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 Transportation of hazardous materials play an essential role on keeping a friendly environment. 
Every day, a substantial amount of hazardous materials (hazmats), such as flammable liquids and 
poisonous gases, need to be transferred prior to consumption or disposal. Such transportation may 
result in unsuitable events for people and environment. Emergency response network is designed 
for this reason where specialist responding teams resolve any issue as quickly as possible. This 
study proposes a new multi-objective model to locate emergency response centers for 
transporting the hazardous materials. Since many real-world applications are faced with 
uncertainty in input parameters, the proposed model of this paper also assumes that reference and 
demand to such centre is subject to uncertainty, where demand is fuzzy random. The resulted 
problem formulation is modelled as nonlinear non-convex mixed integer programming and we 
used NSGAII method to solve the resulted problem. The performance of the proposed model is 
examined with several examples using various probability distribution and they are compared 
with the performance of other existing method.      
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1. Introduction 

During the past few decades, there have been significant amount of hazardous materials generated by 
human beings. Today, there is no doubt that some of damages caused by such materials are irreversible 
and we need to find good ways to reduce these damages as much as possible. According to US 
Department of Transportation (2000), a substantial amount of hazardous materials (hazmats), such as 
flammable liquids and poisonous gases, need to be transported prior to their consumption or disposal 
and a significant amount are transported using containers. For example, in the highways of North 
America, there are about 800000 road transportations for transporting the pollutants by containers per 
day. Therefore, there is an increasing demand for proposing suitable methods in this area.  

Erkut and Gzara (2008) considered the problem of network design for hazardous material 
transportation where the government designates a network, and the carriers choose the routes on the 
network. They modeled the problem as a bi-level network flow formulation and analyzed the resulted 
problem in three different scenarios. Kara and Verter (2004) formulated the design problem as a bi-
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level mathematical programming model by assuming that the carriers would always use the shortest 
paths on the hazmat network. The objective for the authority was to choose the minimum risk network, 
taking into account the cost-minimizing behavior of the carriers. The model is relatively general since it 
does not limit the hazmat network to a tree. However, their resulting mathematical model is quite large 
and is not computationally feasible for large networks. Erkut and ALP (2007) designed a network as a 
tree, which creates an advantage when authorities decide to improve the roads' conditions in the 
network for hazardous materials transportation to reduce the risks and events such as repaving the roads 
and better lighting. However, it has a disadvantage because it is only applied for road transportation 
and in civil transportation; it may not be applicable due to incurring many costs; while this network 
design is relatively small and is optimal for networks with actual sizes.   

Schütz et al. (2008) presented the problem of minimizing the expected cost of locating a number of 
single product facilities and allocating uncertain customer demand to this presented. The total costs 
consist of two components of linear transportation and the costs of investing in a facility as well as 
maintaining and operating it. These facility costs are general and non-linear in shape and could express 
both changing economies of scale and diseconomies of scale. They formulated the problem as a two-
stage stochastic programming model where both demand and short-run costs may be uncertain at the 
investment time. They used a solution method based on Lagrangean relaxation.  

Yang  et al. (2008) presented flow capturing location-allocation problem with stochastic demand under 
Hurwicz's rule where the assumption that the customer flow is stochastic variable in probability space, 
chance-constrained programming model is developed for this problem under Hurwicz's rule. To solve 
this stochastic model, stochastic simulation, greedy search and genetic algorithm were integrated to 
produce a hybrid intelligent algorithm. Ishii et al. (2007) proposed another model by considering the 
satisfaction degree with respect to the distance from the facility for each customer (residents) and 
preference of the site in an urban area.  

