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Vasile Iancu, Carla Protocsil, Nicoleta Gillich, Cornel Hatiegan, Gilbert-
Rainer Gillich   

The Influence of the Number of Finite Elements 
upon the Accuracy of the Results Obtained Using 
Discrete Models  

Discrete models are often used because they require a simple mathe-
matical approach, even if their accuracy is inferior to continues models. 
This paper presents a study regarding the influence of the number of 
used elements upon the accuracy with which the natural frequencies of 
straight beams can determined. The results show that, to achieve a 
reasonable accuracy, it is necessary to use at least ten elements, while 
for rigorous calculus, more than three hundred elements must be con-
sidered. 
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1. Introduction  

Theoretical models of technical systems whose mathematical model contains 
simple and/or differential equations are called discrete models. They use several 
numbers of elements, each of them staying for a system portion; consequently 
they have a finite number of degrees of freedom. Opposite to them, the so-called 
continuous or rheological models completely fill the space portion of the system; 
they are easy to be developed, but are described by complex and complicated 
mathematical models, difficult to be solved. Continuous models are more suitable, 
providing trustful results [1].  

Referring to beams, usually in the continuous approach the Euler-Bernoulli or 
Timoshenko models are used [2], while discrete models proposed by Duncan, 
Rayleigh or Ritz (se [3] and [4]) are known. Obviously, using diverse models dif-
ferent results are obtained; this paper compares the reliability and precision level 
of discrete models, having as reference the continuous one. 
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2. Determination of the equivalent mass from dynamical condi-
tions 

By considering the behavior of a beam-like structure modeled by the Euler-
Bernoulli model, the basic relation providing the natural frequencies is: 

m

k
f

π2
1=  (1) 

where f  is the frequency (in Hz), k is the stiffness and m  is the vibrating mass. 
From simple bending theory, we have the deflection at the free end: 
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where E  is the Young’s modulus, I  the inertia moment of the cross section. 
The stiffness k is defined by the relation: 
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Thus, substituting relation (3) in relation (1), the frequency becomes: 
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Consider the case where the bar has negligible mass, and has an element 
with mass m1 placed at the distance x1. We want to find the equivalent mass me 
placed at the free end L of the bar, which produces the same dynamic effect 
(characteristic frequency) as the mass m1. 

 
 
 
 
 
 

 

 

 
Figure 1. Cantilever bar with masses placed at certain distances 
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In the first case, considering only the mass m1, from equation (4) is deduced 
the following relationship:  

3
11

1
3

2

1

xm

EI
f

π
=  (5) 

and for the mass me placed at the free end, we obtain: 
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The frequencies should be equal, so from (5) and (6) we obtain: 
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In this case, the cantilever with the mass m uniformly distributed can be ana-
lyzed using an equivalent weight bars placed at the free end. Considering an ele-
ment of length dx located at a distance x from the fixed end, the mass of it is 

dxm ⋅ , and the equivalent mass at the rear of this element is: 
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and by integration over the entire length, one obtains: 
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or 

4
0Lm

me =  (11) 

where m0 is the unit weight of the cantilever ρ⋅= Am0  

In conclusion, a cantilever with its own weight uniformly distributed along the 
length vibrate at the same frequency as a cantilever loaded at free end with a 
mass equal to ¼ of the mass of the bar, which meant that the bar loaded with 
equivalent weight me located at a certain distance of restraint, shall be calculated 
with the relation (11). 
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3. Discrete models of straight bars 

Figure 2 shows two modes of mass of an element mesh of constant section 
beam. Duncan's model (fig. 2. b, d) has the total mass concentrated in the center 
of gravity; Rayleigh's model (fig. 2. c, e) has one half of the total mass concen-
trated at each end of the bar. With ρ⋅= Am0  is noted the mass per unit length, 

where ρ is the density of the material and A is the cross-sectional area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Mesh mass modes of a constant cross section beam element  

