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Abstract. This paper presents an algorithm for Monte Carlo tion. The goal of the filtering is to estimate the system state
fixed-lag smoothing in state-space models defined by a diffudistribution knowing past and present observations. This al-
sion process observed through noisy discrete-time measurdews us for instance to give proper initial conditions to fore-
ments. Based on a particle approximation of the filtering andcast the future state of a system characterizing atmospheric
smoothing distributions, the method relies on a simulationor oceanographic flows. On the other hand, the smoothing
technique of conditioned diffusions. The proposed sequenaims at estimating the state distribution using past and fu-
tial smoother can be applied to general nonlinear and multure observations, and this retrospective state estimation al-
tidimensional models, like the ones used in environmentalows us to analyze a spatio—temporal phenomenon over a
applications. The smoothing of a turbulent flow in a high- given time period, for climatology studies for instance. Ap-
dimensional context is given as a practical example. plications of data assimilation are numerous and interest is
growing in environmental sciences with the increase in avail-
able data. However, it is still a challenge to develop filtering
and smoothing methods that can be used within a general
nonlinear and high-dimensional context.

The framework of this paper concerns state-space models Monte Carlo sequential methods, contrary to standard

1 Introduction

described by general diffusions of the form Kalman filters, are able to deal with the filtering prob-
lem in nonlinear state-space models. The particle filtering
dx (1) = f(x(t))dr + o (x(t))dB (1), (1)  (Del Moral et al, 200%; Doucet et al.2000 solves the whole

hich iallv ob dth h noi filtering equations through Monte Carlo approximations of
‘év. Ich are partlasy Oh ser\ije I ¢ rougd no'.sg measursments_ ;tte state distribution. On the other hand, ensemble Kalman
Iscrete times. Such models can describe many dynamicay, o qqg Evensen2003 take into account in some way the

phenomena in the environmental sciences and physics, bll"FonIinearities in the system, but are based on a Gaussian as-

"’?'SO n f|r_1ance or eng|neenng_appllcanons. The main mOt'\’a'sumption. For high-dimensional systems, ensemble Kalman
tion of this work concerns environmental applications, where

) i . : . . ) ) methods are preferred in practice to particle filte®srgud
nonlinearity and high-dimensionality arise. Indeed, environ- b P b ¢

| model d data d i i h et al, 201Q Van Leeuwen 2009 since they reach a bet-
mental models and data describe nonlinear phenomena ovgg, performance for a limited number of particles. In order

large domains, with high spatial resolution. The continuous, keep this advantage while alleviating the Gaussian as-

dynamice}l model (qu) is defined f_rom a priori physical . sumption, both methods are combinedRapadakis et al.
Laws,fwh!le observatlgns are S”pp“e‘?' r:)y senlsors .(Sat(?”'t?ZOlQ, leading to a particle filter that can be applied to high-
ata for instance) and can appear with very low time '€ dimensional systems. We will use this technique for the fil-

quency. As an example, in the application presented in th‘:‘[erin step in the high-dimensional application presented in
last part of this paper, the dimension of the state and obser, g step g PP P

ions is of the order of housands, and the model IS CCr>
\éatlon_z 'Z Obt Eor erl_o malr:lyt_oussanks, and t _emoF_Ie 'S" The aim of this paper is to propose a new smoothing
escribed by the nonlinear Navier—Stokes equation. Filtersy, oyhqq - \ithin the particle filter framework, the smooth-

N9 and smoothing in sugh state—quce models aim a.t C.ouihg can be computed backward, reweighting past particles
pling model and observations, which is called data assimila-
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634 A. Cuzol and E. Mémin: Monte Carlo fixed-lag smoothing in state-space models

