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Abstract

 Ground water arsenic contamination is a well known health and environmental problem in in several countries including 
Bangladesh. Sources of this heavy metal are known to be geogenic, however, the processes of its release into groundwater  
are poorly understood phenomena. In quest for the mitigation of the problem, it is necessary to predict probable 
contamination before it causes any damage to human health. This research has been carried out to investiaget the factors 
affecting the mobility of the contaminant and develop the prediction model. 
 Researchers have generally agreed that the elevated concentration of arsenic is affected by several factors such as soil 
reaction (pH), organic matter content, geology, iron content, etc. However, the variability of concentration within short 
lateral and vertical intervals, and the inter-relationships of variables among themselves, make the statistical analyses highly 
non-linear and difficult to converge with a meaningful relationship. Artificial Neural Networks (ANN) comes in handy for 
such a black box type problem. This research uses Back propagation Neural Networks (BPNN) to train and validate the 
data derived from Geographic Information System (GIS) spatial distribution grids. The neural network architecture with 
(6-20-1) pattern was able to predict the arsenic concentration with reasonable accuracy.
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1. Introduction

 Elevated concentrations of arsenic in groundwater 
are reported from several countries including United 
States, Mexico, Argentina, Vietnam, China, India, Nepal 
and Bangladesh among others (Bhattacharya et al., 
2004; Smedley and Kinniburgh, 2005; Bhattacharya 
et al., 2010). In Bangladesh, groundwater from shallow 
aquifers of Pleistocene to recent fluvial origin have 
been extensively used as the main sources of drinking 
and irrigation. The aquifers in unconsolidated and 
estuarine sediments are often contaminated with arsenic 
and pose a serious health and environmental concern in 
this country. According to a British Geological Survey 
report, a large part of Bangladesh groundwater is found 
to contain arsenic concentration beyond World Health 
Organization limit (≤10 μg/L) and national recom-
mended standard (≤50 μg/L) (NERC/DPHE/DFID, 
2001). It is estimated that around 57 million people 
drink water with arsenic levels exceeding the limits set 
by the WHO (Polizzotto et al., 2005). 
 It is generally accepted that the origin of arsenic 
is natural, and it is being released into the ground 

water through different processes, which are poorly 
understood. Two main processes on which the arsenic 
mobility in the groundwater depend are adsorption and 
desorption which are influenced by physicochemical 
conditions such as pH, occurrence of redox (reduction/
oxidation) reactions, presence of competing anions, 
and solid-phase structural changes at the atomic level. 
Arsenate (As III) and arsenite (As V), the two forms of 
arsenic commonly found in ground water, are adsorbed 
to the surfaces of a variety of aquifer rock, including 
iron oxides, aluminum oxides, and clay minerals. 
 Groundwater arsenic concentration and distribution 
in the Bengal basin are not well understood. Variability of 
concentration within short lateral and vertical distances 
makes it further difficult to predict the level of arsenic 
of a given well, even when the concentration of the 
adjacent wells are known (Van et al., 2003). It is, however, 
essential to establish relationships between arsenic level 
with simple yet measurable and identifiable indices 
such as channel proximity, pH level, organic matter 
content etc. for long term engineering solution of the 
problem. When the relationship between the input and 
output is complicated or application of other available  
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Abstract

The aim of the present study was to standardize and to assess the predictive value of the cytogenetic analysis
by Micronucleus (MN) test in fish erythrocytes as a biomarker for marine environmental contamination. Micronucleus
frequency baseline in erythrocytes was evaluated in and genotoxic potential of a common chemical was determined
in fish experimentally exposed in aquarium under controlled conditions. Fish (Therapon jaruba) were exposed for 96
hrs to a single heavy metal (mercuric chloride). Chromosomal damage was determined as micronuclei frequency in
fish erythrocytes. Significant increase in MN frequency was observed in erythrocytes of fish exposed to mercuric
chloride. Concentration of 0.25 ppm induced the highest MN frequency (2.95 micronucleated cells/1000 cells compared
to 1 MNcell/1000 cells in control animals). The study revealed that micronucleus test, as an index of cumulative
exposure, appears to be a sensitive model to evaluate genotoxic compounds in fish under controlled conditions.
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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methods are cumbersome or expensive, Artificial 
Neural Networks (ANN) comes in handy as an alternative 
numerical analysis procedure.
 ANNs are networks of highly interconnected neural 
computing elements that have the ability to respond to 
input stimuli and to learn to adapt to the environment. 
Using compiled historical data and the selected 
significant parameters, ANNs have already proven 
a powerful tool for various modeling requirements, 
including geotechnical engineering applications 
(Neaupane and Achet, 2004). ANN is now a well 
established tool, and details about it can be found 
elsewhere (Hayakin, 1998). 
 Backpropagation neural networks (BPNN) is a 
widely used algorithm for connectionist learning. Its 
rapid rise in popularity has been a major factor in the 
resurgence of neural networks. Developed by Rumelhart 
et al. (1988), backpropagation is a systematic method 
for training multi-layer neural networks. Despite its 
limitations, BPNN has dramatically expanded the range 
of problems to which artificial neural networks can be 
applied. This research uses Back Propagation Neural 
Networks (BPNN), a kind of multi-layered perceptron, 
to predict the arsenic concentration using input variables 
derived from GIS spatial analyses.