The objective was to find the site of the facility, which maximizes the minimal satisfaction degree 
among all demand points and maximizes the preference of the site. Yang  et al. (2007) investigated 
distribution centers location problem under fuzzy environment. Consequentially, chance-constrained 
programming model for the problem is designed and some properties of the model were investigated. 
Tabu search algorithm, genetic algorithm and fuzzy simulation algorithm were integrated to find the 
approximate best solution of the model. Wen and  Iwamura (2008) proposed the FLA problem under 
random fuzzy environment using (α, β)-cost minimization model under the Hurwicz's criterion. By 
varying the value λ, it can balance the optimistic level of the decision makers. For solving the random 
fuzzy model efficiently, the simplex algorithm, random fuzzy simulation and genetic algorithm were 
integrated to produce a hybrid intelligent algorithm. Wang and Watada (2010) studied a facility 
location model with fuzzy random parameters and its swarm intelligence approach. A value-at-risk 
(VaR) based fuzzy random facility location model (VaR-FRFLM) was built in which both the costs and 
demands were assumed to be fuzzy random variables, and the capacity of each facility was unfixed but 
a decision variable assuming continuous values. A hybrid modified particle swarm optimization 
(MPSO) approach was proposed to solve the VaR-FRFLM. A numerical experiment illustrated the 
application of the proposed hybrid MPSO algorithm and lays out its robustness to the system parameter 
settings. The comparison shows that the hybrid MPSO exhibits better performance than that when 
hybrid regular continuous-binary PSO and genetic algorithm (GA) are used to solve the VaR-FRFLM.  

2. The proposed study 

2.1 General model of hybrid planning 

In the regular planning model, if one or several parameters have both probability properties and Fuzzy 
properties, the resulted model called "hybrid planning model", general hybrid planning model is as 
follows, 
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max ( , )

subject to

( , ) , 1, 2,...,i

f x

x j ng



    

 

(1)

where,  is the decision vector,  is the hybrid vector, ( , )f x  is the objective function and ( , )i xg   is 

the constraint functions for  j = 1,2,3,....,n. 

2.2 Expected value model 

The first type of hybrid planning model is the expected value model optimizing the expected objective 
function based on the expected constraints. For example, minimizing the expected cost, expected profit, 
etc., the expected value model is applied as follows 

 max ( , )

subject to

( , ) 0, 1,......,i

E f x

E x j ng



      

(2)

  

where  x is the decision vector,  is the hybrid vector, ( , )f x  is the objective function and ( , )i xg   is 

the constraint functions for  j = 1,2,3,....,n and  E  is the symbol of expected value.  

There are literally different techniques to handle uncertainty associated with input data such as using 
fuzzy numbers but the fuzzy parameters themselves could have stochastic nature. Liu (2007)  
investigated project planning problem when there are Fuzzy-random variables during the time of 
implementing the activities and implemented hybrid intelligent algorithm for problem solving.  

2.3 Chance-Constrained Programming 
 
Planning with chance constrains as the second type of hybrid planning is a powerful tool for modeling 
the hybrid decision making systems assuming that hybrid limitations exist at least in γ percentage of 
times, that γ is a reliable level determining by decision maker. Planning model with chance constrains 
is as follows, 
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where   is the decision vector,  is the combined vector, ( , )f x  is the objective function and ( , )i xg   

is the constraint functions for  j = 1,2,3,....,n and γ is the reliability and ch{} is the chance measure. 
Wen & Iwamura (2008) used this model to solve the location-allocation facility problem in a fuzzy-
random environment using a hybrid intelligent algorithm. Liu  (2007) studied the project planning issue 
when times of implementing the activities are fuzzy-random variables with an adaptation of hybrid 
intelligent algorithm. 
 
