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Abstract. This paper presents an algorithm for Monte Carlo
fixed-lag smoothing in state-space models defined by a diffu-
sion process observed through noisy discrete-time measure-
ments. Based on a particle approximation of the filtering and
smoothing distributions, the method relies on a simulation
technique of conditioned diffusions. The proposed sequen-
tial smoother can be applied to general nonlinear and mul-
tidimensional models, like the ones used in environmental
applications. The smoothing of a turbulent flow in a high-
dimensional context is given as a practical example.

1 Introduction

The framework of this paper concerns state-space models
described by general diffusions of the form

dx(t) = f (x(t))dt + σ(x(t))dB(t), (1)

which are partially observed through noisy measurements at
discrete times. Such models can describe many dynamical
phenomena in the environmental sciences and physics, but
also in finance or engineering applications. The main motiva-
tion of this work concerns environmental applications, where
nonlinearity and high-dimensionality arise. Indeed, environ-
mental models and data describe nonlinear phenomena over
large domains, with high spatial resolution. The continuous
dynamical model (Eq.1) is defined from a priori physical
laws, while observations are supplied by sensors (satellite
data for instance) and can appear with very low time fre-
quency. As an example, in the application presented in the
last part of this paper, the dimension of the state and obser-
vations is of the order of many thousands, and the model is
described by the nonlinear Navier–Stokes equation. Filter-
ing and smoothing in such state-space models aim at cou-
pling model and observations, which is called data assimila-

tion. The goal of the filtering is to estimate the system state
distribution knowing past and present observations. This al-
lows us for instance to give proper initial conditions to fore-
cast the future state of a system characterizing atmospheric
or oceanographic flows. On the other hand, the smoothing
aims at estimating the state distribution using past and fu-
ture observations, and this retrospective state estimation al-
lows us to analyze a spatio–temporal phenomenon over a
given time period, for climatology studies for instance. Ap-
plications of data assimilation are numerous and interest is
growing in environmental sciences with the increase in avail-
able data. However, it is still a challenge to develop filtering
and smoothing methods that can be used within a general
nonlinear and high-dimensional context.

Monte Carlo sequential methods, contrary to standard
Kalman filters, are able to deal with the filtering prob-
lem in nonlinear state-space models. The particle filtering
(Del Moral et al., 2001; Doucet et al., 2000) solves the whole
filtering equations through Monte Carlo approximations of
the state distribution. On the other hand, ensemble Kalman
methods (Evensen, 2003) take into account in some way the
nonlinearities in the system, but are based on a Gaussian as-
sumption. For high-dimensional systems, ensemble Kalman
methods are preferred in practice to particle filters (Stroud
et al., 2010; Van Leeuwen, 2009) since they reach a bet-
ter performance for a limited number of particles. In order
to keep this advantage while alleviating the Gaussian as-
sumption, both methods are combined inPapadakis et al.
(2010), leading to a particle filter that can be applied to high-
dimensional systems. We will use this technique for the fil-
tering step in the high-dimensional application presented in
Sect.5.

The aim of this paper is to propose a new smoothing
method. Within the particle filter framework, the smooth-
ing can be computed backward, reweighting past particles
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using present observations (Briers et al., 2010; Godsill et al.,
2004). There is however one main difficulty for continuous
models of type Eq. (1). As a matter of fact, it is neces-
sary to know the transition density of the process between
observation times, which is not available for general diffu-
sions. This transition density can be approximated through
Monte Carlo simulations, as proposed byDurham and Gal-
lant (2002) to solve inference problems for diffusion pro-
cesses. However, these approximations are based on Brow-
nian bridge (or modified versions of it) simulations that do
not take into account the drift part of the model. For nonlin-
ear and high-dimensional models with a drift term that dom-
inates, such approximations will be inefficient. It is also pos-
sible to obtain an unbiased estimate of the transition density
(seeBeskos et al., 2006), but this approach is not adapted to
a multi-dimensional context. As a matter of fact, the use of
this technique in a multivariate setting imposes constraints
on the diffusion drift (in particular, the drift function has to
be of gradient type). In parallel, within the framework of en-
semble Kalman methods,Evensen and van Leeuwen(2000)
have proposed estimating backward the smoothing distribu-
tion in a recursive way, based on existing filtering trajecto-
ries;Stroud et al.(2010) presented and applied an ensemble
Kalman smoothing method, relying on a linearization of the
system dynamics.

All previously mentioned smoothing methods require us
to perform specific assumptions or simplifications in order
to deal with general nonlinear models of type Eq. (1) in a
high-dimensional context. To the best of our knowledge, it
remains a challenging problem to develop smoothing meth-
ods that can be used in this general setting. In this paper, we
deal with this issue sequentially each time a new observation
is available, by smoothing the hidden state from this new ob-
servation time up to the previous one. This approach, called
fixed-lag smoothing, then constitutes a partial answer to the
global smoothing problem that would take into account all
available observations. Nevertheless, it is reasonable to as-
sume that the distribution of the hidden state depends on fu-
ture observations through the next observation only, as soon
as the time step between measurements is long (which is typi-
cally the case in the environmental applications that motivate
this work). Under this assumption, a new observation will
impact the distribution of the hidden process up to the previ-
ous observation only. This point of view justifies the use of
a fixed-lag smoothing in our setting as a reasonable approxi-
mation of the global smoothing problem.

Such a fixed-lag smoothing may be directly obtained
from the particle filtering result, reweighting past trajecto-
ries. However, this smoothing will fail in two cases: when
the number of particles is too small compared to the size of
the system, or when existing trajectories do not correspond
to plausible trajectories of the dynamical model. Unfortu-
nately, these two situations have to be faced when smoothing
in a high-dimensional state-space model. Firstly, the num-
ber of particles has to be reduced for computational rea-

sons. Secondly, particle filters that have been proposed in
this high-dimensional context require us to correct trajec-
tories towards the observations (Papadakis et al., 2010; Van
Leeuwen and Ades, 2013). This implies that filtering states
are consistent at observation times, but also that filtering tra-
jectories may not be plausible realizations of the underly-
ing physical model. In that case, a smoothing based on ex-
isting trajectories will fail. Note that these remarks are not
only valid for the fixed-lag smoothing, but also for previously
mentioned global techniques relying on existing trajectories.
In particular, a genealogical smoothing based on ancestral
particle lines (Del Moral, 2004) will be deficient in a high-
dimensional setting, since many trajectories will share only a
few ancestral lines.