2. Materials and Methods

 Causes of elevated arsenic concentration and 
factors affecting it were studied to select the variables/
indicators to include in the model. ArcGIS software 
was used to generate, process and analyze spatial data 
of the selected indicators. 

2.1. Causes of Elevated Arsenic in Bengal Basin

 Groundwater arsenic concentration and distribution 
in Bengal basin is not uniform, and reconnaissance of 
well point data clearly indicates its strong correlation 
with surface geology. Higher levels of dissolved arsenic 
are generally found in low lying delta and flood plain 
areas of Bangladesh where water is produced generally 
from middle Holocene sediments. In this regard, several 
hypotheses are proposed to describe causes and processes 
of arsenic release into Bengal basin. Some of the most 
convincing and widely discussed causes of arsenic 
contamination in the basin are listed below:
 Release of arsenic by oxidation of arsenic-minerals 
(e.g., diagenetic pyrite and arsenopyrite) in the alluvial 
sediments (Mallik and Rajagopal, 1996). Lowering of 
groundwater table draws in oxygen, which oxidizes 
sulfides releasing arsenic (Zahid et al., 2008). Reduction 
of iron-oxyhydroxides (FeOOHx) in anoxic conditions 

and release of sorbed arsenic to solution (Nickson et al., 
2000; Bhattacharya et al., 2004). Arsenic species, in the 
form of As(V) and As(III), strongly adsorb on and/or 
co-precipitate with iron and manganese oxide/ hydroxides 
in the oxic environment and are released when anoxic 
conditions develop (Sullivan and Aller, 1996).

2.2. Factors Affecting Mobility of Arsenic

 Experimental studies of arsenic movement in 
sediments are limited, consequently, the interactions 
between arsenic within a soil matrix are not well 
understood. It is generally believed that pH level, 
microbial activities, Dissolved Carbon Content (DOC) 
and competing ions play dominant roles in arsenic 
release adsorption and desorption into groundwater. 
However, the processes involved are complex, and 
often the factors interact among themselves as well as 
with the arsenic mobility.

2.2.1. pH level 
 pH conditions can result in a change in anionic 
charge which causes release of electro-statically bound 
arsenic. In saturated sediments under varying pH 
conditions, arsenic is most stable under neutral 
conditions (pH7); the arsenic becomes mobile under 
acidic (pH4) or alkaline (pH10) conditions, with greater 
mobility observed under acidic conditions (Shaw, 2006; 
Con et al., 2011). This is because the Arsenate (AS III) 
adsorbs strongly to iron-oxide surfaces at acidic and 
near-neutral-pH (Dzombak and Morel, 1990; Waychunas 
et al., 1993), but desorbs from iron-oxide surfaces 
under alkaline conditions (Waychunas et al., 1993; 
Fuller et al., 1993). The adsorption maximum for As 
(V) and As (III) on FeOOH lies approximately at pH 
4 and pH 7-8.5, respectively (Fitz and Wenzel, 2002; 
Mahimairaja et al., 2005). 