using present observatiorBr{ers et al, 201Q Godsill et al, sons. Secondly, particle filters that have been proposed in
2004). There is however one main difficulty for continuous this high-dimensional context require us to correct trajec-
models of type Eq.1). As a matter of fact, it is neces- tories towards the observatiorBapadakis et gl201Q Van
sary to know the transition density of the process betweerLeeuwen and Ade®013. This implies that filtering states
observation times, which is not available for general diffu- are consistent at observation times, but also that filtering tra-
sions. This transition density can be approximated throughjectories may not be plausible realizations of the underly-
Monte Carlo simulations, as proposed Dyrham and Gal- ing physical model. In that case, a smoothing based on ex-
lant (2002 to solve inference problems for diffusion pro- isting trajectories will fail. Note that these remarks are not
cesses. However, these approximations are based on Brownly valid for the fixed-lag smoothing, but also for previously
nian bridge (or modified versions of it) simulations that do mentioned global techniques relying on existing trajectories.
not take into account the drift part of the model. For nonlin- In particular, a genealogical smoothing based on ancestral
ear and high-dimensional models with a drift term that dom-particle lines Del Moral, 2004 will be deficient in a high-
inates, such approximations will be inefficient. It is also pos- dimensional setting, since many trajectories will share only a
sible to obtain an unbiased estimate of the transition densitfew ancestral lines.
(seeBeskos et a).2006), but this approach is not adapted to  In contrast, our method does not rely on existing parti-
a multi-dimensional context. As a matter of fact, the use ofcles only. It is built on a conditional simulation technique of
this technique in a multivariate setting imposes constraintdiffusions proposed bfpelyon and HU2006 that provides
on the diffusion drift (in particular, the drift function has to new state trajectories at hidden times between observations.
be of gradient type). In parallel, within the framework of en- This simulation technique is adapted to a multivariate con-
semble Kalman methodEvensen and van Leeuwg?000 text where the drift dominates, contrary to techniques based
have proposed estimating backward the smoothing distribuen Brownian bridge samplingdurham and Gallan2002.
tion in a recursive way, based on existing filtering trajecto- Moreover, it does not require constraining assumptions for
ries; Stroud et al(2010 presented and applied an ensemble multivariate models, contrary to other techniques based on
Kalman smoothing method, relying on a linearization of the the exact simulation of diffusionBgskos and Robert2005
system dynamics. Beskos et a).2009. The proposed smoothing method can
All previously mentioned smoothing methods require usthen be applied to high-dimensional systems. Finally, it does
to perform specific assumptions or simplifications in order not require model linearization nor Gaussian hypotheses, and
to deal with general nonlinear models of type ER). i a so is able to deal with general nonlinear models.
high-dimensional context. To the best of our knowledge, it The remainder of the paper is organized as follows. Sec-
remains a challenging problem to develop smoothing methtion 2 briefly describes sequential Monte Carlo filtering
ods that can be used in this general setting. In this paper, wenethods in state-space models, and presents the fixed-lag
deal with this issue sequentially each time a new observatiorsmoothing problem. Sectidhpresents the conditional simu-
is available, by smoothing the hidden state from this new ob4ation technique of diffusions dbelyon and Hu2006, and
servation time up to the previous one. This approach, calledletails the construction of the proposed Monte Carlo esti-
fixed-lag smoothing, then constitutes a partial answer to thanate of smoothing distributions. The method is then exper-
global smoothing problem that would take into account allimented on a one-dimensional example in Sdct-inally,
available observations. Nevertheless, it is reasonable to ashe method is applied in Sed&.to a practical nonlinear and
sume that the distribution of the hidden state depends on fuhigh-dimensional case, similar to the problems that have to
ture observations through the next observation only, as soobe faced in environmental applications. A discussion is given
as the time step between measurements is long (which is typin Sect.6.
cally the case in the environmental applications that motivate
this work). Under this assumption, a new observation will
impact the distribution of the hidden process up to the previ-2 Monte Carlo filtering and smoothing in state-space
ous observation only. This point of view justifies the use of  models
a fixed-lag smoothing in our setting as a reasonable approxi-
mation of the global smoothing problem. In this section we recall briefly the particle filtering and
Such a fixed-lag smoothing may be directly obtained smoothing methods for models of type E),(where the
from the particle filtering result, reweighting past trajecto- hidden state vector € R” is observed through the observa-
ries. However, this smoothing will fail in two cases: when tion vectory € R™ at discrete time$r1, t2, .. .}:
the number of particles is too small compared to the size of
the system, or when existing trajectories do not correspond (tx) = g(x(tx)) + ¥4, - (2)
to plausible trajectories of the dynamical model. Unfortu-
nately, these two situations have to be faced when smoothin@he drift function f and observation operatgrcan be non-
in a high-dimensional state-space model. Firstly, the numdinear. The dynamical model uncertainty is described by
ber of particles has to be reduced for computational rea-an n-dimensional Brownian motion with covariancg =
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o (x(t))o(x(1))T. The functionsf, g ando are assumed to  2.1.2 Weighted ensemble Kalman filter (WENKF)
be known, as well as the law of the observation ngige

In particular, we present the standard particle filter and theOne way to incorporate observation within the proposal
weighted ensemble Kalman filter, which can be used to facelistribution efficiently consists in relying on the ensem-

the filtering problem in high-dimensional systems. ble Kalman filtering mechanism to define this distribution.
This is the idea proposed in the WENKF techniqéra~(
2.1 Particle-based filtering methods padakis et a).2010. In the WEnKF approach the impor-

tance sampling is taken as a Gaussian approximation of
Filtering aims at estimating recursively the distribution p(x4|%4_1, ys). This approach is close to the technique pro-
P(X1:4|yn:e) (and in particular its marginal distribution posed invan Leeuwer(2010. A variation of a similar tech-
p(x41yn:,)) at each observation time. This filtering prob-  nique based on a deterministic square-root formulation is
lem can be solved with a Monte Carlo sequential approachalso described iBeyou et al.(2013. In order to make the
called particle filteringDel Moral et al, 200% Doucetetal.  estimation of the filtering distribution exact (up to the sam-
2000. The method relies on a Monte Carlo approximation pling), each member of the ensemble must be weighted at
of the filtering distribution over a set of weighted trajectories g5ch observation instant with appropriate Welghtsu,(;),
{x Ji—1n (called particles): defined from Eq. §). Therefore, the weighted ensemble
Kalman filter (WENnKF) procedure can be simply summa-

