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Abstract. The concept of diffusion in collisionless space
plasmas like those near the magnetopause and in the geo-
magnetic tail during reconnection is reexamined making use
of the division of particle orbits into waiting orbits and break-
outs into ballistic motion lying at the bottom, for instance, of
Lévy flights. The rms average displacement in this case in-
creases with time, describing superdiffusion, though faster
than classical, is still a weak process, being however strong
enough to support fast reconnection. Referring to two kinds
of numerical particle-in-cell simulations we determine the
anomalous diffusion coefficient, the anomalous collision fre-
quency on which the diffusion process is based, and construct
a relation between the diffusion coefficients and the resis-
tive scale. The anomalous collision frequency from electron
pseudo-viscosity in reconnection turns out to be of the or-
der of the lower-hybrid frequency with the latter providing
a lower limit, thus making similar assumptions physically
meaningful. Tentative though not completely justified use of
theκ distribution yieldsκ ≈ 6 in the reconnection diffusion
region and, for the anomalous diffusion coefficient, the order
of several times Bohm diffusivity.

Keywords. Space plasma physics (magnetic reconnection)

1 Introduction

Anomalous diffusion is the summary heading of all pro-
cesses where the ensemble averaged mean-square displace-
ment 〈x2

〉 ∝ tγ deviates from linear time dependenceγ =

1 with the classical (Einstein) diffusion coefficientDcl =

2T νc/m, with T the temperature, andνc the classical binary
collision frequency. Forγ > 1 one speaks of superdiffusion,

which is of particular importance in the collisionless space
plasma where classical diffusion is practically inhibited in all
physically interesting processes (the less interesting case in
space physics,γ < 1, refers to subdiffusion, cf., e.g.,Sokolov
et al., 2002). One of those processes is reconnection, the
dominant mechanism for plasma and magnetic field trans-
port across magnetic boundaries represented by thin current
sheets/layers.

Reconnection has the enormous advantage over global dif-
fusion of being localised, with the main physics of magnetic
merging and plasma mixing taking place in an extraordinar-
ily small spatial region with the linear size shorter than the
electron inertial length< λe = c/ωe. On this note, based on
available numerical simulations, we demonstrate by estimat-
ing the anomalous collision frequencyνa that magnetic merg-
ing during reconnection can well be understood as a localised
anomalous diffusion process. This result satisfactorily unifies
the two originally different views on plasma transport across
an apparently impermeable boundary like the magnetopause.

Anomalous diffusion is also of interest in cosmic ray
physics, where it is frequently described as quasilinear diffu-
sion resulting from wave–particle interactions, formulated in
the Fokker–Planck phase space-diffusion formalism. Unfor-
tunately, most of the observed diffusive particle spectra (cf.,
e.g.,Christon et al., 1989, 1991, for the most elaborate ob-
servations in near-Earth space) barely exhibit the shapes re-
sulting from quasilinear diffusion. They turn out to be power
law distributions both in energy and momentum space, most
frequently being described best by so-calledκ distributions

p(κ |x) = Aκ

(
1+

x2

κ`2

)−(κ+1+d/2)

(1)
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with normalisation factorAκ , d dimensionality, and̀ corre-
lation length (cf., e.g.,Livadiotis and McComas, 2010, 2011,
2013, for an almost complete compilation of the properties
of κ distributions) with high-energy/high-momentum slopes
to which the parametersκ are related. Estimatedκ values
from the magnetospheric observations range in the interval
5 < κ < 10 (Christon et al., 1991). Such distributions were
introduced byVasyliunas(1968), following a suggestion by
S. Olbert, as best fits.1 In the time-asymptotic limit,κ distri-
butions were explicitly derived byHasegawa et al.(1985) and
Yoon et al.(2012). Theirq equivalent relation to superdiffu-
sion has also been suggested (Tsallis et al., 1995; Prato and
Tsallis, 1999; Bologna et al., 2000; Gell-Mann and Tsallis,
2004, and references therein).

For the present purposes we make no direct use of these
distributions as they, apparently, play no role in reconnection.
Rather, as we demonstrate, anomalous diffusion in reconnec-
tion results from processes leading to waiting statistics and
causing gyro-viscosity.