In contrast, our method does not rely on existing parti-
cles only. It is built on a conditional simulation technique of
diffusions proposed byDelyon and Hu(2006) that provides
new state trajectories at hidden times between observations.
This simulation technique is adapted to a multivariate con-
text where the drift dominates, contrary to techniques based
on Brownian bridge sampling (Durham and Gallant, 2002).
Moreover, it does not require constraining assumptions for
multivariate models, contrary to other techniques based on
the exact simulation of diffusions (Beskos and Roberts, 2005;
Beskos et al., 2006). The proposed smoothing method can
then be applied to high-dimensional systems. Finally, it does
not require model linearization nor Gaussian hypotheses, and
so is able to deal with general nonlinear models.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes sequential Monte Carlo filtering
methods in state-space models, and presents the fixed-lag
smoothing problem. Section3 presents the conditional simu-
lation technique of diffusions ofDelyon and Hu(2006), and
details the construction of the proposed Monte Carlo esti-
mate of smoothing distributions. The method is then exper-
imented on a one-dimensional example in Sect.4. Finally,
the method is applied in Sect.5 to a practical nonlinear and
high-dimensional case, similar to the problems that have to
be faced in environmental applications. A discussion is given
in Sect.6.

2 Monte Carlo filtering and smoothing in state-space
models

In this section we recall briefly the particle filtering and
smoothing methods for models of type Eq. (1), where the
hidden state vectorx ∈ Rn is observed through the observa-
tion vectory ∈ Rm at discrete times{t1, t2, . . .}:

y(tk) = g(x(tk)) + γ tk . (2)

The drift functionf and observation operatorg can be non-
linear. The dynamical model uncertainty is described by
an n-dimensional Brownian motion with covariance6 =
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σ(x(t))σ (x(t))T . The functionsf , g andσ are assumed to
be known, as well as the law of the observation noiseγ tk .

In particular, we present the standard particle filter and the
weighted ensemble Kalman filter, which can be used to face
the filtering problem in high-dimensional systems.

2.1 Particle-based filtering methods

Filtering aims at estimating recursively the distribution
p(xt1:tk |yt1:tk ) (and in particular its marginal distribution
p(xtk |yt1:tk )) at each observation timetk. This filtering prob-
lem can be solved with a Monte Carlo sequential approach,
called particle filtering (Del Moral et al., 2001; Doucet et al.,
2000). The method relies on a Monte Carlo approximation
of the filtering distribution over a set of weighted trajectories
{x

(i)
t1:tk

}i=1:N (called particles):

p̂(xt1:tk |yt1:tk ) =

N∑
i=1

w
(i)
tk

δ
x

(i)
t1:tk

(xt1:tk ), (3)

whose marginal distribution at timetk is written as

p̂(xtk |yt1:tk ) =

N∑
i=1

w
(i)
tk

δ
x

(i)
tk

(xtk ). (4)

Particle filters rely on a sequential importance sampling
scheme that recursively samples particles, and updates their
weights at observation times. The weights correspond to the
ratio between the target distribution and the importance sam-
pling distributionπ(xtk |xt0:tk−1,yt1:tk ). They are recursively
computed as follows:

w
(i)
tk

∝ w
(i)
tk−1

p(ytk |x
(i)
tk

)p(x
(i)
tk

|x
(i)
tk−1

)

π(x
(i)
tk

|x
(i)
t0:tk−1

,yt1:tk )
. (5)

In practice, a resampling procedure is added in order to avoid
degeneracy. This procedure duplicates trajectories with large
weights and removes small weighted trajectories.

2.1.1 Standard particle filter

When the proposal distributionπ is set to the prior (i.e.,
π(xtk |xt0:tk−1,yt1:tk ) = p(xtk |xtk−1)), the weight updating
rule (Eq.5) is simplified to the computation of the data likeli-
hoodp(ytk |x

(i)
tk

). This particular instance of the particle filter
is called theBootstrap filteror sequential importance resam-
pling (SIR) filter (Gordon et al., 1993). Due to its simplicity
it is the most commonly used particle filter. It is however a
very inefficient distribution for high-dimensional space as it
does not take into account the current observation and de-
pends only weakly on the past data through the filtering dis-
tribution estimated at the previous instant. This distribution
requires a great number of particles to explore meaningful
areas of the state space.

2.1.2 Weighted ensemble Kalman filter (WEnKF)

One way to incorporate observation within the proposal
distribution efficiently consists in relying on the ensem-
ble Kalman filtering mechanism to define this distribution.
This is the idea proposed in the WEnKF technique (Pa-
padakis et al., 2010). In the WEnKF approach the impor-
tance sampling is taken as a Gaussian approximation of
p(xtk |xtk−1,ytk ). This approach is close to the technique pro-
posed inVan Leeuwen(2010). A variation of a similar tech-
nique based on a deterministic square-root formulation is
also described inBeyou et al.(2013). In order to make the
estimation of the filtering distribution exact (up to the sam-
pling), each member of the ensemble must be weighted at
each observation instanttk with appropriate weightsw(i)

tk
,

defined from Eq. (5). Therefore, the weighted ensemble
Kalman filter (WEnKF) procedure can be simply summa-
rized by Algorithm 1.

Algorithm 1 The WEnKF algorithm

For eachtk = t1, t2, . . .:

• Start from particle set{x(i)
tk−1

, i = 1, . . . ,N} and
observationytk

• Obtain particle set{x(i)
tk

, i = 1, . . . ,N} from:

– EnKF step: Getx(i)
tk

, i = 1, . . . ,N , from the
assimilation ofytk with an EnKF procedure;

– Computation of weights:w(i)
tk

∝

w
(i)
tk−1

p(ytk
|x

(i)
tk

)p(x
(i)
tk

|x
(i)
tk−1

)

p(x
(i)
tk

|x
(i)
tk−1

,y
(i)
tk

)
;

– Resampling: For j = 1, . . . ,N , sample with re-
placement indexI (j) from discrete probability
{w

(i)
tk

, i = 1, . . . ,N} over {1, . . . ,N} and setx(j)
tk

=

x
I (j)
tk

. Setw(i)
tk

=
1
N

∀i = 1, . . . ,N .

Note that particle-based filtering techniques update the fil-
tering distribution at observation times only. However, af-
ter the estimatêp(xtk |yt1:tk ) has been updated at observa-
tion time tk, the filtering distribution can be predicted in or-
der to have a continuous estimation ofp̂(xt |yt1:tk ) for all
t ∈]tk, tk+1[ until the next observation time

p̂(xt |yt1:tk ) =

N∑
i=1

w
(i)
tk

δ
x

(i)
t

(xt ), (6)

where, for alli = 1, . . . ,N , the statex(i)
t is sampled from

Eq. (1), starting fromx
(i)
tk

.
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2.2 Fixed-lag smoothing problem

Contrary to the filtering approach that uses past and present
observations, the smoothing in state-space models aims at es-
timatingp(xt |yt1:tend) for all t ∈ [t1, tend], using all past and
future observations over a given time period. As raised in the
introduction, existing smoothing methods do not apply di-
rectly to a general nonlinear model of type Eq. (1) in a high-
dimensional context, since assumptions have to be made that
may not be realistic. Instead of solving the global smoothing,
we will concentrate in the rest of the paper on a fixed-lag
smoothing, which constitutes a partial answer to the global
smoothing problem.