N . .
. - rized by Algorithm 1.
P lywn) = Y w8, (e, 3) Y9

r e

Algorithm 1 The WENKF algorithm

whose marginal distribution at timg is written as
Foreachy =1,1,...:

N
A i @ . _
PO | Yign) = Zwt(;)‘sx(“ (1) (4) e Start from particle sefx,”,,i =1,..., N} and
i=1 ! observatiorny,

Particle filters rely on a sequential importance sampling e Obtain particle se{xﬁz), =1,...,N}from:
scheme that recursively samples particles, and updates their 0

. . . . 4 .
weights at observation times. The weights correspond to the — EnKF step: Getx,’,i =1,..., N, from the
ratio between the target distribution and the importance sam- assimilation ofy, with an EnKF procedure;

pling distributionz (x, |X 4., _,, Y1,:1,). They are recursively

— Computation of weights: w(’>
computed as follows:

@ Py |x,k>)p(x§;)\x§;) 0.

1 ]
L e ey i)

0) ) p(ytklx,,i))p(x,l)le;)l)

Wy, OC Wy ~y 2@ O ) ) — Resampling: For j=1,..., N, sample with re-

i X0ty Yiriti placement indexl (j) from discrete probability
In practice, a resampling procedure is added in order to avoid {w.i=1,...,N}over{l,...,N} and setr;)’ =
degeneracy. This procedure duplicates trajectories with large x Y. Setwt(k‘) =1 vi=1..,N

weights and removes small weighted trajectories.

2.1.1 Standard particle filter Note that particle-based filtering techniques update the fil-

tering distribution at observation times only. However, af-
ter the estimatep(x,, |y;,.;,) has been updated at observa-
tion time 1, the filtering distribution can be predicted in or-
der to have a continuous estimation pfx,|y;,., ) for all

t €]tx, tr41[ until the next observation time

When the proposal distribution is set to the prior (i.e.,
n(x,k |xto:tk,1a )’zl:zk) = p(xlk|xtk,1))r the Welght updating
rule (Eq.5) is simplified to the computation of the data likeli-
hoodp(y;, |x,k)) This particular instance of the particle filter
is called theBootstrap filteror sequential importance resam-
pling (SIR) filter (Gordon et al.1993. Due to its simplicity

it is the most commonly used particle filter. It is however a p(x;|y; ) = Zw,k 8 (,)(x,) (6)
very inefficient distribution for high-dimensional space as it i=1

does not take into account the current observation and de- )

pends only weakly on the past data through the filtering dis-where, for alli =1,..., N, the stater”’ is sampled from
tribution estimated at the previous instant. This distributionEq. (1), starting fromx(’).
requires a great number of particles to explore meaningful

areas of the state space.
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2.2 Fixed-lag smoothing problem 3 Fixed-lag smoothing with conditional simulation

Contrary to the filtering approach that uses past and presernfthe smoothing method we propose is based on a conditional
observations, the smoothing in state-space models aims at esimulation technique that is presented in S8ct. We then
timating p(x;| ¥,y fOr all ¢ € [11, fendl, using all past and  develop in Sect3.2 how this technique can be used to im-
future observations over a given time period. As raised in theprove the estimation of the smoothing distribution (E2g.
introduction, existing smoothing methods do not apply di-

rectly to a general nonlinear model of type Efj.ih a high- 3.1 Conditional simulation

dimensional context, since assumptions have to be made that . ) ) o ) ]

may not be realistic. Instead of solving the global smoothing,Conditional simulation of a diffusion aims at sampling tra-
we will concentrate in the rest of the paper on a fixed-lag/€ctories from a given process

zmggm::g,p\/rv:lgtl:gn::.onstltutes a partial answer to the globaldx(t) — fx())d +0 (x(1)dB () ®)

The objective of the fixed-lag smoothing will be to replace petween two times =0 and r = T, with the constraints
the predictive distribution (Egp) by its smoothed version x(0) = u andx(T) = v. This simulation problem is treated
POt Yiiaiy) V1 €tk k1] sequentially each time a new ob- by pelyon and Hu(2006), where the authors show how to
servationy,,, arrives. This will allow us to reduce the tem- gptain the law of the constrained process from a Girsanov
poral discontinuities inherent in the filtering technique that {heorem. In practice, the proposed algorithms consist in sim-
successively predicts the distribution of the state between Obulating trajectories according to another diffusion process,
servations, and updates this distribution at observation timesyhich s built to respect the constraints and is easy to simu-

