the inlet system or the exhaust system or to both the sys-
tems, the cylinder conditions are affected by the flow conditions in the inlet and exhaust sys-
tems. Furthermore, the composition of the cylinder contents will vary with time. The gas ex-
change process commences with the exhaust blow-down period, followed by the exhaust stroke
and later by suction stroke.

Mass flow during exhaust blow-down period

During exhaust blow-down the flow of gases out of the cylinder is due to high pressure
existing within the cylinder. Mass flow rate during was calculated using the equation:

‘(11_’” = A _+J2pdP (12)
t

Mass flow during displacement stroke

During displacement stroke, cylinder pressure was assumed constant and the state
equation is given by pv = mRT, for the exhaust displacement process, then:

dV _dm N dTr
14 m T
For an adiabatic constant pressure exhaust stroke the cylinder temperature is constant.

(13)

Mass flow during suction stroke

The instantaneous mass flow rate during the suction stroke was calculated using the
equation: dm
E=C5Am«/dP (14)

¢ [
RTi

where

[0
1

and suffix refers to inlet conditions.
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Test engine development

Modification of conventional turbocharged engine
to LHR turbocharged engine

The conventional turbocharged engine was modified to LHR turbocharged engine
through plasma spray technique. The piston crown, cylinder liner outside, cylinder head and
valves are applied with partially stabilized zirconia coating of 0.5 mm thickness. Figures 1 and
2 show the photographic view of ceramic coated components.

Figure 1. Photographic view of piston top with Figure 2. Photographic view of cylinder head
ceramic coating with ceramic coating

Modification of LHR turbocharged engine to LHR
turbocharged extended expansion engine

The LHR turbocharged engine was later modified to LHR turbocharged extended ex-
pansion engine by late closing of the intake valve. The intake valve closes conventionally at 45°
aBDC (IVC at 45° aBDC), which was later modified to close at 60° aBDC (IVC at 60° aBDC).
By late closing of the intake valve by 15° crank angle the LHR turbocharged was modified to
LHR turbocharged extended expansion engine. By late closing of the intake valve the effective
compression ratio was reduced from 14.18 to 12.85. Figures 3 and 4 show the valve timing dia-
gram of the conventional turbocharged engine, LHR turbocharged extended expansion engine
and figs. 5 and 6 shows the intake cam profile for the conventional turbocharged engine and
modified intake cam profile for the LHR turbocharged extended expansion engine.

TDC

BDC
Figure 3. Conventional  Figure 4. Extended Figure 5. Conventional  Figure 6. Modified
engine valve timing expansion engine valve intake cam intake cam

diagram timing
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Modification of LHR turbocharged extended expansion engine
to LHR turbocharged extended expansion engine with internal

exhaust gas re-circulation
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/
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Figure 7. Turbocharged
extended expansion
engine with iEGR valve
timing diagram
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cam with secondary lobe
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Figure 10. Experimental set-up
1 — engine, 2 — eddy current dynamometer, 3 — fuel
pump, 4 — radiator, 5 — air surge tank, 6 -
compressorr, 7 — inlet line, 8 — exhaust line, 9 —
turbine, 10— exhaust gas analyzer, 11— fuel tank, 12—
crank angle encoder, 13 — piezo electric transducer,
14 — charge amplifier, 15 — digital signal explorer
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Figure 8. Conventional

The LHR turbocharged extended expan-
sion engine was later modified to LHR
turbocharged extended expansion engine
with iEGR by secondary opening of the ex-
haust valve during suction stroke. The sec-
ondary exhaust valve opening takes place at
65°aTDC and closes at 65° bBDC. The total
secondary exhaust valve opening duration is
50° crank angle (CA). The secondary ex-
haust valve lift is taken as 3 mm [12]. The
EGR rate was determined on the basis of the
engine output power with respect to the ex-
haust valve lift and valve opening time
through the simulation. With this strategy,

iEGR levels of 9 to 10% have been attained in the whole engine
range. Figure 7 show the valve timing diagram for LHR turbo-
charged extended expansion engine with iEGR. Figures 8 and 9
show the conventional exhaust cam profile and modified exhaust