2 Diffusion process

Collisionless dissipation and related diffusion is mediated in
a wider sense by collisionless turbulence (cf., e.g.,Allegrini
et al., 1996). Here binary collision timesτc � τa by far ex-
ceed anomalous interaction times. Any real non-collisional
diffusion proceeds at times much shorter than classical (in
comparison infinite) diffusion times, with absolute values of
anomalous diffusion coefficients being small.

The superdiffusion process can be considered as a se-
quence of “waiting times” when the particle is in a quasi-
stationary trapped state followed by “breakouts” into ballis-
tic motion until the next trapping and waiting period starts
(Shlesinger et al., 1987; Klafter et al., 1990). Such particle
motions are typical, for instance, for Lévy flights (cf., e.g.,
Shlesinger et al., 1993).

Working in d dimensions, the probability of a particle oc-
cupying a particular volume element during a process, as-
sumed to be caused by some unspecified (nonlinear) inter-
action between particles and plasma waves, is most conve-
niently formulated in wave number spacek with probability
spectrum

1Theoretical attempts to justify solar windκ distributions fol-
lowed, invoking wave-particle interactions with the inclusion of
residual binary collisions (Scudder and Olbert, 1979). Statisti-
cal mechanical arguments were based on non-extensive statis-
tical mechanics (Tsallis, 1988; Gell-Mann and Tsallis, 2004).
From kinetic theory they were identified as collisionless turbulent
quasi-stationary states far from thermal equilibrium resulting from
anomalous wave-particle interactions (Treumann, 1999a, b). There
the role of the temperatureT as a thermodynamic derivative was
clarified (see alsoLivadiotis and McComas, 2010). The relation be-
tween the non-extensiveq and theκ parameters was first given in
Treumann(1997).

p(k) ∝ exp(−akα), (2)

where a is some positive constant, and 0< α ∈ R a real
number.α ≥ 2 reproduces the classical Gaussian probabil-
ity spectra (Tsallis et al., 1995). Non-Gaussian spectra have
flatter tails implyingα < 2, indicating superdiffusion. The
connection of the above probability spectrum to real-space
distributions, in particular toκ distributions, is non-trivial.

The diffusion process can be envisaged as consisting of a
sequence ofn steps (cf., e.g.,Treumann, 1997) bridging the
time fromt = 0 to t = tn with the particle jumping from first
waiting to thenth waiting position; the expectation value of
the latter becomes

〈x2(n)〉 =

∫
x2p(n |x)ddx, p(n) =

n∏
1

p(i). (3)

Thenth expectation value is proportional to the random mean
square of the displacementx2 and a power of the elapsed
time sequence. Working in Fourier (or momentum) spacek,
multiplication of the probabilities yields

p(n |k) = pn(k) ∝ exp(−ankα) ∼ p(k′) (4)

with p(k′) the probability of thenth time step. Hencek′
=

kn1/α. Any real-space coordinate therefore scales asx →

xn−1/α. For the real-space probability this implies that

p(n |x) ddx −→ p
(
x/n1/α

)
ddx/nd/α (5)

yielding from Eq. (3) for the nth displacement expectation
value〈
x2(n)

〉
= n2/α

〈x2
〉 (6)

with α < 2 not precisely known but to be determined below
from numerical simulations. The mean-square displacement
should be obtained from the second moment of the underly-
ing real-space distribution function, for instance theκ distri-
bution, yielding

〈x2
〉 =

1

2
dκ(κ + 1)`2, (7)

an expression we will make tentative (not fully justified and
for the present purposes marginal) use of only at the very end
in application to reconnection.