The objective of the fixed-lag smoothing will be to replace
the predictive distribution (Eq.6) by its smoothed version
p(xt |yt1:tk+1) ∀t ∈]tk, tk+1] sequentially each time a new ob-
servationytk+1 arrives. This will allow us to reduce the tem-
poral discontinuities inherent in the filtering technique that
successively predicts the distribution of the state between ob-
servations, and updates this distribution at observation times.

To achieve this, by construction of the particle filter that
weights entire trajectories (see Eq.3), it is known (see for
instanceDoucet et al., 2000) that the fixed-lag smooth-
ing distributionp̂(xt |yt1:tk+1) can be directly obtained from
the marginal at timet of p̂(xt1:tk+1|yt1:tk+1). The empirical
smoothing distribution is then given by

p̂(xt |yt1:tk+1) =

N∑
i=1

w
(i)
tk+1

δ
x

(i)
t

(xt ) ∀t ∈]tk, tk+1]. (7)

However, this approximation is simply a reweighting of past
existing particle trajectories, and relies on the support of the
filtering distribution at timetk. If the number of particles is
too small with respect to the state dimension, the support may
be greatly reduced by the correction step (assigning small
weights to all particles except a few), leading in practice to
a bad estimation ofp(xt |yt1:tk+1). Moreover, if particle tra-
jectories have been forced towards observations during the
filtering step (like in the WEnKF procedure), a smoothing
based on those particles will fail because it will not be able
to correct discontinuities. Consequently, since we are inter-
ested in smoothing techniques that are efficient in a high-
dimensional context, this direct smoothing technique can not
be used in its basic form and has to be improved.

In the following, we propose to use a conditional simu-
lation technique of diffusions that will enable the sampling
of new smoothed trajectories between timestk andtk+1. The
approximation of the smoothing distribution (Eq.7) at each
hidden time will then be improved. The conditional simu-
lation technique is presented in the next section, before the
resulting smoothing procedure we propose.

3 Fixed-lag smoothing with conditional simulation

The smoothing method we propose is based on a conditional
simulation technique that is presented in Sect.3.1. We then
develop in Sect.3.2 how this technique can be used to im-
prove the estimation of the smoothing distribution (Eq.7).

3.1 Conditional simulation

Conditional simulation of a diffusion aims at sampling tra-
jectories from a given process

dx(t) = f (x(t))dt + σ(x(t))dB(t) (8)

between two timest = 0 and t = T , with the constraints
x(0) = u andx(T ) = v. This simulation problem is treated
by Delyon and Hu(2006), where the authors show how to
obtain the law of the constrained process from a Girsanov
theorem. In practice, the proposed algorithms consist in sim-
ulating trajectories according to another diffusion process,
which is built to respect the constraints and is easy to simu-
late from. The conditional distribution of the constrained pro-
cess (Eq.8) is absolutely continuous with respect to the dis-
tribution of the auxiliary process, with explicitly given den-
sity. For instance, in the case where the drift is bounded (a
similar algorithm is proposed inDelyon and Hu(2006) for
the unbounded case) and withσ invertible, the algorithm is
based on the simulation of trajectories from the following
process:

dx̃(t) =

(
f (x̃(t)) −

x̃(t) − v

T − t

)
dt + σ(x̃(t))dB(t), (9)

with initial condition x̃(0) = u. Note that Lemma 4 inDe-
lyon and Hu(2006) deals with the existence of a unique so-
lution for this equation. This process is a simple modification
of Eq. (8), where a deterministic part is added to the drift. It
is then easy to simulate unconditional trajectories from this
process, and all simulated trajectories will satisfyx̃(T ) = v

by construction. For simplicity we will assume in the follow-
ing thatσ is independent ofx(t) (note however that this is
not an assumption inDelyon and Hu(2006)). The law of the
conditioned process is given by

E[h(x)|x(0) = u,x(T ) = v] = E
[
h(x̃)α(x̃)

]
, (10)

for all measurable functionsh, where

α(x̃) = exp

−

T∫
0

(x̃(t) − v)T 6−1f (x̃(t))

T − t
dt

 (11)

is the density coming from the Girsanov theorem (seeDelyon
and Hu, 2006), with 6 = σ(x̃(t))σ (x̃(t))T .

Let us note that the presence of the drift part of model
(Eq. 8) in the auxiliary process (Eq.9) is crucial to making
the simulation efficient. The same process had initially been
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proposed byClark(1990) to solve the conditional simulation
problem. On the other hand, standard Brownian bridges that
could be used as auxiliary processes (Durham and Gallant,
2002) lead in practice to poor approximations of the original
constrained diffusion in our high-dimensional setting, since
Brownian bridge trajectories are too far away from trajecto-
ries of Eq. (8).

In the following, the conditional marginal of interest
p(xt |x(0) = u,x(T ) = v) will then be approximated as fol-
lows:

p̂(xt |x(0) =u,x(T ) = v) =

M∑
j=1

α(x̃(j))δ
x̃

(j)
t

(xt )

∀t ∈ [0,T ], (12)

where theM trajectories{x̃
(j)
t }j=1:M are simulated from

Eq. (9) with x̃
(j)

0 = u for all j = 1, . . . ,M.

3.2 Proposed fixed-lag smoothing method

We show in the following how the conditional simulation
technique can be used to improve the estimation of the lo-
cal smoothing distributionp(xt |yt1:tk+1) for all t ∈]tk, tk+1].

We first note that this distribution can be decomposed as

p(xt |yt1:tk+1) =

∫
p(xt ,xtk ,xtk+1|yt1:tk+1)dxtk dxtk+1

=

∫
p(xtk ,xtk+1|yt1:tk+1)p(xt |xtk ,xtk+1,yt1:tk+1)

dxtk dxtk+1. (13)

Then, from the state-space model properties, we obtain

p(xt |yt1:tk+1) =

∫
p(xtk ,xtk+1|yt1:tk+1)p(xt |xtk ,xtk+1)

dxtk dxtk+1. (14)

Moreover, from the particle filter Monte Carlo approximation
described by Eq. (3), the joint lawp(xtk ,xtk+1|yt1:tk+1) can
be replaced by

p̂(xtk ,xtk+1|yt1:tk+1) =

N∑
i=1

w
(i)
tk+1

δ
(x

(i)
tk+1

,x
(i)
tk

)
(xtk+1,xtk ), (15)

wherew
(i)
tk+1

are the particle filter importance weights.
Plugging Eq. (15) into Eq. (14) then leads to the following

approximation for the fixed-lag smoothing distribution:

p̂(xt |yt1:tk+1) =

N∑
i=1

w
(i)
tk+1

p(xt |x
(i)
tk

,x
(i)
tk+1

). (16)