3 Experimental set-up and procedure

The experimental set-up and the specifications of the test en-
gine are shown in fig. 10 and tab. 1, respectively. The crank an-
gle pulse generating system consisting of a pulse-generating

wheel, intended to make a pulse for every 10
degrees of crank rotation is attached to the
front end of the crankshaft of the engine. To
distinguish the TDC and BDC position, three
teeth at 5 degree gaps were provided diametri-
cally opposite on the wheel. All other teeth
were at 10 degree interval. A magnetic pick
up was mounted near the pulse-generating
wheel to sense the crank angle position. On
rotation of the pulse generating wheel the sig-
nal generated is fed into one of the channel to
the storage oscilloscope for storing and subse-
quently for transferring it to a personal com-
puter for plotting the cylinder pressure with
respect to crank angle. A piezo electric pres-
sure transducer fitted with an adopter was
screwed onto a tapped hole on the cylinder

head. The piezo electric crystal produces an electric charge proportional to the pressure inside
the combustion chamber, and this electric charge is fed to a charge amplifier for conditioning
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and conversion into equivalent Table 1. Specifications of the engine

mechanical units. The ou.tput Type 4 Cylinder, 4 stroke, water cooled
signal from the charge amplifier P turbocharged DI diesel engine
is fed into one channel of the Bore 111.1 mm
sto;aige ostflllogfog)e for storm% Stroke 127.0 mm
and transfers it to a persona

. p Connecting rod length 251.0 mm
computer for plotting.

The experimental engine's Nominal compression ratio 16:1
components such as cylinder Rated power output 55.2 kW at 1500 rpm
head with valves, outer surface Fuel injection pressure 210 bar
of the cylinder liner and the pis- Nozzle hole diameter 0.26 mm
ton top surface were coated with No. of nozzle holes 3

partially stabilized zirconia of
0.5 mm thickness. After fitting
the ceramic-coated components in the engine the experiments were carried out under identical
conditions. The modified camshaft for extended expansion was then fitted in coated engine and
the experiments were carried out under identical conditions. The modified camshaft for extended
expansion with internal exhaust gas re-circulation was then fitted and the experiments were car-
ried out under identical conditions. Under identical operating conditions the experiment was re-
peated for three times and precautionary steps have been taken while conducting the experiments.
An uncertainty analysis was performed using the method described by Holman [29].

Results and discussion

Tests were conducted under the following operating conditions of the engine such as
(1) Conventional — Conventional turbocharged engine (IVC at 45° aBDC), (2) LHR — LHR
turbocharged engine (IVC at 45° aBDC), (3) LHR (EEE) — LHR turbocharged extended expan-
sion engine (IVC at 60° aBDC), and (4) LHR (EEE with iEGR) — LHR turbocharged extended
expansion engine with iIEGR (IVC at 60° aBDC with 10% EGR). The results are analysed and
presented for the same fuel supplied (0.06945 g/cylinder/cycle) at 1500 rpm.

Comparison of cylinder pressure

Figure 11 shows the comparison between simulated and experimental values of cylin-
der peak pressure for conventional turbocharged engine, LHR turbocharged engine, LHR turbo-
charged extended expansion engine, and LHR turbocharged extended expansion engine with
iEGR. The prediction shows that, the cylinder peak pressure are higher by 4.52% and 1.79% for
LHR turbocharged engine and LHR turbocharged extended expansion engine, respectively, and
is lower by 0.83% for LHR turbocharged extended expansion with iEGR when compared to
conventional turbocharged engine.

The increase in cylinder peak pressure in the case of LHR turbocharged engine may be
due to increased boost pressure and air density. Along with the effect of boost pressure, the higher
heat retainment inside the combustion chamber with higher engine operating temperature en-
hances the preparation and reaction rate resulting in increased cylinder peak pressure. The cylin-
der peak pressure of LHR turbocharged extended expansion engine is comparatively lesser than
the LHR turbocharged engine. The reason for this may be due to, reduced inlet pressure and de-
crease in preparation and reaction rate because of lower compression temperature caused by re-
duction in effective compression ratio. The cylinder peak pressure of LHR turbocharged extended
expansion engine with internal exhaust gas recirculation is lower than the conventional turbo-
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Figure 11. Comparison of cylinder pressure for different operating conditions; (a) conventional
turbocharged engine, (b) LHR turbocharged engine, (¢) LHR turbocharged extended expansion engine,
(d) LHR turbocharged extended expansion engine with iEGR (for color image see journal web site)

charged engine, but it is in the operating performance limit for effective work done. The re-circu-
lation of exhaust gas (acts as a heat sink) reduces the time availability for the mixing of the fuel
with available oxygen concentration and hence the mixing and preparation is reduced. This varia-
tion in charge mixing and preparation rate and reduction in compression ratio results in reduction
in pressure in LHR turbocharged extended expansion engine with iEGR.