To achieve this, by construction of the particle filter that |ate from. The conditional distribution of the constrained pro-
weights entire trajectories (see E3), it is known (see for  cegs (Eg8) is absolutely continuous with respect to the dis-
instance Doucet et al. 2000 that the fixed-lag smooth-  ipytion of the auxiliary process, with explicitly given den-
ing distributionp(x¢|yr,.,.,) can be directly obtained from sity. For instance, in the case where the drift is bounded (a
the marginal at time of p (x4 Y1:.,). The empirical  gimilar algorithm is proposed iBelyon and Hu(2008 for

smoothing distribution is then given by the unbounded case) and withinvertible, the algorithm is
N based on the simulation of trajectories from the following
PG| Vrvis) = Y wi), 8,0 (k1) Vi €l tigal. (7)  Process:

i=1 i) —v

T—t

However, this approximation is simply a reweighting of past de () = (f(x([)) B ) dt +ox®H)AB(), ©)

existing particle trajectories, and relies on the support of the L )
filtering distribution at time. If the number of particles is  With initial condition ¥(0) = u. Note that Lemma 4 iDe-
too small with respect to the state dimension, the support ma*é/o_n and Hu(200 deals with the existence of a unique so-
be greatly reduced by the correction step (assigning smal ution for this equation. Thl_s process |_sa5|mple mod|f|c_at|on
weights to all particles except a few), leading in practice to©f EQ. (), where a deterministic part is added to the drift. It
a bad estimation op(x;|y..;,,)- Moreover, if particle tra- 1S then easy to sn_nulate unco_r1d|t|opal trajectories from this
jectories have been forced towards observations during th@rocess, and all simulated trajectories will sati$fy’) = v
filtering step (like in the WENKF procedure), a smoothing _by Constru_cn_on. For simplicity we will assume in the fqlloyv-
based on those particles will fail because it will not be ableind thato is independent of () (note however that this is
to correct discontinuities. Consequently, since we are inter"0t @n assumption iBelyon and H(2009). The law of the
ested in smoothing techniques that are efficient in a high-conditioned process is given by
dimensional context, this direct smoothing technique can no .~
be used in its basic form and has to be improved. EE[h(x)lx(O) =u.x(T) = v] =E[h(®)a®], (10)
!n the follpwing, we propose to use a conditional simu- for all measurable functions, where
lation technique of diffusions that will enable the sampling
of new smoothed trajectories between timeandr; 1. The T GO —0TE G0
approximation of the smoothing distribution (Ef.at each ¢ (%) = exp _/ —v UACIO (11)
hidden time will then be improved. The conditional simu- T—t
lation technique is presented in the next section, before the
resulting smoothing procedure we propose. is the density coming from the Girsanov theorem (3eg/on
and Hy 2006, with ¥ = o (¥(1))o (X (1))7.
Let us note that the presence of the drift part of model
(Eq. 8) in the auxiliary process (E@®) is crucial to making
the simulation efficient. The same process had initially been

0
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proposed byClark (1990 to solve the conditional simulation where each??)("') is sampled from Eq.9) with initial con-
problem. On the other hand, standard Brownian bridges thagtraim,;g)(f) = x;;') and final constraintt(i)
could be used as auxiliary processBaiham and Gallant The estimation of the smoothing distribution of interest is
2003 lead in practice to poor approximations of the original finally written as
constrained diffusion in our high-dimensional setting, since v "
B_:rownlan bridge trajectories are too far away from trajecto- PO Yiny) = Z wz(/:il Z“(f(i)(j))‘s*”(” x,),
ries of Eq. B). = xr
In the following, the conditional marginal of interest

i=1

p(x;]x(0) = u, x(T) = v) will then be approximated as fol- Vi €tk tier1]- (18)
lows: The algorithm we propose to compute the fixed-lag

M _ smoothing distribution on a given time interva, #;41] is
p(x/1x(0) =u,x(T) =v) = Za(ﬂf))ai(,-) (x;) therefore the following:

=1 '

v € [0, T], (12) Algorithm 2 Fixed-lag conditional smoothing
where theM trajectories{¥”};_1.,; are simulated from Foreactn =1, 12,...
Eq. @) with ié’) =uforalj=1,..., M. — Store {x;(,f)}i=1;1v and compute{xgil},-zlw and asso-
. . @) . . . )

3.2 Proposed fixed-lag smoothing method ciated welghtqw,M},:l;N from a particle filter algo

rithm;
We show in the following how the conditional simulation
technique can be used to improve the estimation of the lo-

cal smoothing distributio (x; |y, for all # €]z, fi11]- — SimulateM conditional trajectories
We first note that this distribution can be decomposed as {-’Z';(l)(])}jzle for 1 € [t 1] from EqQ. @) with

an Euler scheme, with the constraiﬁfg(-") = xt(j)
(O16)) (@)

— For each pair{xflf),xl(]ﬁ)ﬂ}, i=1,...,N:

P(xt|}’t1:zk+1) =/p(xtaxtkaxtk+1|yt1:tk+1)dxtkdxtk+1

andx; ;" =X,
:/p(xl‘k’xfk+1|yf15fk+1)p(xf|xtk’xtk+1’ytlitk+l) — Compute weights () from Eq. 1) for all
dr,, dx, .. (13) j=1,...,M ,with final constraimxt(;il;
Then, from the state-space model properties, we obtain — Computep (x| ys:1.,)
=3 w) Y @O s () for all
PXe|Yryiniq) Z/p(xlkvxlk+1|yllllk+l)p(xl|xfk1xfk+]_) t €ltx, a1l

dx, dx;,,. (14)

Moreover, from the particle filter Monte Carlo approximation
described by Eq.3), the joint law p(x;., x4 ;| Ys:1..,) CAN
be replaced by

One-dimensional simulation study

In this section, the smoothing method is first experimented

. N o on a one-dimensional state space model. Since the proposed
e AT ED Y Wiy 8@ 0y (ny1sX4), (15)  approach relies on a preliminary particle filtering step, filter-
i=1 e ing results are first presented in Set12 (either consider-
Wherewt(lfil are the particle filter importance weights. ing a sta_ndard particle fiIt_er or the WEnK_F). The results ob-
Plugging Eq. {5) into Eq. (L4) then leads to the following  tained with the standard fixed-lag smoothing method are then
approximation for the fixed-lag smoothing distribution: shown in Sect4.3. Finally, Sect4.4 presents the smoothing

results obtained with the proposed technique.