2.2.2. Iron Reducing Microbes
 Reductive dissolution of iron(hydro)oxides 
(FeOOH) stimulated by microbial activity and organic  
materials is regarded as an important mechanism 
releasing arsenic into the aquifer (Islam et al., 2004; 
Ahmed et al., 2004; Mukherjee and Bhattacharya, 2001; 
Ravenscroft et al., 2001; Smedley et al., 2005). Under 
anaerobic conditions, FeOOH readily dissolves and 
arsenic is released into the soil solution (Takahashi et al., 
2004). Nath et al. (2008) studied the mobility of arsenic 
in aquifer sediments from areas of low- and high-arsenic 
groundwater and found that occurrences of As-bearing 
redox traps, primarily formed of Fe- and Mn-oxides/
hydroxides, are important factors that control the release 
of arsenic into groundwater at their study site.
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2.2.3. Organic Matter Content 
 It has been hypothesized that with increasing 
organic matter content the microbial activity is 
enhanced, which can impact the cycling of the elements. 
The concentrations of soluble As (V) as well as As (III) 
increase with an increase in soil organic matter content 
(Simona and Zagury, 2006). Dissolved Organic Carbon 
(DOC), in this connection, is a critical factor enhancing 
mobilization of both As (V) and As (III) in soil (Grafe, 
2001). An increase in DOC content promotes both As 
(V) and As (III) solublisation in soils (Simona and 
Zagury, 2006). Harvey et al. (2002) studied detailed 
vertical profiles for groundwater arsenic and sediment 
properties from a study site in southern Bangladesh. He 
suggested that respiration of organic carbon plays a role 
in arsenic mobilization. As such, the Dissolved Organic 
Carbon (DOC) introduced into subsurface aquifers with 
groundwater recharge lead to reduction or dissolution 
of iron oxyhydroxides and the subsequent release of 
associated arsenic into groundwater.

2.2.4. Competing ions 
 Arsenic adsorption can also be affected by the 
presence of competing ions. In particular, phosphate 
and arsenate have similar geochemical behavior, and 
as such, both compete for sorption sites. Oxyanions of 
molybdenum, selenium, and vanadium, in addition to 
phosphate, may also compete for adsorption (Robertson, 
1989).

2.2.5. Surface Geology 
 Since the origin of arsenic is geogenic and processes 
of release into the groundwater is geochemical, it is 
supposed to have relation with surface geology as well 
as physicochemical properties of the surface soil. The 
present study attempts geospatial analysis of arsenic 
status data in relation to some soil properties to predict 
the relation.

2.2.6. Drainage and surface elevation
 In general, if there is no impermeable layer, ground-
water follows the hydraulic gradient like surface water 
but at a relatively low pace. Most of shallow aquifers 
of Bangladesh have similar flow gradient as that of the 
rivers, and in the dry season the aquifers discharge into 
drainage channels. In anoxic condition, arsenic releases 
into the groundwater, and possible carried down the 
gradient towards drainage channels. This is evident by 
the pattern of distribution of arsenic in the Bengal basin. 
Higher concentration of arsenic, in general, is found 
near the channels, which increases with decreasing 
surface elevation.

2.3. Data generation using GIS technology

 Based on the review of available literature as 
described above, variables affecting the release of  
arsenic into groundwater including arsenic 
concentration, surface elevation, soil reaction (pH), 
organic matter, iron content, surface geology and 
proximity to channels, were selected to predict the 
level of arsenic concentration. ArcGIS 9.2 was used to 
generate process and analyze spatial data from the study 
area, Bangladesh. Digital maps of rivers and drainage 
networks, and sample location maps of soil reaction, 
organic matter content and iron content were collected 
from Soil Resource Development Institute (SRDI), 
Dhaka, Bangladesh. Likewise, the digital elevation 
model and surface geology map of the country were 
received from Center for Environmental and Geographic  
Information Services (CEGIS) and Geological Survey 
of Bangladesh respectively. The point map of arsenic 
concentration, generated by Department of Public 
Health and Engineering as shown in Fig. 1, was used 
to create arsenic distribution surface, analyze the 
geospatial relationship of arsenic and validate degree 
and distribution pattern of arsenic in the predicted 
spatial data (NERC/DPHE/DFID, 2001). Surface 
geology maps of Bangladesh were generalized into 
eight geological units on the basis of similarity in origin, 
deposits and age of deposition (Fig. 2). Point maps of 
pH, organic matter content and iron content were created 
by adding attribute data from soil survey reports to the 
sample location map. From a limited number of points 
or sample values, GIS software was used to produce 
continuous surface where the values to the surface,  
between the measured values, are assigned by 
interpolation. Triangulated Irregular Network (TIN) 
surfaces of organic matter, pH and iron concentration 
were created from the respective point maps (Figs. 
3-5). 
 Digital Elevation Model (DEM), a single-band 
raster dataset, contains continuous elevation values 
over a topographic surface by a regular array of z 
values representing surface elevation. A DEM data of 
Bangladesh of 300 m spatial resolution were used 
to study the relation of surface elevation to arsenic 
concentration (Fig. 6).
 The ‘Proximity toolset’ in the ‘Analysis toolbox’ of 
ArcGIS was used to establish proximity relationships 
with feature data. The toolset can produce output 
information with buffer features. Multiring buffer tool 
was employed to create a cover of channel proximity 
classifying the area into ten units, ranging from 1−10 
km distance from the nearest river, was created from 
the river system cover. 
 To make a homogeneous dataset for spatial analysis 
all the surfaces created were converted into grid surfaces 
of equal sized cells 100 m×100 m. Sample tool of 
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Figure 1. Point map of arsenic concentration Figure 2. Geology of Bangladesh