3 Diffusion coefficient

In using probability stepsn, time has been discretised into
pieces of free flight, waiting and some kind of interaction. On
average the interaction is covered by a fictitious anomalous
collision frequencyνa. Ordinary binary collision frequen-
ciesνc are very small, suggesting a scalingνa � νc with the
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anomalous timescaleν−1
a = τa � τc = ν−1

c much less than
the collision timescaleτc. The diffusion process takes place
in a timet < τc. Replacing the time stepsn → νat the mean
squarenth displacement becomes

〈x2(t)〉 = 〈x2
〉(νat)

2/α. (8)

With γ = 2/α it defines the anomalous diffusion coefficient
Da when multiplying byτ−1

a = νa

Da(d, t) = 〈x2
〉(νat)

2/ανa ≡ Dca(νat)
2/α (9)

as a function of timetνa. Sinceνa � νc, it is much less than
the classical diffusion coefficient which in this case would
correspond to free flight. Under anomalous collisions the free
flight is abruptly interrupted and reduced to non-stochastic
diffusion by the finite anomalous collision frequencyνa.

4 Evolution

Estimates of diffusion coefficients respectivelyγ based on
observations in space plasma are not only rare but unreli-
able. They suffer from the practical impossibility of any suf-
ficiently precise determination of particle displacements as a
function of time and the subsequent transition to the asymp-
totic state. In addition they are mostly based on quasilin-
ear theories of particular instabilities (Sagdeev, 1966, 1979;
Liewer and Krall, 1973; Huba et al., 1977, 1981; Davidson,
1978; LaBelle and Treumann, 1988; Treumann et al., 1991;
Yoon et al., 2002; Matthaeus et al., 2003; Daughton et al.,
2004; Ricci et al., 2005; Roytershteyn et al., 2012; Izutsu et
al., 2012) which do not properly account for any nonlinear
interactions.

We therefore refer to high-resolution particle-in-cell sim-
ulations (Scholer et al., 2000) performed in order to deter-
mine the cross-magnetic field diffusion of ions near quasi-
perpendicular shocks. The results are compiled in Fig.1.

The right-hand side of the figure shows one macro-particle
orbit arbitrarily selected out of the large number of particles
used in the simulation to determine their instantaneous dis-
placements from the origins of their trajectories in the sim-
ulation as a function of simulation time measured in units
of their identical (energy-independent) gyration frequency
ωci = eB/mi in the total magnetic field, which is the sum
of the ambient and the self-consistently generated turbulent
wave magnetic field. The particle shifts its position perpen-
dicular to the magnetic field from its start point to the end
point in the simulation. It is found in a slowly changing wait-
ing position, performs jumps to new waiting positions, and
ends up during a final jump. Such an orbit is neither adia-
batic nor stochastic.

The left part of the figure shows the average displace-
ment, ensemble averaged over the entire particle population,
as a function of simulation time. After performing an initial

oscillation the average displacements settle into an approx-
imately smooth continuously increasing curve of constant
slope〈(1x)2

〉 ∝ t1.17.
The slope of the final evolution of the average displace-

ment is close but by no means identical to classical diffusion,
which is shown by the slope of the two straight lines in the
figure. Though the deviation in the slope is small, it is nev-
ertheless substantial and statistically significant, indicating a
superdiffusive process which deviates from classical diffu-
sion. (We should note that, because of the large number of
∼ 6.3× 106 macro-particles used in the simulation of which
525 000 had high energies and contributed most to the mean
displacement as well as for the high time resolution, the sta-
tistical error of the measurement is smaller than the width of
the line in this figure!)

Adopting the probability spectrum-based theory the exper-
imentally determined slope of 2/α ≈ 1.17 of the average dis-
placement in Fig.1 tells that in these simulations one had

α ≈ 1.71 (experimental) (10)

a value substantially far away from the Gaussian limit spec-
tral slopeα = 2 and being less than it, thus indicating quite
strong superdiffusion.

5 Transition to collisional state

Anomalous diffusion proceeds on a faster than classical
timescale with time-dependent diffusion coefficient which
justifies the term superdiffusion. In spite of this, the coeffi-
cientDca = 〈x2

〉νa in front of the time factor determining the
absolute magnitude of the diffusion is generally small. It does
not compensate for theabsolutesmallness of the diffusion
coefficient. When, after a long time has elapsed of the or-
der of the classical collision timeτc, classical diffusion takes
over scattering some particles to larger, some others back to
smaller displacements and putting the collisionless process
temporarily out of work. The average displacement of the vi-
olently scattered particles whose displacement line has been
smeared out suddenly over a large spatial domain may now
follow the classical linear temporary increase.