N

A @) @ @O

PO Vi) = Y wi, pGerlxg) xy) ). (16) 4.1 state-space model
i=1

@) .0
3 ’xtk+1
mated using Eq.1Q) for each pair of initial and end points

The one-dimensional state-space model of interest is a sine

) can be esti- = ! X - |
diffusion, partially observed with noise (used as an illus-

The conditional distributionp(x;|x

@ andx® - tration by Fearnhead et al(2008 for a particle filtering
g e method):
M .
A i ~()(j dx(r) = sin(x(¢))dr +o,dB(?), 19
P(xtlxgk),xgk)ﬂ) = Za(x( )(j))%(i)(j) (x1), (17) @ (x(#)dr + 0> dB (@) (19)
j=1 ! Yoo = Xg+ Vi (20)
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0 20 40 60 8 100 120 140 160 0 20 40 60 8 100 120 140 160
t t

(a) Standard PFX = 20) (b) Standard PF/{ = 10000)

Figure 1. Simulated sine diffusion trajectomyz) and partial obser-
vationsy(#;) (dots) with;, — 1,1 = 20A¢.

B 100 w0 &
t t

(c) WENKF (N = 20) (d) WENKF (V = 10000)

2 _ ~ ; 2 _ .
yvhereax f_h0-5 andy;, . .p/(O, (.Iy) \?"thdg%’ =0.01. Ohﬁ tra Figure 2. Standard PF and WENKF results. Thick line: hidden dif-
Jectory of' t e_ proc_ess_ls Irst simulate ] rom EfPYwith an fusion; dots: partial observations; dotted line: estimated filtering
Euler-type discretization scheme of time st&p=0.005.  yean.

This trajectory will constitute the hidden process, observed

throughy,, generated according to EqRQ) at every time

stept, with 1 — 1,1 = 20At. The trajectory is plotted in  brutally corrected with the EnKF step at observation times.
Fig. 1, together with the corresponding discrete observationsA smoothing will aim at reducing these temporal discontinu-
at timesty. ities, while providing dynamically consistent solutions.

4.2 Particle filtering results 4.3 Standard fixed-lag smoothing results

The filtering results are presented for the standard particldrom the particle filtering results, we now present the results
filter (denoted PF in the following) and the weighted ensem-obtained with the direct particle smoothing procedure de-
ble Kalman filter (WENKF). Two situations are shown, with scribed in Sect2.2 This procedure relies on existing trajec-
areduced ¥ = 20) and high numberN = 10 000) of parti-  tories. The smoothing distributiop(x; | y:,.,.,,) iS computed
cles. The case with a high number of particles is shown adackward for allr €], #+1] using expression Eq7) each
the reference for comparison purpose; note however that thigme a new observation, ,, becomes available. The smooth-
ideal situation is not reachable in a high-dimensional contexting mean is computed 8. ; w\ x” for all 1 €]t fi4.1],
since the number of particles has to be reduced for evidenind the standard deviation is computed in the same way from
computational cost reasons. the weighted particles.

The results for the two configurations are presented in |t can be observed in Figa that the smoothing based
Fig. 2, where the dotted lines represent the filtering meanon the standard particle filter is not efficient when the num-
estimates. The filtering distributiop(x; |y:,.,) is estimated  ber of particlesV is small: only a few particles are close to
at each observation timg using Eq. 4), and predicted be-  the observation at timg and have nonzero weights, imply-
tween observation times from Eg6)( The mean is then ing that the smoothing distribution is poorly estimated (see
estimated from weighted particles Ef\’zl w,(;)x,('), for all for instance between observation times 100 andr = 120,

t € [, te+-1[. Figure 2a—b shows that the standard particle where the smoothing distribution is artificially peaked but
filter results diverge from the reference solution between obfar from the hidden trajectory). The smoothing result ob-
servation times, for low or high number of particles. As a tained from the reference configuratioh= 10000 is plot-
matter of fact, when no observation is available, the state disted in Fig.3b. In that situation, since many trajectories have
tribution is predicted from the dynamics only, so that par- high weights at observation times, the estimation of back-
ticles trajectories are not guided towards the next observaward smoothing distributions is improved and includes the
tion. At observation timeg,, high weights are given to par- hidden trajectory.