2.4 Dependent-Chance Programming 
 
Practically, there are multiple tasks in a typical complicated combined decision system and 
occasionally decision maker requires maximizing the chances of such tasks. The proposed fuzzy 
random method proposed by Liu (2007)  has the following form, 
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where   is the decision vector,   is the combined vector, ( , )f x  is the goal function and ( , )i xg   is 

the constraint functions for  j = 1,2,3,....,n and γ is the reliability and ch{} is the chance measure. There 
are literally different applications for the implementation of fuzzy random technique. Liang et al. 
(2007) considered chance-related two-level planning model and used fuzzy random to detect the 
sources using combined intelligent algorithm as solution procedure. Liu (2007) studied the project 
planning issue where the activities' times were fuzzy-random variables. Sadjadi et al. (2012) 
investigated the project critical path problem in an environment with hybrid uncertainty, where the 
duration of activities were treated with random fuzzy variables. They implemented chance constraints 
programming to obtain a robust critical path and converted the resulted problem into a deterministic 
model in two stages. In the first stage, the uncertain model was converted into a model with interval 
parameters by alpha-cut method and distribution function concepts and the interval model was 
converted to a deterministic model by robust optimization and min–max regret criterion. Since the 
resulted problem formulation was NP-Hard, a genetic algorithm with a proposed exact algorithm were 
used to solve the final model.  

 

3. The proposed method  
 
The proposed model of this paper uses fuzzy-random to handle uncertainty associated with demand for 
locating the emergency facilities for transporting the hazardous materials with three objective 
functions. Assumptions, parameters and decision variables used in this model includes as follows, 
Model Assumptions: 
 

 Emergency response centers have been well equipped; 
 Emergency response centers and demand point in the network are accessible; 
 Any node indicates an emergency response center or a demand point; 
 Facilities only can be established on the nodes; 
 Any demand point only can give service from a facility but any facility may take service to 

several demand points. 
 

3.1 Sets, Parameters and Variables of Problem 
 
N(V,A): Emergency response network 
V: nodes set 
A: Arcs set 
V= EUO 
E(1,2,…e): is potential emergency response center node; 
O(1,2,….O): is transport  nodes 
P: No. of facilities that must be located; 
ai: is the fixed cost of establish emergency response center at node i 
bi: is the unit cost of transportation of emergency response center i 
Vi: is the average vehicle speed of emergency response center i 
eij: is the distance from emergency response center I to node j, i E  and j O  

jw : demand weight of node j 

jr


: small radius defined for distance of demand node j from nearest response center; 

jr : great radius defined for distance of demand node j from nearest response center; 



 E. Rezaei et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

897

( )j ijf e : covering area of demand node j as a fractional function 
( )ig i :a part of demand weight of node j made by facility and provided in node i  

 
Note that Berman et al. (2011) stated that for any demand node, there are defined two coverage radius; 
the demand originating from a  node is considered fully covered; if the shortest distance between 
demand point to facility from smaller radius is not greater, and not covered at all, if the shortest 
distance between demand point to facility of greater radius is not shorter. For distance between these 
two radiuses, the coverage level  is defined as fractional function ( )j ijf e , therefore, ( )jg i  is calculated 

as follows, 
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and ( )j ijf e  is calculated by Thales theorem as follows, 
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where:  

1 if emergency response is established

0 otherwiseix


 


 
1 if facility  is assigned to demand point  

0 otherwiseij

i j
y


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

 
The mathematical planning model of emergency response centers location-allocation with 3 objective 
functions is as follows, 
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The first objective function of problem is associated with time, which minimizes the total time of 
transportation; the second one minimizes the total cost of transportation and the fixed cost of opening 
centers and the third objective function maximizes the environmental safety. The first constraint states 
that any demand point can only give service from a facility; the second constraint states that allocating 
the demand point to another point is possible only when a facility point's already been established. The 
third constraint states the number of facilities that must be established and fourth constraint indicates 
the type of decision variables. 
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3.2 Modeling the problem in hybrid space 
 

 
According to explanations provided before, hybrid Chance-Constrained  Programming for this model 
as below: 
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where γ is the reliability level for providing the provision ( ) /i j i ij ij
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  made by decision 

maker and the third objective function is the maximization of f . The hybrid Dependent-Chance 
Programming  of this problem is as follows, 
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(9)

 
where f  is an area of objective function obtained by decision maker and the third objective function 
indicates that the environmental safety may be increased according to the coverage of demand points 
and speed and distance between points from given value f . When there is not enough knowledge 
about decision maker from the environmental conditions in models (8) and (9) we may have some 
unacceptable solution for decision maker or not optimal solution by choosing inappropriate value for 
f   and γ.  
 