One single elapsed binary collision time may not suffice
to stop the nonlinear collisionless interaction process. The
widely scattered particle population may still have sufficient
freedom to organise again into a softened collisionless dif-
fusion which lasts until the next binary collision time has
passed. During this second collisionless period the slope
should be flatter than the initial collisionless slope, and af-
ter statistically sufficiently many periods of elapsed classical
collision times no collisionless mechanisms revive anymore.
Diffusion has by then become completely classical. These
sequences are schematically shown in Fig.2.
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Figure 1. Two-dimensional numerical simulation results of the mean downstream perpendicular displacement of ions near a quasi-
perpendicular supercritical shock (shock normal angleθ = 87◦), Alfvénic Mach numberMA = 4 as a function of simulation time (simulation
data taken fromScholer et al., 2000, courtesy American Geophysical Union). Distances are measured in ion inertial lengthsλi = c/ωi with
ωi ion plasma frequency. (Left) The particle displacement performs an initial damped oscillation before settling into a continuous diffusive
increase at time aboutωcit ∼ 40 (in units of the ion gyro frequencyωci). The further time evolution deviates apparently only slightly from
the classical (linear) increase of the mean displacement, following a〈(1x)2〉 ∝ (ωcit)

1.17 power law. (Note that simulation-time limitations
did not allow monitoring of the long-time evolution of the ensemble-averaged square displacement, thus inhibiting the determination of the
final state of the diffusion process.) (Right) Late time trajectory of an arbitrary ion of the sample used. The orbit is projected into the plane
perpendicular to the mean magnetic field which consists of a superposition of the ambient and wave magnetic fields. The ion orbit is neither
an undisturbed gyro-oscillation nor a smooth stochastic trajectory. It consists of waiting (trapped gyrating) parts and parts when the ion
suddenly jumps ahead a long distance cause by some brief but intense interaction between the particle and wave spectrum. This break out of
gyration is typical of rare extreme events like those in Lévy flights referred to in the present paper.

6 Discussion

Waiting statistics offers an approach to anomalous diffu-
sion in various regions of space plasmas where classical
(and neo-classical) diffusion processes are inappropriate, vi-
olently failing to explain the transport of plasma and mag-
netic fields. Application to numerical simulations near col-
lisionless shocks determined the value ofα ≈ 1.71, which
turns out to be close to but sufficiently far below its clas-
sical (Gaussian) limitα = 2 for identifying superdiffusion.
Superdiffusion coefficients obtained are small but increase
with time.

The present theory is based on constantα for the entire
diffusion process. This might be unrealistic. Real powers
α [Ww(t)] will turn out functionals of the time-dependent
turbulent wave levelsWw(t) which are generated self-
consistently in the underlying turbulent collisionless wave-
particle interaction (for a derivation of the phase-space dis-
tribution in particular wave-particle interactions cf., e.g.,
Hasegawa et al., 1985; Yoon et al., 2012, yielding time-
asymptotic values of the phase-space power-law indexκ de-
pending on wave powerWw).

It may be expected that, with increasing wave levelWw(t),
a new collisionless equilibrium will be reached where the dif-
fusion process, in finite timet ∼ τf , approaches another new
and approximately constant diffusivity

lim
t→τf

Da(t) −→ Dfin
a (t & τf) < Dc (11)

for ν−1
a (t = 0) . τf � ν−1

c , with Ww(t & τf), α [Ww(t & τf)]

both either constant or oscillating around their time-averaged
mean values

〈
Ww(t & τf)

〉
,
〈
α(t & τf)

〉
, and the final aver-

age diffusion coefficient
〈
Dfin

a (τf . t . ν−1
c )

〉
remaining con-

stant. Under such circumstances the diffusion coefficient in
Fig. 2 never approaches the classical limit but settles instead
on its much lower anomalous collisionless level

〈
Dfin

a

〉
. The

related processes lie outside the present investigation. We
may, however, estimate a lower bound on the average final
diffusion coefficient

〈
Dfin

a

〉
assumingτf ≈ ν−1

a , which yields

Dca .
〈
Dfin

a

〉
. (12)

In the following we list a few practical consequences of
our theory which focus on one of the most interesting prob-
lems in collisionless plasma physics, the mechanism of col-
lisionless reconnection of magnetic fields.