ticles that are close to the observation, so that the estimated Moreover, Fig.3c—d shows that the standard smoothing
mean suddenly gets closer to the solution. These discontinusased on the WENKF result fails for a low or high number
ities between measurement times can also be observed in th# particles. As a matter of fact, particle trajectories are arti-
WENKF results (Fig2c—d), because particle trajectories are ficially corrected by the EnKF step at each observation time.
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(a) Standard smoothing from PR (= 20) (b) Standard smoothing from PE/(= 10000) . i
(a) Proposed smoothing from standard PF (b) Proposed smgdtbin standard PF

(N =20 andM = 50) (N =20 and M = 500)

w w0 ® w0 o
t t -06

(c) Standard smoothing from WEnNKE(= 20) (d) Standard smoothing from WEnKB(= 10000) -08

Figure 3. Standard smoothing from PF and WENKF results. Thick & 5 & @ = A e e e @ w
line: hidden diffusion; dots: partial observations; dotted line: esti-
mated filtering mean.

(c) Proposed smoothing from WENKF (d) Proposed smoothing frormK¥E

(N =20 andM = 50) (N =20 andM = 500)

Figure 4. Proposed conditional smoothing result. Thick line: hidden
Resulting trajectories are highly non-plausible. Even for agjffusion; dots: partial observations; dotted line: estimated back-
huge number of particles, a smoothing based on those existvard smoothing mean; thin line: estimated standard deviation.
ing trajectories is not able to reduce the induced time discon-
tinuities.
particles. Again, the smoothing is computed with= 50
andM = 500 conditional trajectories, and the corresponding
results are presented in FBg—d. Instead on relying on exist-

4.4 Proposed smoothing results

In this section, we show how the proposed method can im- - ; ] . .
prove the estimation of backward smoothing distributions!"d WENKF trajectories that may not be plausible trajectories

when it is not adequate to rely on existing trajectories only,°f the model (because of the EnKF correction step), the pro-
This is the case if the number of particles is too small, asP0S€d method samples new trajectories between observation
demonstrated from the experiment presented in Fagor if t|me§. This leads to a good estimation of th? smoothing d|§-
the existing trajectories do not correspond to plausible tra{fiPutions, contrary to the standard smoothing presented in

jectories of the model (as shown for the WENKF result in Fig. 3c. Note that the smoothing results are very similar to

; _ the result obtained from the standard particle filter (Bay=
Fig. 3c—d). _ - ; .
Our smoothing is first applied using the filtering output ?Znt;icause both filters have similar behavior at observation
[ .

of the standard particle filter wittv =20 particles. Fig-
ureda shows the result obtained with a samplingbt= 50

conditional trajectories between each paif,f) ,xt(k’il}, i=
1,...,N. The smoothing distributionp (x;|ys:,,,) IS cOM- 5  Application to a high-dimensional assimilation

puted from Eg. 18), so the smoothing mean is computed problem
asy N wd Z?ila(i(i)m)if‘)(-’) for all 7 €], tr41], and
similarly for the standard deviation. This result highlights the This section aims at illustrating the applicability of our
fact that since the proposed method creates new trajectoriesjethod to a high-dimensional and nonlinear scenario, with-
it is able to correct the deficiencies of the standard smoothout extensive study at this stage. The method is applied to
ing approach presented in Figa when the initial number of a turbulence assimilation problem, where the model of in-
filtering particles is too small. In Figdb, the same experi- terest is of type Eq.1). The goal is to recover temporal es-
ment is presented using = 500 conditional trajectories. In  timates of velocity/vorticity over a given spatial domain of
that case, the result is very similar to the reference particlesizen = 64x 64, from a sequence of noisy observations and
smoothing result presented in FBp, obtained from a parti- a continuous a priori dynamical model based on a stochastic
cle filter with N = 10 000. version of the Navier—Stokes equation. Within an environ-
In parallel, the proposed smoothing has been tested usingnental framework, a direct application would be the estima-
the output of the WENKEF filtering technique withi = 20 tion of wind fields or sea surface currents from satellite data.
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practice for high-dimensional systenfstoud et al.2010,

and the particle filter (which solves theoretically the true fil-
0 tering problem, without approximating the filtering distribu-
o tions with Gaussian distributions). Since the methodPaf

J padakis et al(2010 is intrinsically a particle filter, it then

leads at each observation timeto a set of particles and
Weights{‘;'g?tk, wy, }i=1:n, as required by the algorithm pro-
posed in Sect3.
The particle filter step requires simulations from the dy-
@ () namical model (Eg21), and the conditional simulation step
requires us to sample trajectories from its constrained ver-
Figure 5. State example(a) Velocity field w;; (b) associated vor-  sjon, which consists in a similar problem with modified
ticity mapé;. drift (see process Ed). The model is discretized in time
with the time stepAr =0.1; more information about the
discretization scheme may be obtainedPapadakis et al.
(2010. The random perturbations are assumed to be real-

5.1 State-space model

Let £(x) denote the scalar vorticity at point= (x, y)” izations of Gaussian random fields that are correlated in
associated with the 2-D velocitw (x) = (wx(x),wy(x))T space with thezz Gaussian covariance funct®dx;,x;) =
[lx;—x ;|

through&(x) = 93“;" - 33“;3. Let £ € R" be the state vector 1€Xp(———-—), wheren = 0.01 andx = 13. In practice,
describing the vorticity over an = 64x 64 square domain, the simulation of these perturbations is performed in Fourier
andw € R?" the associated velocity field over the domain. space, with the method describedtnenser(2003.