For this reason, by providing a new model in a hybrid space, where γ and f  are optimized 
simultaneously, we may relieve the resulted complications. In the hybrid model, the maximization of 
f  is considered in the first level from the third objective function and the maximization of γ is 
considered in the second level of third objective function. In order for combining two models, one may 
use the same constraints. For this reason, in the Dependent-Chance Programming model, we enter the 
constraints as follows, 
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Now we combine two models. We put the maximization f  in the first level and maximization γ in the 
second level from the third objective function, because this function aims to find an answer, which 
maximizes f  such that maximizing the possibility of attaining to this value. 
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A method provided for solving the model is to combine two levels using the linear combination of two 
levels as an objective function. Now, in order to combine two levels, we set the first and the second 
goal functions a side temporarily and conduct the following operation: 
Consider model (11) by considering maxf f  as the objective function.  If 1 2  , in this case, the 

solution space in 1   is greater than the solution space in 2  . Therefore, 
1

f   is not worse than 

2
f  , so 

1 2
f f  . Now, according to 1  , we consider 1f f  . Thus, if in the problem, instead of 

studying different f , we only study f , which is greater than f1 (limiting the set of f ), it may not 
change the solution, because optimal value of f , i.e. fγ  is greater than f1. Decision maker is also asked 
to determine a level of γ that may not become worse. This value γ is called γw and its correspondent is 
called fw. We may use again from limiting the set of f , and study ones that are less than fw. Therefore, 
we use following,  

wfff 1  
(12)

Now, because 1 0f f    and 1 1 wf f f f     , we have, 

1
1 1
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0 0 1
0w

w w

f f
f f f f

f f f f
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Because, this problem aims to increase the f , therefore, 1

1w

f f

f f




 is also increased. Then, the third 

objective function of the problem is given by combining two levels: 
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In this case, model is obtained in terms of Eq. (15).  
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where, in this model, besides parameters as explained before, γ is the reliability, γw is the minimum 
reliability level acceptable for decision maker, fw is maximum value of f . Based on w  , obtained 

by solving model (3-9), and f1 is minimum value of f  based on α=1 obtaining by solving model (3-9). 

In this model, we give suitable values to λ; and because γ must be less than the weight 1

1w

f f
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values must be selected between 0.5 and 1. In this model, the weight of demand of points jw  has been 
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(16)

The proposed model of this paper can be solved using a typical genetic algorithm NSGAII and details 
of the computations are given in (Javanshir et al., 2012; Venkata Rao & Patel, 2012). 
 
4. Case study and data analysis 
 
In this part, the actual data of transporting the hazardous  materials in Isfahan province has been used 
and is solved by the proposed model. It must be mentioned that demand for different points is 
considered as random fuzzy and the distribution of the parameters are considered stochastic. In this 
case study, there are 6 emergency response  nodes where 4 nodes must be selected 4 and facilities are 
located in these places. In addition, there are 10 demand nodes, which are candidates for transportation 
accident. These points may include origin nodes or destination nodes or nodes in the transportation 
route. Fig 1 shows details of our proposed case study. In this network, star shapes are demand nodes 
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and circular shapes are response emergency potential nodes and the nodes of 1,4 and 10 are positions of  
refineries. The name of cities is shown in the Table 1 as follows.  
 

 

Fig. 1. The network design for the Isfahan province 
 
Table 1 
The City of network 
Node 1 2 3 4 5 6 7 8 9 10 
city 5 Km of 

Tehran 
road 

Kashan Ghasemabad Meimeh Sahamiye Ardesten Razaviye Balgham Habibabad Isfahan 

 
Table 2 and Table 3 show the information associated with emergency response and demand notes, 
respectively.  
 