 
Mesh mode, using Rayleigh model, depending on the number of items se-

lected is exemplified for a cantilever (fig. 3) for different levels of approximation. 
In [3], states that a segment model (fig. 3.a), the ratio between pulsation 

own and the true value is ω1/ω10 = 0,7. If the beam is divided into two sections 
(fig. 3.b), the ratio of the first pulse is ω1/ω10 = 0,9. If the beam is divided into 
three sections (fig. 3.c), the ratio of the first pulse is ω1/ω10 = 0,95. 
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Figure 3. Rayleigh model for n levels of approximation 
 
To start with, we consider the model of (fig. 3.a), in which the mass is distrib-

uted to the ends of the bar (m/2). As shown in the relation (11) the equivalent 
mass is considered concentrated in the free end of the bar: 
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where: m is the total mass of the bar, that mines Lmm 0=  

In this case, we can write the frequency fc: 
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For the case when considering a single element, the mass is distributed 
equally to the two ends. In this case we have: 

mmeI
2
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So we can write the frequency fI : 
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The ratio of calculated frequency Rayleigh model with a single element and 
the continuous case is: 
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If we consider two elements, the mass is distributed evenly on the ends of 

their elements (Fig. 3, b). Thus, at the free end we have 42 mmII =  and in the 

middle we have 21 mmII = . In this case: 
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resulting the total equivalent weight meII: 
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So the frequency fII is: 
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The ratio of calculated frequency Rayleigh model with two elements and con-
tinuous case is: 
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For the mesh case with three elements, the mass of each element is m/3, so 

at the very end we have 61 mmIII =  and in the other points we have 

321 mmm IIIIII == , therefore: 
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So the total equivalent weight is placed at the free end of the bar: 
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And the frequency fIII is: 
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In this case the frequency ratio calculated with the Rayleigh model, is: 
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There is a good correlation between the results obtained with the method de-
scribed above and shown in [5]. 

The solution is sought for meshing with n elements. In this case, the total 

weight is distributed in n, and on the free end have ( ) nmm n
n

2=  and in other 

points ( ) ( ) nmmm n
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== −11 , thus the equivalent mass to the free end is: 
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For the first point the equivalent mass, is: 
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For the second point the equivalent mass, is: 
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For the n - 1 point the equivalent mass, is: 
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The total equivalent mass me(n), is: 
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Given that: 

( ) 21

1

3

2

1







 −=∑
−

=

n
i

n

i

 (32) 

results: 
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In this case the frequency for the system modeled with n elements, can be 
written: 
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and the ratio of the frequency for the beam modeled with n elements can be writ-
ten:  
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4. Results and conclusions 

Table 1 shows the frequency fi and in Table 2 the ratio ri for some simulated 
cases and their diagram (figure 4). There is a good convergence to 1 when the 
number of elements analyzed is grater then 300. 
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Table 1. Frequency fi  as the number of elements used 

No. of elements i 1 2 3 4 5 6 
fi 2,221441 2,809926 2,980376 3,047793 3,080585 3,098848 

No. of elements i 7 8 10 20 40 60 

fi 3,110018 3,117333 3,126002 3,137673 3,140611 3,141156 

No. of elements i 80 100 200 300 500 900 
fi 3,141347 3,141436 3,141553 3,141575 3,141586 3,141591 

 
Table 2. Ratio ri  as the number of elements used 

No. of elements i 1 2 3 4 5 6 

ri 0,707107 0,894427 0,948683 0,970143 0,980581 0,986394 

No. of elements i 7 8 10 20 40 60 
ri 0,989949 0,992278 0,995037 0,998752 0,999688 0,999861 

No. of elements i 80 100 200 300 500 900 

ri 0,999922 0,999950 0,999988 0,999994 0,999998 0,999999 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. The ratio diagram ri by number of used elements  

 
 
For any bar with constant cross-section the results from Table 1 and 2 are 

valid, independent of density or geometric shape of the cross-section. That shows 
a good agreement between the results obtained for the model with 1, 2, or 3 ele-
ments with those presented in [3]. Technically acceptable accuracy is obtained for 
the model with 10 elements and consistent results with continuous system requires 
more then 300 elements. 
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