The conditional distributionp(xt |x
(i)
tk

,x
(i)
tk+1

) can be esti-
mated using Eq. (12) for each pair of initial and end points
x

(i)
tk

andx
(i)
tk+1

:

p̂(xt |x
(i)
tk

,x
(i)
tk+1

) =

M∑
j=1

α(x̃(i)(j))δ
x̃

(i)(j)
t

(xt ), (17)

where each̃x(i)(j)
t is sampled from Eq. (9) with initial con-

straintx̃(i)(j)
tk

= x
(i)
tk

and final constraintx(i)
tk+1

.
The estimation of the smoothing distribution of interest is

finally written as

p̂(xt |yt1:tk+1) =

N∑
i=1

w
(i)
tk+1

M∑
j=1

α(x̃(i)(j))δ
x̃

(i)(j)
t

(xt ),

∀t ∈]tk, tk+1]. (18)

The algorithm we propose to compute the fixed-lag
smoothing distribution on a given time interval[tk, tk+1] is
therefore the following:

Algorithm 2 Fixed-lag conditional smoothing

For eachtk = t1, t2, . . .:

– Store {x
(i)
tk

}i=1:N and compute{x(i)
tk+1

}i=1:N and asso-

ciated weights{w(i)
tk+1

}i=1:N from a particle filter algo-
rithm;

– For each pair{x(i)
tk

,x
(i)
tk+1

}, i = 1, . . . ,N :

– SimulateM conditional trajectories
{x̃

(i)(j)
t }j=1:M for t ∈ [tk, tk+1] from Eq. (9) with

an Euler scheme, with the constraintsx̃
(i)(j)
tk

= x
(i)
tk

andx̃
(i)(j)
tk+1

= x
(i)
tk+1

,

– Compute weightsα(x̃(i)(j)) from Eq. (11) for all
j = 1, . . . ,M , with final constraintx(i)

tk+1
;

– Computep̂(xt |yt1:tk+1)

=
∑N

i=1w
(i)
tk+1

∑M
j=1α(x̃(i)(j))δx̃(i)(j)(xt ) for all

t ∈]tk, tk+1].

4 One-dimensional simulation study

In this section, the smoothing method is first experimented
on a one-dimensional state space model. Since the proposed
approach relies on a preliminary particle filtering step, filter-
ing results are first presented in Sect.4.2 (either consider-
ing a standard particle filter or the WEnKF). The results ob-
tained with the standard fixed-lag smoothing method are then
shown in Sect.4.3. Finally, Sect.4.4presents the smoothing
results obtained with the proposed technique.

4.1 State-space model

The one-dimensional state-space model of interest is a sine
diffusion, partially observed with noise (used as an illus-
tration by Fearnhead et al.(2008) for a particle filtering
method):

dx(t) = sin(x(t))dt + σxdB(t), (19)

ytk = xtk + γtk , (20)
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4 One-dimensional simulation study

In this section, the smoothing method is first experimented on a one-dimensional state space model.

Since the proposed approach relies on a preliminary particle filtering step, filtering results are first250

presented in Section 4.2 (either considering a standard particle filter or the WEnKF). The results

obtained with the standard fixed-lag smoothing method are then shown in Section 4.3. Finally,

Section 4.4 presents the smoothing results obtained with the proposed technique.

4.1 State space model

The one-dimensional state space model of interest is a sine diffusion, partially observed with noise255

(used as an illustration by Fearnhead et al. (2008) for a particle filtering method) :

dx(t) = sin(x(t))dt+σxdB(t), (19)

ytk = xtk + γtk , (20)

whereσ2
x = 0.5 andγtk ∼N (0,σy) with σ2

y = 0.01. One trajectory of the process is first simulated

from (19) with an Euler-type discretization scheme of time step∆t= 0.005. This trajectory will260

constitute the hidden process, observed throughytk generated according to (20) at every time step

tk, with tk − tk−1 = 20∆t. The trajectory is plotted on Figure 1, together with the corresponding

discrete observations at timestk.
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Fig. 1: Simulated sine diffusion trajectoryx(t) and partial observationsy(tk) (dots) withtk − tk−1 = 20∆t.

4.2 Particle filtering results

The filtering results are presented for the standard particle filter (denoted PF in the following) and

the Weighted Ensemble Kalman filter (WEnKF). Two situations are shown, with reduced (N = 20)

and high number (N = 10000) of particles. The case with a high number of particles is shown as

the reference for comparison purpose, note however that this ideal situation is not reachable in a270

10

Figure 1. Simulated sine diffusion trajectoryx(t) and partial obser-
vationsy(tk) (dots) withtk − tk−1 = 201t .

whereσ 2
x = 0.5 andγtk ∼N (0,σy) with σ 2

y = 0.01. One tra-
jectory of the process is first simulated from Eq. (19) with an
Euler-type discretization scheme of time step1t = 0.005.
This trajectory will constitute the hidden process, observed
throughytk generated according to Eq. (20) at every time
step tk, with tk − tk−1 = 201t . The trajectory is plotted in
Fig. 1, together with the corresponding discrete observations
at timestk.

4.2 Particle filtering results

The filtering results are presented for the standard particle
filter (denoted PF in the following) and the weighted ensem-
ble Kalman filter (WEnKF). Two situations are shown, with
a reduced (N = 20) and high number (N = 10 000) of parti-
cles. The case with a high number of particles is shown as
the reference for comparison purpose; note however that this
ideal situation is not reachable in a high-dimensional context,
since the number of particles has to be reduced for evident
computational cost reasons.

The results for the two configurations are presented in
Fig. 2, where the dotted lines represent the filtering mean
estimates. The filtering distributionp(xtk |yt1:tk ) is estimated
at each observation timetk using Eq. (4), and predicted be-
tween observation times from Eq. (6). The mean is then
estimated from weighted particles as

∑N
i=1w

(i)
tk

x
(i)
t , for all

t ∈ [tk, tk+1[. Figure 2a–b shows that the standard particle
filter results diverge from the reference solution between ob-
servation times, for low or high number of particles. As a
matter of fact, when no observation is available, the state dis-
tribution is predicted from the dynamics only, so that par-
ticles trajectories are not guided towards the next observa-
tion. At observation timestk, high weights are given to par-
ticles that are close to the observation, so that the estimated
mean suddenly gets closer to the solution. These discontinu-
ities between measurement times can also be observed in the
WEnKF results (Fig.2c–d), because particle trajectories are

high-dimensional context, since the number of particles has to be reduced for evident computational

cost reasons.