Table 2 
The data of emergency response nodes 
Node 1 2 3 4 5 6 
ai

 25 20 15 25 20 20 
bi

 30 25 20 25 20 20 
vi

 60 60 60 60 60 60 
 
Table 3 
The data of demand nodes 
Node 1 2 3 4 5 6 7 8 9 10 

jr


 35 35 35 40 30 40 25 30 30 30 

jr  45 45 40 45 40 45 45 40 45 45 

 
Distance between demand nodes and candidate nodes for establishing the emergency facilities has been 
given in Table 4, which were computed based on the distance of towns of Isfahan province. 
 

Table 4 
Distance between nodes 

j i 
190 218 166 160 136 112 100 62 35 30 1 
120 148 166 90 137 112 30 62 35 100 2 
177 149 79 177 50 25 117 25 52 117 3 
60 88 158 30 187 172 30 122 95 160 4 
62 35 35 92 64 89 152 139 166 231 5 
15 43 113 15 142 167 75 167 140 205 6 

 
We have also assumed the following, 
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                       
1 2 2 4 3 5 4 7 8 9 7 10

1 1 2 2 3 3 4 4 5 5 6 6 1g g g g g g g g g g g g            , 

         23 3 6 10 9

3 12 1 2 11
1 2 , (3) , 3 , 5 , 6

35 25 2 35 15
gg g g g g       and all other  

j
ig  are equal to zero.  In this 

example, it is assumed that the weight of any demand node follows of Poison distribution and the mean 
of these weights that are mean of Poison mean is Fuzzy. We consider the weight of demand nodes as 
well as means according to following table and as Fuzzy triangle numbers. 

                        

Table 5  
The weight of nodes with poison distribution  P  

5 4 3 2 1 Node
(16,17,18)  (17,18,19)  (14,15,16)  (13,14,15)  (10,11,12)  

jw 

10 9 8 7 6 Node
(13,14,15)  (17,18,19)  (17,18,19)  (13,14,15)  (11,12,13)  

jw 

 
where p(λ) represents the Poison Distribution with mean λ and (a,b,c) indicate the triangular fuzzy 
number. Also we have assumed that decision maker wants an answer with the chance less than 0.6, i.e. 
γw= 0.6. Using model (12), we can calculate the values f1 and f0.6 for γ=1 and γ=0.6 respectively, which 
yields 1 0.61, 128f f  . Now, the third goal function of model (16) is as follows, 

1
max (1 )

128 1

f  
 

  
 

We assign different values to λ, and calculate the values of variables and objective functions. Initially, 
we assign 0.7 to λ. In this case, we find 5 solutions, which are summarized in Table 6 and Table 7 
shows the locations.  

 

Table 6 
Different values of objective functions for 0.7   

Third objective function Second objective function First objective function   f  Solution 

0.7830  14520  45.9444  0.77  221  1 
0.9747  14705  45.7222  0.74  301 2 
1.0129  12690  46.1333  0.73  318  3 
1.0143  13000  45.6654 0.76  323  4 
0.7745  12860  46.9444  0.75  220  5 

 
 

Table 7 
Selected nodes for 0.7   
 

1x  
2x  

3x  
4x  

5x  
6x  

7x  
8x  

9x  
10x  

Solution1 0 1 1 1 1 0 0 0 0 0 
Solution2 0 1 1 0 1 1 0 0 0 0 
Solution3 0 1 1 1 0 1 0 0 0 0 
Solution4 0 1 1 1 0 1 0 0 0 0 
Solution5 0 1 1 1 0 1 0 0 0 0 
 
Now, suppose  λ=0.8, in this case, there are three obtained solutions and the results are summarized in 
Table 8 and Table 9. 

 

Table 8 
Different values of objective functions for 0.8   

Third objective function Second objective function First objective function   f  Solution No. 