6.1 Resistive scale and relation to reconnection

We may use these arguments to infer briefly about the resis-
tive scaleLν , a quantity frequently referred to in discussions
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Figure 2. Schematic hypothetical evolution of the diffusion coefficient for the case simulated in Fig. 1 until the collisional classical diffusion
state would have been reached. Time is measured here in classical collision timesν−1

c . (Left) The anomalous increase of the diffusion
coefficient with time. The growth of the diffusion coefficient gradually comes to rest after the classical collision time has elapsed. Dotted: A
time-dependent nonlinear stationary state never approaching classical diffusion. (Right) Time evolution of the average particle displacement
increasing as shown in Fig. 1. When approaching the classical collision time, scattering of particles to both larger and smaller displacements
widen the displacement range, leading to a reduced increase until the second collision time. Similarly after the second, third, and the following
collision times. Finally, the increase in the displacement settles into linear in time, implying classical or stationary diffusion.

of diffusion in the presence of current flow. It plays a role in
the diffusive evolution of the magnetic field which from the
induction equation is given in its simplest form

∂B
∂t

= ∇ × V × B + Dm∇
2B, Dm =

η

µ0
= λ2

eν. (13)

The resistive scale is defined asL2
ν ∼ Dmt = λ2

eνt being de-
termined through resistivityη = ν/ε0ω

2
e and electron inertial

lengthλe = c/ωe, with plasma frequencyωe. It tells, at what
scale resistive diffusion starts affecting the plasma dynamics.

It is interesting to know how the resistive scale evolves
with time in a nonlinearly active though collisionless
medium. Using the expression for the productνat to replace
νt gives

Lνa

λe
∼

{
Da(t)

Dca

}1/2

∼ (νat)
1/α (14)

for the resistive scale in units ofλe, expressed through the
(time-dependent) diffusion coefficientDa. This indicates that
the resistive scale increases with time from a valueLνa <

λe until Da ∼
〈
Dfin

a

〉
whenLfin

νa
∼ λe approaches the inertial

scale.
Small (anomalous) resistive scales imply fast magnetic

diffusion as observed in collisionless systems like in recon-
nection. Since in collisionless plasma there is no resistive dif-
fusion, one concludes that any process causing diffusion will
readily reduce the resistive scale to values below the electron
inertial scale, causing comparably fast dissipation of mag-
netic fields and favouring reconnection.

The remaining problem consists in finding an appro-
priate expression for theequivalentanomalous “collision
frequency”νa under collisionless conditions. Observations
(LaBelle and Treumann, 1988; Treumann et al., 1990; Bale
et al., 2002) do not indicate any presence of sufficiently
high wave amplitudes in collisionless reconnection required

(Sagdeev, 1966, 1979) for the quasilinear generation of
anomalous resistances. Numerical particle-in-cell simula-
tions (cf. Treumann and Baumjohann, 2013, for a recent
review) confirmed instead that in all cases the main driver
of fast collisionless reconnection is the electron “pseudo-
viscosity” implied by the presence of non-diagonal terms
(Hesse and Winske, 1998; Hesse et al., 1999) in the ther-
mally anisotropic electron pressure tensorPe measured in
the stationary frame of the reconnecting current layer and
accounting for any subtle finite gyro-radius effects in the dy-
namics of electrons in the inhomogeneous magnetic field of
the electron diffusion region where electrons perform bounc-
ing Speiser orbits.