The results for the two configurations are presented on Figure 2, where the dotted lines represents

the filtering mean estimates. The filtering distributionp(xtk |yt1:tk) is estimated at each observation

time tk using (4), and predicted between observation times from (6). The mean is then estimated275

from weighted particles as
∑N

i=1w
(i)
tk
x
(i)
t , for all t ∈ [tk, tk+1[. Figure 2 (a)-(b) show that the stan-

dard particle filter results diverge from the reference solution between observation times, for low or

high number of particles. As a matter of fact, when no observation is available, the state distribu-

tion is predicted from the dynamics only, so that particles trajectories are not guided towards the

next observation. At observation timestk, high weights are given to particles that are close to the280

observation, so that the estimated mean suddenly gets closer to the solution. These discontinuities

between measurement times can also be observed on the WEnKF results (Figure 2 (c)-(d)), because

particle trajectories are brutally corrected with the EnKFstep at observation times. A smoothing will

aim at reducing these temporal discontinuities while providing dynamically consistent solutions.
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Fig. 2: Standard PF and WEnKF results. Thick line: hidden diffusion; Dots: partial observations; Dotted line:

estimated filtering mean.
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Figure 2. Standard PF and WEnKF results. Thick line: hidden dif-
fusion; dots: partial observations; dotted line: estimated filtering
mean.

brutally corrected with the EnKF step at observation times.
A smoothing will aim at reducing these temporal discontinu-
ities, while providing dynamically consistent solutions.

4.3 Standard fixed-lag smoothing results

From the particle filtering results, we now present the results
obtained with the direct particle smoothing procedure de-
scribed in Sect.2.2. This procedure relies on existing trajec-
tories. The smoothing distribution̂p(xt |yt1:tk+1) is computed
backward for allt ∈]tk, tk+1] using expression Eq. (7) each
time a new observationytk+1 becomes available. The smooth-

ing mean is computed as
∑N

i=1w
(i)
tk+1

x
(i)
t for all t ∈]tk, tk+1],

and the standard deviation is computed in the same way from
the weighted particles.

It can be observed in Fig.3a that the smoothing based
on the standard particle filter is not efficient when the num-
ber of particlesN is small: only a few particles are close to
the observation at timetk and have nonzero weights, imply-
ing that the smoothing distribution is poorly estimated (see
for instance between observation timest = 100 andt = 120,
where the smoothing distribution is artificially peaked but
far from the hidden trajectory). The smoothing result ob-
tained from the reference configurationN = 10 000 is plot-
ted in Fig.3b. In that situation, since many trajectories have
high weights at observation times, the estimation of back-
ward smoothing distributions is improved and includes the
hidden trajectory.

Moreover, Fig.3c–d shows that the standard smoothing
based on the WEnKF result fails for a low or high number
of particles. As a matter of fact, particle trajectories are arti-
ficially corrected by the EnKF step at each observation time.
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(a) Standard smoothing from PF (N = 20) (b) Standard smoothing from PF (N = 10000)
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(c) Standard smoothing from WEnKF (N = 20) (d) Standard smoothing from WEnKF (N = 10000)

Fig. 3: Standard smoothing from PF and WEnKF results. Thick line: hiddendiffusion; Dots: partial observa-

tions; Dotted line: estimated filtering mean.

4.4 Proposed smoothing results

In this section, we show how the proposed method can improve the estimation of backward smooth-310

ing distributions when it is not adequate to rely on existingtrajectories only. This is the case if the

number of particles is too small, as demonstrated from the experiment presented on Figure 3(a), or

if the existing trajectories do not correspond to plausibletrajectories of the model (as shown for the

WEnKF result on Figure 3(c)-(d)).

Our smoothing is first applied using the filtering output of the standard particle filter withN = 20315

particles. Figure 4(a) shows the result obtained with a sampling of M = 50 conditional trajec-

tories between each pair{x(i)
tk
,x

(i)
tk+1

}, i= 1, . . . ,N . The smoothing distribution̂p(xt|yt1:tk+1
) is

computed from (18), so the smoothing mean is computed as
∑N

i=1w
(i)
tk

∑M
j=1α(x̃

(i)(j))x̃
(i)(j)
t for

all t ∈]tk, tk+1], and similarly for the standard deviation. This result highlights the fact that since

the proposed method creates new trajectories, it is able to correct the deficiencies of the standard320

smoothing approach presented on Figure 3(a) when the initial number of filtering particles is too

small. On Figure 4(b), the same experiment is presented using M = 500 conditional trajectories. In

that case, the result is very similar to the reference particles smoothing result presented on Figure

3(b), obtained from a particle filter withN = 10000.
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Figure 3. Standard smoothing from PF and WEnKF results. Thick
line: hidden diffusion; dots: partial observations; dotted line: esti-
mated filtering mean.

Resulting trajectories are highly non-plausible. Even for a
huge number of particles, a smoothing based on those exist-
ing trajectories is not able to reduce the induced time discon-
tinuities.

4.4 Proposed smoothing results

In this section, we show how the proposed method can im-
prove the estimation of backward smoothing distributions
when it is not adequate to rely on existing trajectories only.
This is the case if the number of particles is too small, as
demonstrated from the experiment presented in Fig.3a, or if
the existing trajectories do not correspond to plausible tra-
jectories of the model (as shown for the WEnKF result in
Fig. 3c–d).

Our smoothing is first applied using the filtering output
of the standard particle filter withN = 20 particles. Fig-
ure4a shows the result obtained with a sampling ofM = 50
conditional trajectories between each pair{x

(i)
tk

,x
(i)
tk+1

}, i =

1, . . . ,N . The smoothing distribution̂p(xt |yt1:tk+1) is com-
puted from Eq. (18), so the smoothing mean is computed
as

∑N
i=1w

(i)
tk

∑M
j=1α(x̃(i)(j))x̃

(i)(j)
t for all t ∈]tk, tk+1], and

similarly for the standard deviation. This result highlights the
fact that since the proposed method creates new trajectories,
it is able to correct the deficiencies of the standard smooth-
ing approach presented in Fig.3a when the initial number of
filtering particles is too small. In Fig.4b, the same experi-
ment is presented usingM = 500 conditional trajectories. In
that case, the result is very similar to the reference particle
smoothing result presented in Fig.3b, obtained from a parti-
cle filter withN = 10 000.

In parallel, the proposed smoothing has been tested using
the output of the WEnKF filtering technique withN = 20

In parallel, the proposed smoothing has been tested using the output of the WEnKF filtering325

technique withN = 20 particles. Again, the smoothing is computed withM = 50 andM = 500

conditional trajectories, and the corresponding results are presented on Figure 3(c)-(d). Instead on

relying on existing WEnKF trajectories that may not be plausible trajectories of the model (because

of the EnKF correction step), the proposed method samples new trajectories between observation

times. This leads to a good estimation of the smoothing distributions, contrary to the standard330

smoothing presented of Figure 3(c). Note that the smoothingresults are very similar to the result

obtained from the standard particle filter (Figure 3(a)-(b)) because both filters have similar behaviour

at observation times.
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Fig. 4: Proposed conditional smoothing result. Thick line: hidden diffusion; Dots: partial observations; Dotted

line: estimated backward smoothing mean; Thin line: estimated standard deviation.
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Figure 4.Proposed conditional smoothing result. Thick line: hidden
diffusion; dots: partial observations; dotted line: estimated back-
ward smoothing mean; thin line: estimated standard deviation.

particles. Again, the smoothing is computed withM = 50
andM = 500 conditional trajectories, and the corresponding
results are presented in Fig.3c–d. Instead on relying on exist-
ing WEnKF trajectories that may not be plausible trajectories
of the model (because of the EnKF correction step), the pro-
posed method samples new trajectories between observation
times. This leads to a good estimation of the smoothing dis-
tributions, contrary to the standard smoothing presented in
Fig. 3c. Note that the smoothing results are very similar to
the result obtained from the standard particle filter (Fig.3a–
b) because both filters have similar behavior at observation
times.