We will focus on incompressible flows such that the diver- ~ Finally, the estimation of the smoothing distributions re-
gence of the velocity field is null. A stochastic version of quires the computation of conditional trajectories weights,
the Navier-Stokes equation in its velocity—vorticity form can corresponding to Girsanov weights given by EbL)( After

then be written as a Riemann sum approximation of the integral, the compu-
1 tation of weights requires the inversion of the matExof

dé, = —VE&, - w,dr + R—Agldt +odB;, (22) size (n,n), wheren = 64x 64 is the number of grid points.
e 1

We choose to comput& = empirically using a singular
where Re denotes the flow Reynolds numbetd= 3000).  value decomposition computed from tiv realizations of
The uncertainty is modeled by a Brownian motion of size  the perturbation fields used for the constrained trajectories
with covarianceX = oo, whereo € R". A velocity field  simulations. LetZ be the matrix of sizen, M) containing
example, generated from the model ERIL)( is shown in  the M-centered fields of size = 64x 64; the SVD leads to
Fig. 5a, together with the corresponding vorticity map (b). z = UDVT, sothazz” = UDD7UT. The inverse of the co-

We assume the hidden vorticity vectdris observed variance matrixt —1 is finally computed as
through noisy measuremengg at discrete times, where
fx — tr—1 = 100A7, andAr = 0.1 is the time step used to dis- M (Zz7)~* = muDdDT)~ U7, (22)
cretize Eq. 21). In our experimental setup, measurements
correspond to PIV (particle image velocimetry) image se-which only requires the inversion of a diagonal. Note that
quences used in fluid mechanics applications. Note howevemore efficient procedures could be implemented in our case
that other kind of data can be used similarly within this state(homogeneous Gaussian covariance) since the covariance
space model, like meteorological or oceanographic data fofunction is separable in the andy directions. This means
instance. The state and observation are related in our cagbat the covariance matri can be written as the Kronecker
throughy, = ¢(&,) + v, whereg is a nonlinear function product of smaller matrices and more easily invert8dn(
linking the vorticity to the image data, and, is a Gaussian et al, 2012. However, the SVD inversion can be applied to
noise, uncorrelated in time. any covariance structure, in particular it could deal with a

non-homogeneous covariance matrix.
5.2 Implementation details

5.3 Results
We recall that the smoothing relies first on a particle filter

step. Due to the high dimensionality of the state vector, theln this section, we illustrate the capability of the proposed

use of a standard patrticle filter is not adapted to solve themethod to reduce the temporal discontinuities inherently in-
filtering problem, as discussed [Snyder et al.(2008 or troduced by the filtering in continuous—discrete state-space
Van Leeuwen(2009. We then make use of the method pre- models.

sented byPapadakis et a{2010, which combines the bene- The smoothing result relies on the output of the WEnKF

fits of the ensemble Kalman filter, known to perform well in filtering step, computed wittv = 500 particles. Compared
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(a) Filtering weightg = 400 (b) Filtering weightst = 500
Figure 7. Full line: mean square error between ground truth vor-
ticity and estimated filtering mean; dotted line: mean square error
between ground truth vorticity and estimated backward smoothing
mean.
(d) Conditional simulation weights= 400 (e) Conditional simulation weights= 500
Figure 6. Filtering and conditional simulation weights. The WENKF result is first presented in FBjfor the time

interval [400,500] between two observations, where esti-

mated mean vorticity maps are computedYa§ ; wi).t.”

to the size of the system, the number of particles is theoretiTor all t € [400,500(, and aSZN 1wé’3 @) for t = 500. The
’ i= t - .

cally too small for the filter to be truly efficient. In practice, yomn0ra discontinuity between estimations can be observed
many filtering trajectories have close to zero weight at Ob'when reaching observation time=500: the vorticity map

servation times. Histograms of filtering weights are given asig g qdenly modified in order to fit the observations, intro-

illustration in Fig.6a—b E_it two times = 400 andr = _500' ducing inconsistencies in the vorticity temporal trajectories.
Notg however that the filter is not degenerate a_”?' is able Note that the application of the standard particle smoothing
provide res_ults that get close to the hldd_en vorticity at Mea-(gescribed in Seck.?) will fail here, and not only because
surement times. Th|s can be pbserved_ in Figwhere the the number of particles is too small. As a matter of fact, we
mean square error s F"O“e‘_‘ with afull line, averaged at eaC'}’ecall that the filtering trajectories have been computed from
time over the image domain of size=64x64. Since the 0 ethod presented Papadakis et a(2010, which uses
ground truth vorticity sequence is known in our experimen-y,o engemple Kalman filter step as an importance distribu-