Figure 4. Organic matter content map of Bangladesh

Figure 6. DEM map of BangladeshFigure 5. Iron content (in ppm) map of Bangladesh 

Figure 3. Soil pH map of Bangladesh
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Table 1. Range of values used for training and recall

Parameters Range of Values

Soil organic contents (μg/L) 0.056 – 12.279

Iron content (μg/L) 1.273 – 500.00

Arsenic concentration (μg/L) 0.000 – 1078.2

Soil pH 4.197 – 8.5640

Channel proximity (km) 0.000 – 10.000

Ground elevation (m) 0.000 – 67.350

Geology (units)* 1 – 8
* Geological units are assigned unique values ranging from 
1 to 8

Figure 7. Neural Networks Architecture

Figure 8. Measured versus predicted concentration of 
arsenic

ArcGIS spatial analyst creates a table that shows the 
values of a raster, or several rasters, at a set of sample 
point locations. A sample point cover of 1,000 random 
samples spreading all over the country was created 
to extract data from same location points of all grid 
covers. Sample data for training and testing the neural 
network (ANN) were extracted from the created grid 
data set using the generated sample point cover as 
described above.

2.4. BPNN Model

 Fig. 7 illustrates the NN architecture used in this 
study. An input layer and a hidden layer were used to 
generate the output with the linear transfer function 
(also known as activation function). For the hidden 
layer, the ‘TanSig’ nonlinear activation function was 
used. In this study, trial and error method was used to 
determine the number of neurons in the hidden layer. 
The range of data used for training/testing is presented 
in Table 1.

3. Results and Discussion

 The final network architecture consists of 6 inputs, 
a hidden layer with 20 neurons and an output layer with 
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Figure 7: Neural Networks Architecture 

3. Results and Discussion 

 

The final network architecture consists of 6 inputs, a hidden layer with 20 neurons and an 
output layer with single neuron. The network architecture is shown in Fig.  77. A number of trial 
runs were performed with a learning rate of 0.001, 0.05 and 0.01. From these trials a learning rate of 
0.05 was found stable. Interestingly, the network converged in 10,000 epochs with mean squared 
error of 0.01.  
 

Figure.  8 illustrates the predicted arsenic level in g/Ll versus the observed one obtained 
from British Geological Survey data (NERC/DPHE/DFID, 2001). The scatter of the predicted 
concentrations was assessed using regression analysis. The coefficient of correlation of 0.5 was 
obtained. The diagonal line in the figure represents perfect goodness of fit as it is equidistant from 
both the axes. The results indicate that the neural network was successful in learning the 
relationship between the input and output variables. 
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single neuron. The network architecture is shown in 
Fig. 7. A number of trial runs were performed with a 
learning rate of 0.001, 0.05 and 0.01. From these trials 
a learning rate of 0.05 was found stable. Interestingly, 
the network converged in 10,000 epochs with mean 
squared error of 0.01.
 Fig. 8 illustrates the predicted arsenic level in μg/L 
versus the observed one obtained from British Geological 
Survey data (NERC/DPHE/DFID, 2001). The scatter 
of the predicted concentrations was assessed using 
regression analysis. The coefficient of correlation of 0.5 
was obtained. The diagonal line in the figure represents 
perfect goodness of fit as it is equidistant from both the 
axes. The results indicate that the neural network was 
successful in learning the relationship between the input 
and output variables.
 
5. Conclusions

 Geographic Information System (GIS) has become 
an indispensable analysis and modeling tool for many 
real-world problems involving spatial data distribution. 
In this study, the GIS capabilities were used to extract 
data from various cover maps, namely: arsenic, iron 
content, pH, organic matter content, drainage and DEM 
maps, and fed into a three layered BPNN to predict the 
level of arsenic values. The multi-layered perceptron 
predicted the level of contaminant with reasonable 
accuracy. However, the successful prediction of a  
phenomenon not only depends on the accuracy of 
the developed model but also relies greatly on the 
availability of quality data from field observation. 
Despite limited geotechnical information, the BPNN 
model demonstrated a promising result.
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5. Conclusions

 

Geographic Information System (GIS) has become an indispensable analysis and modeling 
tool for many real-world problems involving spatial data distribution. In this study, the GIS 
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