5 Application to a high-dimensional assimilation
problem

This section aims at illustrating the applicability of our
method to a high-dimensional and nonlinear scenario, with-
out extensive study at this stage. The method is applied to
a turbulence assimilation problem, where the model of in-
terest is of type Eq. (1). The goal is to recover temporal es-
timates of velocity/vorticity over a given spatial domain of
sizen = 64∗ 64, from a sequence of noisy observations and
a continuous a priori dynamical model based on a stochastic
version of the Navier–Stokes equation. Within an environ-
mental framework, a direct application would be the estima-
tion of wind fields or sea surface currents from satellite data.
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(a) (b)

Fig. 5: State example. (a) Velocity fieldwt; (b) Associated vorticity mapξ
t
.

5.2 Implementation details

We recall that the smoothing relies first on a particle filter step. Due to the high dimensionality of the

state vector, the use of a standard particle filter is not adapted to solve the filtering problem, as dis-365

cussed by Snyder et al. (2008) or Van Leeuwen (2009). We make then use of the method presented

by Papadakis et al. (2010) which combines the benefits of the ensemble Kalman filter, known to per-

form well in practice for high dimensional systems (Stroud et al., 2010), and the particle filter (which

solves theoretically the true filtering problem, without approximating the filtering distributions with

Gaussian distributions). Since the method of Papadakis et al. (2010) is intrinsically a particle filter, it370

leads then at each observation timetk to a set of particles and weights{ξ(i)t1:tk
,wtk}i=1:N , as required

by the algorithm proposed in section 3.

The particle filter step requires simulations from the dynamical model (21), and the conditional

simulation step requires to sample trajectories from its constrained version, which consists in a

similar problem with modified drift (see process (9)). The model is discretized in time with time375

step∆t= 0.1; more information about the discretization scheme may be obtained in Papadakis et al.

(2010). The random perturbations are assumed to be realizations of Gaussian random fields that

are correlated in space with Gaussian covariance functionΣ(xi,xj) = η exp(− ||xi−xj ||
2

λ
), where

η = 0.01 andλ= 13. In practice, the simulation of these perturbations is performed in Fourier

space, with the method described in Evensen (2003).380

Finally, the estimation of the smoothing distributions require the computation of conditional tra-

jectories weights, corresponding to Girsanov weights given by (11). After a Riemann sum approx-

imation of the integral, the computation of weights requires the inversion of the matrixΣ of size

(n,n), wheren= 64 ∗ 64 is the number of grid points. We choose to computeΣ−1 empirically

using a singular value decomposition computed from theM realizations of the perturbation fields385

used for the constrained trajectories simulations. LetZ be the matrix of size(n,M) containing the

M centered fields of sizen= 64 ∗ 64, the SVD leads toZ=UDVT , so thatZZT =UDDTUT .

The inverse of the covariance matrixΣ−1 is finally computed as:

M(ZZT )−1 =MU(DDT )−1UT , (22)
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Figure 5. State example.(a) Velocity field wt ; (b) associated vor-
ticity mapξ t .

5.1 State-space model

Let ξ(x) denote the scalar vorticity at pointx = (x,y)T ,
associated with the 2-D velocityw(x) = (wx(x),wy(x))T

throughξ(x) =
∂wy

∂x
−

∂wx

∂y
. Let ξ ∈ Rn be the state vector

describing the vorticity over ann = 64∗ 64 square domain,
andw ∈ R2n the associated velocity field over the domain.
We will focus on incompressible flows such that the diver-
gence of the velocity field is null. A stochastic version of
the Navier–Stokes equation in its velocity–vorticity form can
then be written as

dξ t = −∇ξ t · wtdt +
1

Re
1ξ tdt + σdB t , (21)

whereRe denotes the flow Reynolds number (Re = 3000).
The uncertainty is modeled by a Brownian motion of sizen,
with covariance6 = σσ T , whereσ ∈ Rn. A velocity field
example, generated from the model Eq. (21), is shown in
Fig. 5a, together with the corresponding vorticity map (b).

We assume the hidden vorticity vectorξ is observed
through noisy measurementsytk at discrete timestk, where
tk − tk−1 = 1001t , and1t = 0.1 is the time step used to dis-
cretize Eq. (21). In our experimental setup, measurements
correspond to PIV (particle image velocimetry) image se-
quences used in fluid mechanics applications. Note however
that other kind of data can be used similarly within this state
space model, like meteorological or oceanographic data for
instance. The state and observation are related in our case
throughytk = g(ξ tk

) + γ tk , whereg is a nonlinear function
linking the vorticity to the image data, andγ tk is a Gaussian
noise, uncorrelated in time.

5.2 Implementation details

We recall that the smoothing relies first on a particle filter
step. Due to the high dimensionality of the state vector, the
use of a standard particle filter is not adapted to solve the
filtering problem, as discussed bySnyder et al.(2008) or
Van Leeuwen(2009). We then make use of the method pre-
sented byPapadakis et al.(2010), which combines the bene-
fits of the ensemble Kalman filter, known to perform well in

practice for high-dimensional systems (Stroud et al., 2010),
and the particle filter (which solves theoretically the true fil-
tering problem, without approximating the filtering distribu-
tions with Gaussian distributions). Since the method ofPa-
padakis et al.(2010) is intrinsically a particle filter, it then
leads at each observation timetk to a set of particles and
weights{ξ

(i)
t1:tk

,wtk }i=1:N , as required by the algorithm pro-
posed in Sect.3.

The particle filter step requires simulations from the dy-
namical model (Eq.21), and the conditional simulation step
requires us to sample trajectories from its constrained ver-
sion, which consists in a similar problem with modified
drift (see process Eq.9). The model is discretized in time
with the time step1t = 0.1; more information about the
discretization scheme may be obtained inPapadakis et al.
(2010). The random perturbations are assumed to be real-
izations of Gaussian random fields that are correlated in
space with the Gaussian covariance function6(xi,xj ) =

ηexp(−
||xi−xj ||

2

λ
), whereη = 0.01 andλ = 13. In practice,

the simulation of these perturbations is performed in Fourier
space, with the method described inEvensen(2003).