1.0409  12135  45.0556  0.7  311  1 
1.0673  14725  45.7222 0.72  323  2 
1.0111  11865  45.7222 0.74  320  3 



 E. Rezaei et al. / International Journal of Industrial Engineering Computations 3 (2012) 
 

903

Table 9 
Selected nodes  for 0.8   
 

1x  
2x  

3x  
4x  

5x  
6x  

7x  
8x  

9x  
10x  

Solution1 1 0 1 0 1 1 0 0 0 0 
Solution2 0 1 1 0 1 1 0 0 0 0 
Solution3 0 1 1 0 1 1 0 0 0 0 
 
If we would like to compare three sets of obtained solutions for different ,  we can use the diversity 
and spacing metrics. These metrics are shown in the table 10 for any given set of solutions. 
 
Table10 
Comparison of  the diversity and spacing metrics for the three solution sets 

spacing diversity  
0.1463 97.0052 The first set 
1.4824 91.1592 The second set 

 
We can find out that the first set is better because it represents more diversity metric and less spacing. 
Now we can decide which nodes can be selected by considering which optimal objective function is 
more important for decision maker. If we need to select one of the solutions, we may choose the forth 
one because it has the best parameter in both objective functions. Therefore, the facilities have been 
located in nodes 2, 3, 4 and 6. In order to better analyze the behavior of the proposed model we 
consider another scenario. This time it is assumed that the weight of any demand node follows from 
uniform distribution as indicated in following Table 11. In this table ( , )U a b indicates the Uniform 
distribution and (a,b,c) indicates triangular Fuzzy numbers. Assume also that this time the decision 
maker wants an answer with minimum chance from 0.7, i.e. γw= 0.7. Using model (12), we can 
calculate f1 and f0.7 values and its results are as 1 0.73  and 45.f f   Now, the third goal function of 

model (16) is as
3

max (1 )
45 3

f  
 


.     

Table 11                         
The weight of nodes   

5  4  3  2  1  Node 

1 1(3 ,5 )U x x   
1 1(2 ,5 )U x x  

1 1(1 ,5 )U x x  
1 1(2 ,5 )U x x  

1 1(1 ,6 )U x x   
jw  

1 (3, 4,5)x  1 (3, 4,5)x 1 (6,7,8)x 1 (4,5,6)x 1 (5,6,7)x  
 

10  9  8  7  6  Node 

1 1(2 ,5 )U x x   
1 1(2 ,6 )U x x  

1 1(1 ,8 )U x x  
1 1(2 ,8 )U x x  

1 1(1 ,5 )U x x   
jw  

1 (3, 4,5)x  1 (4,5,6)x 1 (3, 4,5)x 1 (5,6,7)x 1 (4,5,6)x  
 
  

 
Therefore, we assign 0.7 to λ and calculate the values of variables and objective functions.  In this case, 
there have obtained 4 Solution s indicated in following table. 
 
Table 12 
values of objective functions for 0.7   

Third objective function Second objective function First objective function   f  Solution No. 

2.8719 8855 68.5833 0.77 167 1 
2.9445 9670 72.0833 0.8 171 2 
2.8728 8860 70.2833 0.72 168 3 
2.9196 8920 72.0833 0.77 170 4 
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Note that when λ is given by a bigger value, the problem in the third objective function tries to reduce 
the value γ and increases f  and because decision maker asks for probability value more than 0.7, if we 
obtain some solutions, and the obtained value γ is less than this value, we might ignore it. According to 
obtained parameters for the objective functions, whether the first optimal objective function or the 
second one is desirable, solution 1 is selected and if the third one is desirable, we should select solution 
2. It depends on decision maker and we can choose the first answer because it improves two objective 
functions and decide to locate the facilities in parts 2, 3, 5 and 6. 
 