Comparison of cylinder mean temperature

Cylinder mean temperature is the cylinder area averaged temperature which is lower
than the peak flame temperature and which is essentially responsible for the work done. Figure
12 shows the comparison of cylinder mean temperature for conventional turbocharged engine,
LHR turbocharged engine, LHR turbocharged
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Figure 12. Comparison of cylinder mean achieved is mainly attributed to insulation coat-

temperature for different operating conditions ings applied to combustion chamber walls.
(for color image see journal web site)
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In the case of LHR turbocharged extended expansion engine due to reduction in effec-
tive compression ratio, the compression temperature decreases leading to lesser rate of heat re-
lease, thereby decreasing the heat content inside the cylinder which finally results in lower cyl-
inder mean temperature. In the case of LHR turbocharged extended expansion engine with
1IEGR, because of the re-circulation of the exhaust gases mainly CO, and H,O (gaseous) the spe-
cific heat of the cylinder gases increases, which decreases the cylinder mean temperature when
compared to the LHR turbocharged extended expansion engine. The amount of exhaust gas
re-circulated was small in portion. If higher percentages of exhaust gas is re-circulated the en-
gine performance gets affected, so with a restriction of 10% of EGR was assumed in this work to
avoid the NO, formation which results in only a small effect with the variation in the cylinder
mean temperature.

Comparison of rate of heat release

Figure 13 shows the comparison of rate of heat release for Conventional turbocharged
engine, LHR turbocharged engine, LHR turbocharged extended expansion engine and LHR
turbocharged extended expansion engine with iEGR. The prediction shows that the peak rate of
heat releases during premixed combustion are lower by 31.43% and 8.93% for LHR turbo-
charged engine and LHR turbocharged extended expansion engine respectively and is higher by
0.84% for LHR turbocharged extended expansion with iEGR when compared to conventional
turbocharged engine. The experimental values of peak rate of heat release when compared to
theoretical predictions are lesser by 6.14%, 6.71%, 5.32%, and 6.42% for Conventional turbo-
charged engine, LHR turbocharged engine, LHR turbocharged extended expansion engine and
LHR turbocharged extended expansion engine with iEGR, respectively.

The decrease in peak rate of heat release during premixed combustion in the case of
LHR turbocharged engine compared to Conventional turbocharged engine is due to decrease in
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Figure 13. Comparison of rate of heat release for different operating conditions; (a) conventional
turbocharged engine, (b) LHR turbocharged engine, (c) LHR turbocharged extended expansion engine,
(d) LHR turbocharged extended expansion engine (for color image see journal web site)
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time available for charge mixing and preparation because of higher heat retainment inside the
combustion chamber leading to instantaneous burning of fuel at much elevated temperatures.
The increase in peak heat release during premixed combustion in the case of LHR extended ex-
pansion engine is due to lower preparation rate along with proportionate amount of charge accu-
mulation and its spontaneous burning. As in the case of LHR extended expansion engine with
1IEGR the above charge accumulation may be further more increased and burnt spontaneously
which leads to further increase in peak rate of heat release.

Comparison of cumulative work done

Figure 14 shows the comparison of cumulative work done for conventional turbo-
charged engine, LHR turbocharged engine, LHR turbocharged extended expansion engine, and
LHR turbocharged extended expansion engine with iEGR. The prediction shows that the cumu-
lative work done for LHR turbocharged engine and LHR turbocharged extended expansion en-
gine and LHR turbocharged extended expansion with iEGR is higher by 5.42%, 5.82%, and
3.35%, respectively, when compared to conventional turbocharged engine. The increase in the
cumulative work done in the case of LHR turbocharged extended expansion engine is mainly at-
tributed to the decrease in compression work done. The compression work done reduces by
8.01% for LHR turbocharged extended expansion engine when compared to LHR turbocharged

engine. The cumulative work done of LHR
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with iEGR the brake thermal efficiency decreases when compared to LHR turbocharged ex-
tended expansion engine because of the replacement of fresh charge with EGR, which decreases
the cylinder peak pressure, resulting in decrease in cumulative work done. But the brake ther-
mal efficiency of LHR turbocharged extended expansion engine with iEGR is higher than the
conventional turbocharged engine.

NO, emissions LB i
= I e

Figure 16 shows the comparison of NO, £"f =~ S
emissions with speed. The trend shows that the ~ Z 10F= IR )
NO, emission increases with increasing speed g sf |
for all operating conditions. The NO, emissions & [ —==—*"__ ¢ mionai—sim
increases by about 50.18% and 25.33% for LHR 5,! l'f e
turbocharged engine and LHR turbocharged ex- S *f ety
tended expansion, respectively, and reduces by 2t -y
7.03% for LHR turbocharged extended expan- L OTPPPIORPUOPPPROPPOPR i oo ST
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sion engine with iEGR when compared to con-
ventional turbocharged engine at 1500 rpm. In
low heat rejection engines due to higher peak
flame temperature dissociation of N, and O,
takes place within a short period of time, which
increases the formation of NO, emission. The decrease in NO, emissions in LHR turbocharged
extended expansion engine with iEGR is more significant due to its lower operating temperature
and lesser oxygen concentration. The results of the computations show the expected behaviour
and are qualitatively and quantitatively in excellent agreement with the experiment.