Finally, the estimation of the smoothing distributions re-
quires the computation of conditional trajectories weights,
corresponding to Girsanov weights given by Eq. (11). After
a Riemann sum approximation of the integral, the compu-
tation of weights requires the inversion of the matrix6 of
size(n,n), wheren = 64∗ 64 is the number of grid points.
We choose to compute6−1 empirically using a singular
value decomposition computed from theM realizations of
the perturbation fields used for the constrained trajectories
simulations. LetZ be the matrix of size(n,M) containing
theM-centered fields of sizen = 64∗ 64; the SVD leads to
Z = UDVT , so thatZZT

= UDDT UT . The inverse of the co-
variance matrix6−1 is finally computed as

M(ZZT )−1
= MU(DDT )−1UT , (22)

which only requires the inversion of a diagonal. Note that
more efficient procedures could be implemented in our case
(homogeneous Gaussian covariance) since the covariance
function is separable in thex andy directions. This means
that the covariance matrix6 can be written as the Kronecker
product of smaller matrices and more easily inverted (Sun
et al., 2012). However, the SVD inversion can be applied to
any covariance structure, in particular it could deal with a
non-homogeneous covariance matrix.

5.3 Results

In this section, we illustrate the capability of the proposed
method to reduce the temporal discontinuities inherently in-
troduced by the filtering in continuous–discrete state-space
models.

The smoothing result relies on the output of the WEnKF
filtering step, computed withN = 500 particles. Compared
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Fig. 7: Full line: mean square error between ground truth vorticity and estimated filtering mean; Dotted line:

mean square error between ground truth vorticity and estimated backward smoothing mean.

In addition, we present below a qualitative evaluation of the smoothing result for the same exper-425

iment, over a specific time interval.

The WEnKF result is first presented on Figure 8 for the time interval [400,500] between two obser-

vations, where estimated mean vorticity maps are computed as
∑N

i=1w
(i)
400ξ

(i)
t for all t ∈ [400,500[,
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Figure 6. Filtering and conditional simulation weights.

to the size of the system, the number of particles is theoreti-
cally too small for the filter to be truly efficient. In practice,
many filtering trajectories have close to zero weight at ob-
servation times. Histograms of filtering weights are given as
illustration in Fig.6a–b at two timest = 400 andt = 500.
Note however that the filter is not degenerate and is able to
provide results that get close to the hidden vorticity at mea-
surement times. This can be observed in Fig.7, where the
mean square error is plotted with a full line, averaged at each
time over the image domain of sizen = 64∗ 64. Since the
ground truth vorticity sequence is known in our experimen-
tal setup, the mean square error is computed between the
hidden vorticity and the estimated filtering mean, given by∑N

i=1w
(i)
tk

ξ
(i)
t for all t ∈ [tk, tk+1[. The correction steps lead

to successive error decreases at observation times.
The proposed smoothing method has been applied with

M = 200. Note that we take benefit from the fact that many
filterings particles have close to zero weight. Indeed, the
smoothing method relies in practice on a reduced number
ÑM of sampled conditional trajectories (with̃N << N ),
which makes the problem computationally tractable. In this
experiment, we have retained around 5 % of initial filter-
ing trajectories. The smoothing distribution̂p(ξ t |yt1:tk+1) is
computed for allt ∈]tk, tk+1] from Eq. (18), and its mean is
computed as

∑N
i=1w

(i)
tk+1

∑M
j=1α(ξ̃ (i)(j))ξ̃

(i)(j)
t . Histograms

of conditional simulation weightsα(ξ̃ (i)(j)) are given as an
illustration in Fig.6c–d for a given particle(i) at two times,
t = 400 andt = 500.

The mean square error is computed between the true vor-
ticity and the estimated smoothing mean, and plotted in Fig.7
with a dotted line. As expected, the smoothing method re-
duces the error at hidden times between observations.

In addition, we present below a qualitative evaluation of
the smoothing result for the same experiment, over a specific
time interval.

0 0.005 0.01 0.015 0.02 0.025
0

50

100

150

200

250

0 0.005 0.01 0.015 0.02 0.025
0

50

100

150

200

250

(a) Filtering weightst= 400 (b) Filtering weightst= 500

4.85 4.9 4.95 5 5.05 5.1 5.15

x 10
−3

0

5

10

15

20

25

4.85 4.9 4.95 5 5.05 5.1 5.15

x 10
−3

0

5

10

15

20

25

(d) Conditional simulation weightst= 400 (e) Conditional simulation weightst= 500

Fig. 6: Filtering and conditional simulation weights

0 100 200 300 400 500 600 700 800 900
2

4

6

8

10

12

14

16
x 10

−3

t

Fig. 7: Full line: mean square error between ground truth vorticity and estimated filtering mean; Dotted line:

mean square error between ground truth vorticity and estimated backward smoothing mean.

In addition, we present below a qualitative evaluation of the smoothing result for the same exper-425

iment, over a specific time interval.

The WEnKF result is first presented on Figure 8 for the time interval [400,500] between two obser-

vations, where estimated mean vorticity maps are computed as
∑N

i=1w
(i)
400ξ

(i)
t for all t ∈ [400,500[,

18

Figure 7. Full line: mean square error between ground truth vor-
ticity and estimated filtering mean; dotted line: mean square error
between ground truth vorticity and estimated backward smoothing
mean.

The WEnKF result is first presented in Fig.8 for the time
interval [400,500] between two observations, where esti-
mated mean vorticity maps are computed as

∑N
i=1w

(i)
400ξ

(i)
t

for all t ∈ [400,500[, and as
∑N

i=1w
(i)
500ξ

(i)
t for t = 500. The

temporal discontinuity between estimations can be observed
when reaching observation timet = 500: the vorticity map
is suddenly modified in order to fit the observations, intro-
ducing inconsistencies in the vorticity temporal trajectories.
Note that the application of the standard particle smoothing
(described in Sect.2.2) will fail here, and not only because
the number of particles is too small. As a matter of fact, we
recall that the filtering trajectories have been computed from
the method presented inPapadakis et al.(2010), which uses
the ensemble Kalman filter step as an importance distribu-
tion in the particle filter algorithm. The ensemble Kalman
filter consists of a prediction step from the dynamical model
Eq. (21), and a correction step that shifts particles towards
the observation. Because of this correction step, the sampled
filtering trajectories between two observation times do not
correspond to trajectories of the dynamical model. This im-
plies that from such a particle filter, the standard smoothing
based on existing trajectories will not be able to reduce the
temporal discontinuities observed in Fig.8. This can be ob-
served in Fig.9, where smoothed vorticity maps are com-
puted as

∑N
i=1w

(i)
400ξ

(i)
t for t = 400, and as

∑N
i=1w

(i)
500ξ

(i)
t

for all t ∈]400,500]. The discontinuity at timet = 500 is still
present.

The result obtained with the proposed method is plotted
in Fig. 10. Estimated mean vorticity maps are computed
as

∑N
i=1w

(i)
500

∑M
j=1α(ξ̃ (i)(j))ξ̃

(i)(j)
t for all t ∈ [400,500].