6.2 Gyroviscosity

An expression for the anomalous collision frequencyνa that
is equivalentto electron pseudo-viscosity is found referring
to the volume viscosityµV (or kinematic viscosityµkin =

µV/mN , with N the density) and the molecular collision fre-
quencyνm (Huang, 1987)

µV = NT/νm or µkin = T/mνm. (15)

Formally, this allows for the determination ofνa when iden-
tifying µV with the electron volume “pseudo-viscosity”µe
(or kinematic pseudo-viscosityµe,kin = µe/Nme) resulting
from the non-diagonal electron pressure tensor elements, a
quantity which can be determined either from observation or
from numerical particle-in-cell simulations. This yields

νa ≈ NTe/µe = Te/meµe,kin (16)

with N the plasma density andTe the relevant electron tem-
perature for thepressure tensor-induced equivalentanoma-
lous collision frequency.Macmahon (1965) derived an
MHD form of the full pressure tensor including finite ion-
gyroradius contributions in the limit of very strong magnetic
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fields, barely applicable to the weak magnetic field reconnec-
tion site. A simplified version of his expressions neglecting
heat fluxes was given byStasiewicz(1987) based on the im-
plicit assumption that in strong magnetic fields the mean free
path is replaced by the ion-gyroradius. In view of reconnec-
tion, this form has been used byHau and Sonnerup(1991) in
application to rotational discontinuities (for the role of vis-
cosities in viscous fluids, cf.Landau and Lifshitz, 1987).

In this form, rewritten for the relevant electron dynamics,
one hasµe ' Te/meωce, which identifiesνa = νgv ∼ ωce as
an electron gyro-viscous MHD collision frequency of the or-
der of the electron cyclotron frequencyωce = eB/me – in-
deed much larger than any Coulomb collision frequency. It
suggests that gyro-viscous superdiffusion means Bohm dif-
fusion.

6.3 Estimates of transport quantities

Instead, use can be made of available numerical simula-
tions (Pritchett, 2005) which quantitatively determined the
contribution of the electron-pressure tensor-induced pseudo-
viscosity to the dissipative generation of the parallel electric
field in guide-field reconnection (cf.Treumann and Baumjo-
hann, 2013, for a critical discussion).Pritchett (2005) ob-
tained for the maximum non-diagonal pressure-generated
field E‖,P in the inner part of the reconnection site (or elec-
tron exhaust region)

E‖,P = (eN)−1
|∇ · Pe| . 0.4 VAB0, (17)

whereN , B0, andVA are the respective density, magnetic
field outside the current layer, and Alfvén velocity based on
B0. The width of the current layer wasLs ∼ 2λi = 2

√
Msλes ,

with simulation mass ratioMs = mi/mes = 64. On using in-
dexs for simulation quantities, real electron masses become
me = r mes , with r = 64/1840. With currentJ, we may put

E‖,P = ηas |J| ∼
ηas

µ0

B0

Ls

=
λesνasB0

2
√

Ms

(18)

Thus, the anomalous collision frequency corresponding to
the pressure-induced pseudo-viscosity in the simulation of
the reconnection process was of the order of

νas . 0.8
√

Ms (VA/c) ωes = 0.8 ωce,s (19)

with the second form of the right-hand side resulting when
accounting for the identity(VA/c)

√
M = ωce/ωe. In terms

of real electron masses the last expression becomes

νa = νasr . 0.03ωce. (20)

This value is more than one order of magnitude smaller than
the one ofνgv obtained above from gyro-viscous MHD the-
ory, rewritten for electrons. Still, its value is uncertain for the
unknown dependence on mass ratio of the reconnection elec-
tric field E‖,P in the simulations. Assuming that this depen-
dence is moderate, the agreement is surprisingly reasonable.

For the wanted pseudo-viscosity this gives

µe,kin ≈ Te/mesνas = Te/meνa & 1.25Te/meωce (21)

with the factorr in the denominator cancelling, a form simi-
lar to gyro-viscosity for both simulation and real plasma ap-
plications.

Adopting the above numerical estimate ofνa, the anoma-
lous diffusion coefficient becomes

Da(t) = 1.65× 10−2Dca (ωcet)
1.17. (22)

It increases slowly with time measured in electron cyclotron
periods.

6.4 Digression onκ

With the last formula we have, in principle, achieved our
goal.