Table 13 
Selected nodes for 0.7    
 

1x  
2x  

3x  
4x  

5x  
6x  

7x  
8x  

9x  
10x  

Solution1 0 1 1 0 1 1 0 0 0 0 
Solution2 1 0 1 0 1 1 0 0 0 0 
Solution3 0 0 1 1 1 1 0 0 0 0 
Solution4 1 0 1 0 1 1 0 0 0 0 
 
Now we use the data from the literature (Wang & Vatada, 2010) and solve the proposed model once 
more. In this case, there are 5 demands and 10 candidate points of establishment and four facilities are 
located in establishment nominated points. Table 14 shows the distance from point i  to  demand point 

.j  
Table 14 
Distance from point i  to  demand point j  

i  
10 9 8 7 6 5 4 3 2 1 j 
20  18  20  16  18  14  18  19 21  16 1 
14  17 18  17  16  18  14  17  15  17  2 
22  20  22  24  22  23  22  25  20  24  3 
16  22  21  22  17  21  15  18  22  19  4 
13  14  15  13  11  14  13  16  10  13  5 

 
The weight amount of fuzzy-random demand points are given in the Table 15. 

 
 Table 15                           
The weight of nodes 

5  4  3  2  1  Node 

 111 23,22,20 xxx    111 24,23,22 xxx    111 19,18,16 xxx    111 21,20,18 xxx    111 23,22,20 xxx   
(a,b,c) 

 4,3~5 Ux
  

 3,2~4 Ux   4,2~3 Ux
  

 3,1~2 Ux   2,1~1 Ux  
Unif. Dist. 

 
In Table 15, (a,b,c) indicates triangular fuzzy numbers and  ,U a b  indicates the Uniform distribution. 

Assume also that this time the decision maker wants an answer with minimum chance of 0.7, i.e. γw= 
0.7. The implementation of the proposed model yields 1 0.71 and 339f f  . Now, third goal function of 

model (3-12) is as below: 
1

max (1 )
339 1

f  
 


 

 
Therefore, we assign 0.7 to λ and calculate the values of variables and objective functions.  In this case, 
there have obtained 5 Solution s indicated in Table 16 and Table 17 as follows, 
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Table 16 
The values of objective functions  

Third objective function Second objective function First objective function   f  Solution No. 

0.4714 2192 5.6833 0.98 96 1 
0.8197 2001 5.8500 0.78 325 2 
0.8041 2247 5.8000 0.82 324 3 
0.6194 2181 6.0667 0.77 315 4 
0.43 2176 5.7833 0.86 100 5 

 
Table 17 
The selected nodes 
 

1x  
2x  

3x  
4x  

5x  
6x  

7x  
8x  

9x  
10x  

Solution1    √ √ √   √  
Solution2    √ √ √ √    
Solution3    √ √ √ √    
Solution4  √  √ √ √     
Solution5    √ √ √    √ 
 
Note that Wang and Watada (2010) reported that the facility should be located in the 2, 4, 5 and 9 
candidate points with the objective function value of – 285. We replace the solutions obtained in this 
model in objective function of Wang and Vatada's paper and calculated the objective function and the 
results are shown in Table 18. 
 
Table 18 
The objective function value 
Solution 1 2 3 4 5 
OF -208 -131 -143 -235 -198 
 
It is noteworthy that all the obtained solutions are slightly worse than solution by article itself, which is 
normal because none of them is exactly equal to the optimal point. Now, the optimized obtained 
variables by the article are replaced in the model and the results are summarized in Table 19. 
 
Table 19 
Values of objective functions with variables optimized by Wang article  
First objective function Second objective function Third objective function 

7.13 2250 0.21 
 
In this case, with these values, the objective function is worse than the values obtained by the model 
optimal variables. In summary, we can see that provided model maintains a relatively high efficiency 
and can be applied according to status quo for selecting the related nodes. 
 
5. Conclusion 
 
In this paper, we have proposed a new multi-objective model to locate emergency response centers for 
transporting the hazardous materials. Since many real-world applications are faced with uncertainty in 
input parameters, the proposed model of this paper also assumed that reference and demand to such 
center was subject to uncertainty, where demand was fuzzy random. The resulted problem formulation 
was modeled as nonlinear non-convex mixed integer programming and we used NSGAII method to 
solve the resulted problem. The performance of the proposed model has been examined with different 
examples using various probability distribution and they are compared with the performance of other 
existing method.   
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