Engine speed [rpm]

Figure 16. Variation of NO, emissions with
respect to engine speed
(for color image see journal web site)

Hydrocarbon emissions

-

Figure 17 shows the comparison of hydrocar-
bon emissions with speed. The hydrocarbon
emissions reduces by 32.45% and 17.9% for
LHR turbocharged engine and LHR turbo-
charged extended expansion engine, respec-
tively, and increases by 2.06% for LHR turbo-
charged extended expansion engine with iEGR
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when compared to conventional turbocharged
engine at 1500 rpm. Experimental results are
also in close agreement with the simulation re-
sults and the corresponding values are 21.54%,
14.89% and 3.24%, respectively.

Conclusions
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Figure 17. Variation of hydrocarbon emissions
with respect to engine speed
(for color image see journal web site)

After a detailed analysis of the conventional turbocharged engine, LHR turbocharged
engine, LHR turbocharged extended expansion engine, and LHR turbocharged extended expan-
sion engine with iIEGR, focusing on combustion, performance, and emissions the following con-

clusions were made.

e The in-cylinder peak pressure for LHR turbocharged extended expansion engine with iEGR
is lower by 0.83% when compared to conventional turbocharged engine, but it is in the
operating performance limit for effective work done.
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The cylinder mean temperature for LHR turbocharged extended expansion engine with
iEGR is higher by 3.75% when compared to conventional turbocharged engine. The high
temperature achieved is mainly attributed to insulation coating applied to cylinder
components.
The rate of heat release during premixed combustion is higher by 0.84% for LHR
turbocharged extended expansion with iEGR when compared to conventional turbocharged
engine may be due to increase in ignition delay period because of the lesser preparation rate
caused by reduced oxygen concentration.
The cumulative work done is higher by 3.35% for LHR turbocharged extended expansion
engine with iEGR when compared to conventional turbocharged engine because of lower
compression work done.
NO, emission increases with increasing speed for all operating conditions. It decreases by
7.03% for LHR turbocharged extended expansion engine with iEGR when compared to
conventional turbocharged engine at 1500 rpm.
The hydrocarbon emissions slightly increases by 2.06% for LHR turbocharged extended
expansion engine with iEGR when compared to conventional turbocharged engine.

The comparison of predicted and measured data demonstrated reasonable quantitative

agreement between them. Additional effort is required to assess the fidelity of each model across
a wider range of operating conditions and engine types.

Nomenclature

A — minimum valve flow area, [m?] h — cylinder length, [m]

A, — nozzle hole area, [m’] Ic — connecting rod length, [m]

a, b, — Annand's convective heat transfer IA — skirt length, [m]

¢ d equation co-efficient M — mass of fuel injected,

Cy — coefficient of discharge for injector nozzle [grams/cycle/cylinder]

C, — parameter for mass flow through the M, — total mass of fuel injected, [kg]
intake valve M, — mass of fuel in cylinder and unprepared,

d, — nozzle hole diameter, [mm] [ke]

h — number of holes in injector nozzle me — mass of fuel injected during injection

he — wall — coolant heat transfer coefficient, period for each cylinder, [kg]
[kim~h'K™] P, — injection period, [degree crank angle]

hy — gas wall heat transfer coefficient, P, — preparation rate,
[kim*h 'K ] [kg per degree crank angle]

K — constant in preparation rate equation Ap — pressure drop across the nozzle, [bar]

k — thermal conductivity, [Wm'K™] 0 — total heat transfer, [kJ]

ke — thermal conductivity of ceramic material, 0, — wall heat transfer, [kJ]

[WmK '] R, — reaction rate, [kg per degree crank angle]
ki — thermal conductivity of liner material, 1y, 1y, 15,— radii of the composite cylinder wall with
[WmK™] ry I's, I'e,  Tespect to cylinder axis, [m]

ke — thermal conductivity of piston material, 7o, ¥g, Fo
[WmK™'] T, — cylinder mean temperature, [K]
k; — thermal conductivity of ring material, Tg — gas temperature, [K]
[WmK '] T, — thickness of the piston crown, [m]
L — index constant in preparation rate T, — cylinder wall temperature, [K]
equation X — index constant in preparation rate
l — stroke length, [m] equation
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