Spatio–temporal vorticity trajectories are gradually modi-
fied until observation timet = 500, preserving the fluid flow
properties. As a matter of fact, since the proposed method
samples new trajectories from the law of the physical pro-
cess (Eq.21), the smoothed vorticity trajectories are by
construction consistent with the a priori dynamical model. In
order to sample the smoothed trajectories, the method relies
on the model and on filtering marginals at observation times,
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and as
∑N

i=1w
(i)
500ξ

(i)
t for t= 500. The temporal discontinuity between estimations can be observed

when reaching observation timet= 500: the vorticity map is suddenly modified in order to fit to430

the observations, introducing inconsistencies in the vorticity temporal trajectories. Note that the ap-

plication of the standard particles smoothing (described in section 2.2) will fail here, and not only

because the number of particles is too small. As a matter of fact, we recall that the filtering trajec-

tories have been computed from the method presented in Papadakis et al. (2010), which uses the

ensemble Kalman filter step as importance distribution in the particle filter algorithm. The ensemble435

Kalman filter consists of a prediction step from the dynamical model (21), and a correction step

which shifts particles towards the observation. Because ofthis correction step, the sampled filter-

ing trajectories between two observation times do not correspond to trajectories of the dynamical

model. This implies that from such a particle filter, the standard smoothing based on existing tra-

jectories will not be able to reduce the temporal discontinuities observed on Figure 8. This can be440

observed on Figure 9, where smoothed vorticity maps are computed as
∑N

i=1w
(i)
400ξ

(i)
t for t= 400,

and as
∑N

i=1w
(i)
500ξ

(i)
t for all t ∈]400,500]. The discontinuity at timet= 500 is still present.

t= 400 t= 420 t= 450

t= 470 t= 490 t= 500

Fig. 8: Filtering result with the method of Papadakis et al. (2010). Estimatedmean vorticity maps for different

timest between observation timest= 400 andt= 500.
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19

Figure 8.Filtering result with the method ofPapadakis et al.(2010).
Estimated mean vorticity maps for different timest between obser-
vation timest = 400 andt = 500.

t= 400 t= 420 t= 450

t= 470 t= 490 t= 500

Fig. 9: Standard particles smoothing result (see Section 2.2). Estimated mean vorticity maps for different times

t between observation timest= 400 andt= 500.

The result obtained with the proposed method is plotted on Figure 10. Estimated mean vorticity

maps are computed as
∑N

i=1w
(i)
500

∑M
j=1α(ξ̃

(i)(j))ξ̃
(i)(j)
t for all t ∈ [400,500]. Spatio-temporal vor-

ticity trajectories are gradually modified until observation time t= 500, preserving the fluid flow

properties. As a matter of fact, since the proposed method samples new trajectories from the law450

of the physical process (21), the smoothed vorticity trajectories are by construction consistent with

the a priori dynamical model. In order to sample the smoothed trajectories, the method relies on

the model and on filtering marginals at observation times, but not on filtering trajectories at hidden

times. It is then able to smooth the discontinuities inherent to the particle filtering technique we have

used, contrary to the standard smoothing presented on Figure 9.455
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Figure 9. Standard particles smoothing result (see Sect.2.2). Esti-
mated mean vorticity maps for different timest between observa-
tion timest = 400 andt = 500.

but not on filtering trajectories at hidden times. It is then able
to smooth the discontinuities inherent in the particle filtering
technique we have used, contrary to the standard smoothing
presented in Fig.9.

6 Conclusion and discussion

In this paper we introduced a smoothing algorithm based on a
conditional simulation technique of diffusions. The proposed
smoothing is formulated as fixed-lag, in the sense that it is
performed sequentially each time a new observation appears,
in order to correct the state at hidden times up to the previous
observation. Note that a decomposition similar to Eqs. (13)
to (18) can be written from an integration up to a previous
time tk−h, with h > 1. This implies that the smoother can
be formulated with a larger fixed lag, in order to correct the
state backward not only up to the previous observation, but
up to further measurement times. Yet, due to the successive
resampling steps that have been performed in the filtering

t= 400 t= 420 t= 450

t= 470 t= 490 t= 500

Fig. 10: Smoothing result with the proposed method. Estimated mean vorticitymaps for different timest

between observation timest= 400 andt= 500.

6 Conclusion and discussion

In this paper we introduced a smoothing algorithm based on a conditional simulation technique of

diffusions. The proposed smoothing is formulated as fixed-lag, in the sense that it is performed460

sequentially each time a new observation appears, in order to correct the state at hidden times up to

the previous observation. Note that a decomposition similar to equations (13) to (18) can be written

from an integration up to a previous timetk−h, with h > 1. This implies that the smoother can be

formulated with a larger fixed-lag, in order to correct the state backward not only up to the previous

observation, but up to further measurement times. Yet, due to the successive resampling steps that465

have been performed in the filtering steps before timetk, there are in practice only a few distinct

filtering trajectories at timestk−h if h is large. Consequently, the estimation of the joint law in (15)

will not be reliable anymore for a too large value ofh.

We have shown the practical applicability of the method to a high-dimensional problem. Never-

theless, the algorithm remains costly since a second Monte Carlo step is added to the Monte Carlo470

nature of particle filter algorithms. Yet, from an algorithmic point of view, the sequential nature of

the proposed technique allows the smoothing to be implemented with a similar structure as filtering

methods (sequential sampling and weighting of model trajectories). It is then easy to couple this

smoothing to an operational filtering system and benefit fromparallelization strategies for instance.

Since the proposed smoothing uses the filtering result as input, it relies on the success of the475

21

Figure 10. Smoothing result with the proposed method. Estimated
mean vorticity maps for different timest between observation times
t = 400 andt = 500.

steps before timetk, there are in practice only a few distinct
filtering trajectories at timestk−h if h is large. Consequently,
the estimation of the joint law in Eq. (15) will not be reliable
anymore ifh is too large.

We have shown the practical applicability of the method to
a high-dimensional problem. Nevertheless, the algorithm re-
mains costly since a second Monte Carlo step is added to the
Monte Carlo nature of particle filter algorithms. Yet, from
an algorithmic point of view, the sequential nature of the
proposed technique allows the smoothing to be implemented
with a similar structure as filtering methods (sequential sam-
pling and weighting of model trajectories). It is then easy to
couple this smoothing to an operational filtering system and
benefit from parallelization strategies, for instance.

Since the proposed smoothing uses the filtering result as
input, it relies on the success of the underlying particle fil-
ter. For high-dimensional systems, a standard particle filter
is not adapted and it is necessary to use filtering techniques
that guide particles towards observations. In this paper, we
use the WEnKF algorithm. In practice, any efficient particle
filtering technique with such a guiding can be used within
our framework. Note however that the construction of such
techniques remains an open area of research.

We plan to work on the application of the smoothing
method to a real high-dimensional case (for the estimation
of sea surface currents from satellite image sequences).
However, such a work will imply numerous difficulties
which are not related to the smoothing technique but to
the definition of the state-space model: definition of a
suitable physical model, good characterization of state noise
structure and model parameters. Therefore, this will be part
of a future work.
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