tal setup, the mean square error is computed between thg,, i, the particle filter algorithm. The ensemble Kalman
h|d1\(]jen (\i/)()r(t:)czlty and the estimated filtering mean, given by fiyer consists of a prediction step from the dynamical model
Di—1wy & forallz e[z, i4l. The correction steps lead Eq. (21), and a correction step that shifts particles towards
to successive error decreases at observationtimes. ~ the observation. Because of this correction step, the sampled
The proposed smoothing method has been applied withijtering trajectories between two observation times do not
M = 200. Note that we take benefit from the fact that many correspond to trajectories of the dynamical model. This im-
filterings particles have close to zero weight. Indeed, thepjies that from such a particle filter, the standard smoothing
smoothing method relies in practice on a reduced numbepased on existing trajectories will not be able to reduce the
NM of sampled conditional trajectories (WitN << N),  temporal discontinuities observed in Fg).This can be ob-

which makes the problem computationally tractable. In thisseryed in Fig.9, where smoothed vorticity maps are com-

experiment, we have retained around 5% of initial filter puted aSvazlwff(; @ for t = 400, and aSZ,N:lwgS @

ing trajectories. The smoothing distributigig, [ yi:1..1) 1S for all 1 €]400,500]. The discontinuity at time — 500 is stil
computed for alk €]z, 7+1] from Eq. (L8), and its mean is present.
computed a$; w;) Y a@OUNEDY Histograms The result obtained with the d i

=1Wh 'y 2= proposed method is plotted
of conditional simulation weights(§”’’) are given as an in Fig. 10. Estimated mean vorticity maps are computed
illustration in Fig.6c—d for a given particlgi) at two times, — as Y, w, f;ila(g<i><f>)§,("><f'> for all r € [400,500].

t =400 andr = 500. Spatio—temporal vorticity trajectories are gradually modi-
The mean square error is computed between the true voffied until observation time = 500, preserving the fluid flow
ticity and the estimated smoothing mean, and plotted inFig. properties. As a matter of fact, since the proposed method
with a dotted line. As expected, the smoothing method re-samples new trajectories from the law of the physical pro-

duces the error at hidden times between observations. cess (Eq.21), the smoothed vorticity trajectories are by
In addition, we present below a qualitative evaluation of construction consistent with the a priori dynamical model. In

the smoothing result for the same experiment, over a specifigrder to sample the smoothed trajectories, the method relies

time interval. on the model and on filtering marginals at observation times,
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Figure 8. Filtering result with the method &fapadakis et a{2010.
Estimated mean vorticity maps for different timelsetween obser-
vation timest = 400 andr = 500.
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Figure 9. Standard particles smoothing result (see S2@). Esti-
mated mean vorticity maps for different timedetween observa-
tion timest = 400 andr = 500.

but not on filtering trajectories at hidden times. Itis then able
to smooth the discontinuities inherent in the particle filtering

technique we have used, contrary to the standard smoothin

presented in FigP.

6 Conclusion and discussion

n: Monte Carlo fixed-lag smoothing in state-space models
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Figure 10. Smoothing result with the proposed method. Estimated
mean vorticity maps for different timedetween observation times
t =400 andr = 500.

steps before time,, there are in practice only a few distinct
filtering trajectories at timeg_, if & is large. Consequently,
the estimation of the joint law in Eq19) will not be reliable
anymore ifh is too large.

We have shown the practical applicability of the method to
a high-dimensional problem. Nevertheless, the algorithm re-
mains costly since a second Monte Carlo step is added to the
Monte Carlo nature of particle filter algorithms. Yet, from
an algorithmic point of view, the sequential nature of the
proposed technigue allows the smoothing to be implemented
with a similar structure as filtering methods (sequential sam-
pling and weighting of model trajectories). It is then easy to
couple this smoothing to an operational filtering system and
benefit from parallelization strategies, for instance.

Since the proposed smoothing uses the filtering result as
input, it relies on the success of the underlying particle fil-
ter. For high-dimensional systems, a standard patrticle filter
is not adapted and it is necessary to use filtering techniques
that guide particles towards observations. In this paper, we

se the WENKF algorithm. In practice, any efficient particle

Itering technique with such a guiding can be used within
our framework. Note however that the construction of such
techniques remains an open area of research.

We plan to work on the application of the smoothing
method to a real high-dimensional case (for the estimation

In this paper we introduced a smoothing algorithm based on @f sea surface currents from satellite image sequences).
conditional simulation technique of diffusions. The proposedHowever, such a work will imply numerous difficulties
smoothing is formulated as fixed-lag, in the sense that it iswhich are not related to the smoothing technique but to
performed sequentially each time a new observation appearghe definition of the state-space model: definition of a
in order to correct the state at hidden times up to the previousuitable physical model, good characterization of state noise
observation. Note that a decomposition similar to E48) (  structure and model parameters. Therefore, this will be part
to (18) can be written from an integration up to a previous of a future work.

time #_p, with 2 > 1. This implies that the smoother can

be formulated with a larger fixed lag, in order to correct the Edited by: P. J. van Leeuwen

state backward not only up to the previous observation, but

up to further measurement times. Yet, due to the successive

resampling steps that have been performed in the filtering
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