However, someone might want to know the explicit form
of the diffusion coefficient. For this one needs to determine
the coefficientDca, which requires knowledge of〈x2

〉 in the
electron exhaust. Since, from the simulations, no informa-
tion is available on displacements, one has to refer to model
assumptions for the distribution functionp(x).

Among the limited number of such functions available one
may adopt theκ distribution Eq. (1), even though it is rather
improbable that in the tiny reconnection region and for the re-
stricted reconnection time any stationaryκ distributions will
have sufficient time to evolve.

Nevertheless, in the absence of any better choice, one may
tentatively evoke the relationα/2 = κ(κ + d/2)−1 between
α andκ, as proposed from non-extensive statistical mechan-
ics (Tsallis et al., 1995; Prato and Tsallis, 1999; Bologna et
al., 2000; Livadiotis and McComas, 2013) to hold in the su-
perdiffusion rangeα < 2, and apply it as well to our particu-
lar reconnection problem.

Then, on using the measured value ofα, we haveκ ≈ 5.9
for d = 2. This gives the two-dimensionalκ superdiffusion
coefficient from Eqs. (22), (7), and (9), with squared correla-
tion length`2

= 2Te/meνa, as

Daκ(t) ≈ 11DB (ωcet)
1.17, (23)

whereDB ≈ Te/meωce is of the order of the Bohm diffu-
sion coefficient. This value of ten times (!) the Bohm diffu-
sion is excessively large, implying the presence of extraordi-
narily strong anomalous diffusion at the reconnection site,
though not in unacceptable disagreement with exception-
ally fast spontaneous reconnection. For a Gaussian proba-
bility distribution one had〈x2

〉 = `2d/2 and thusDa(t) ≈

DB (ωcet)
1.17.

It should, however, be kept in mind that the derivation of
theκ diffusion coefficient Eq. (23) is based on the arbitrary
assumption that the unknown distribution of displacements
in the narrow electron exhaust would indeed be of the family
of κ distributions. While the determination of the anomalous
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collision frequency from the simulations used is very well
justified, there is however no observational or any theoretical
justification for this ad hoc assertion.

6.5 Lower limit on νa in reconnection

The above numerical simulation-based estimates can be di-
rectly applied to observations of reconnection in the mag-
netotail current sheet in order to infer about the anomalous
collision frequency generated in reconnection. From an ap-
plicational geophysical point of view this is most interesting.
Observed magnetic fields across the tail plasma sheet vary
between 1 nT< B0 < 10 nT. With these values one obtains
the following range for the anomalous collision frequencies
during reconnection in the plasma sheet:

4.9 Hz< νa < 50 Hz, ωlh ≈ 4.1 Hz. (24)

These reasonably high values follow directly from analysis
of the simulations, compared to the lower-hybrid frequency
ωlh given on the right for the lower valueB = 1 nT only. This
estimated anomalous collision frequency at the magnetotail
reconnection site is the result of non-stochastic processes in
the electron exhaust diffusion region which generate the out-
of-diagonal pseudo-viscous terms in the electron pressure
tensor. It is responsible for the necessary superdiffusion at
the reconnection site which is required in the collisionless
reconnection process.

The closeness of the lower-hybrid frequencyωlh to the
range of anomalous collision frequencies indicates the colli-
sionless electric coupling between electrons and ions in any
reconnection process.

In addition, it provides an important lower limit

ωlh . min
rec

(νa) (25)

on νa in collisionless reconnection, thereby a posteriori jus-
tifying the frequently found surprising closeness (e.g.Huba
et al., 1977; LaBelle and Treumann, 1988; Treumann et al.,
1991; Yoon et al., 2002, and others) to the lower-hybrid fre-
quency of the rough estimates of anomalous collision fre-
quencies from the analysis of spacecraft observations of re-
connection, which are necessary for explaining the timescale
of the observed dissipation of energy.

Considered in this spirit, collisionless reconnection is un-
derstood as anequivalent anomalous local super-diffusion
process in collisionless plasma. From a general physical
point of view, this interpretation ultimately re-unifies the ini-
tially considered mutually excluding collisionless reconnec-
tion and diffusion theories in satisfactory concordance with
fundamental electrodynamics.
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