Effect of saprotrophic soil fungi on Toxocara canis eggs

Ciarmela, M. L.,^{1*} Arambarri, A. M.,² Basualdo, J. A.¹ and Minvielle, M. C.¹

¹Cátedra de Microbiología y Parasitología. Facultad de Ciencias Médicas. UNLP. La Plata, Argentina. ²Facultad de Ciencias Naturales y Museo, Instituto de Botánica Spegazzini, UNLP. La Plata, Argentina. E-mail: <u>ciarmela@aetos.med.unlp.edu.ar</u>

Received 3 September 2009; received in revised form 17 November 2009; accepted 20 November 2009

ABSTRACT

The purpose of this work was to assess the ovicidal activity of *Chrysosporium merdarium*, *Trichoderma harzianum*, *Fusarium oxysporum*, *F. moniliforme* and *F. sulphureum* isolated from public areas in the city of La Plata, Argentina, on *Toxocara canis* eggs *in vitro*. Each species were cultured on water agar 2% with a suspension of immature-stage *T. canis* eggs. At 4, 7, 14, 21 and 28 days post-culture, they were observed by light and scanning electron microscopy. One hundred eggs were evaluated and scored according to Lysek's ovicidal effect classification. These procedures were repeated three times which each fungal species. *Chrysosporium merdarium* and *F. oxysporum* showed very high ovicidal activity, *F. sulphureum* high ovicidal activity, *F. moniliforme* intermediate ovicidal activity and *T. harzianum* did not affect the viability of *T. canis* eggs. Taking into account the effects on human and animal health and the environment, the species with better prospects for studying its potential use as biological control was *F. sulphureum*.

Keywords: saprotrophic fungi, ovicidal activity, Toxocara canis

INTRODUCTION

The use of biological control agents in parasitology implies using a macroscopic or microscopic organism to reduce the number of parasitic elements polluting the environment. Some of these agents are saprotrophic soil fungi (Huang et al., 2004). Many researchers have studied this biological interaction on the parasitic nematodes stages (Basualdo et al., 2000; Saumell, 2002; Tikhonov et al., 2002). The most common fungal egg-parasites in Spanish soils with plant endoparastic nematodes were Pochonia chlamydosporia var. chlamydosporia (Goddard) Zare, Lecanicillium lecanii (Zimmermann) Gams & Zare and Paecilomyces lilacinus (Thom) Samson (Olivares-Bernabeu and López Llorca, 2002). Most of the strains were from cyst nematodes Heterodera schachtii Schmidt and H. avenae Woll. A reduction of Haemonchus contortus (Rudolphi) Cobb larvae in feces when Duddingtonia flagrans (Duddington) R.C. Cooke chlamydospores were administrated to infected sheep was showed by (Chandrawathani et al., 2002; 2004). Duddingtonia flagrans, Monacrosporium gephyropagum (Drechsler) Subram and Harposporium helicoides Drechs have been used in the biological control of free-living stages of Ostertagia (Teladorsagia) circumcincta Stadelmann in New Zealand. Duddingtonia flagrans and H. helicoides, individually or in combination, reduced recovery of infective larvae (Waghorn et al., 2002). The effects of D. flagrans spores on sheep feces containing Nematodirus spp. nematode eggs were studied by Faedo et al. (2000). The result was a reduction in the number of third-stage larvae recovered in the feces. Paraud et al. (2005) administered D. flagrans chlamydospores to goats

experimentally infected with *Trichostrongylus colubriformis* Giles. As a result, there was a reduction in the number of recovered larvae.

The presence of geohelminth infective elements in the soil which are pathogenic for men and animals is a problem associated with the presence of parasite-infected animals wondering around urban and rural areas (Lysek and Nigenda, 1989). *Toxocara canis* (Werner) Johnston is a zoonotic geohelminth that causes toxocariasis. *Toxocara canis* eggs became infective between 20-40 days at 22 °C and 80% of humidity in the environment. Men become infected by accidental ingestion of embryonated eggs (Gillespie *et al.*, 1991; Overgaauw, 1997).

Parasite-infected dog feces containing *T. canis* eggs in public areas and their high persistence in the environment are considered a public health issue (Glickman and Magnaval, 1993).

We have shown the ovicidal action of *Paecylomices lilacinus* No. 44 and *P. marquandii* No. 150 isolated from Coronel Suarez soils and of *Fusarium semitectum* isolated from La Plata on *T. canis* eggs (Basualdo *et al.*, 2000; Ciarmela *et al.*, 2002).

The purpose of this work was to assess the ovicidal effect of *Chrysosporium merdarium*, *Trichoderma harzianum*, *F. oxysporum*, *F. moniliforme and F. sulphureum* isolated from public areas in the city of La Plata, Argentina, on *T. canis* eggs *in vitro*.

*Corresponding author

MATERIALS AND METHODS

Isolation of soil fungi

Fungal species were isolated following previously published methodologies (Ciarmela *et al.*, 2002). They were identified according to Domsch *et al.* (1993) and were preserved in malt agar (Merck[®], Darmstadt, Germany) at 4 °C.

Obtaining of T. canis eggs

Obtaining of *T. canis* eggs was done as previously described (Ciarmela *et al.*, 2002). After obtaining the eggs, they were decontaminated with 70% ethyl alcohol and 5 vol hydrogen peroxide and then washed 4 times in sterile distilled water. The final sediment was resuspended in sterile distilled water at a concentration of 1×10^4 /mL (Basualdo *et al.*, 1995).

Culture of saprotrophic fungi in the presence of *T. canis* eggs

Agar pieces (5 x 5 mm) taken from the edge of fungi colonies (4-7 days old) of each species were incubated with the suspension of immature-stage T. canis eggs (1 x 10⁴/mL) on 2% water-agar at room temperature. At 4, 7, 14, 21 and 28 days post-culture, 3 samples of each culture were harvested for observation by light microscope (LM) (Microlux Triocular Mod. MXT-PL) and scanning electron microscope (SEM) (JEOL JSM 6360 LV). For SEM, the samples were dried by critical point method (Cohen, 1974) and impregnated with gold before examination at a magnification of 350-7500X. For each observation (LM and SEM), 100 eggs were evaluated and scored according to the number altered eggs. An altered egg is defined as an egg showing morphological deformities. The cultures and microscopic observations were repeated three times for each species.

A suspension of the parasite's eggs in a Petri dish was placed on 2% water-agar at room temperature to be used as control samples. They were observed under LM and SEM on the same days as the experimental groups.

Ovicidal activity was determined according to Lýsek *et al.* (1982) evaluation considering 5 levels: no activity (level 1, \leq 15% altered eggs), low activity (level 2, \geq 15-20% altered eggs), intermediate activity (level 3, 21-49% altered eggs), high activity (level 4, 50-79% altered eggs), very high activity (level 5, \geq 80% altered eggs).

Statistical analysis

Analysis of variance (ANOVA) was used to determine statistical difference. $p \le 0.05$ were considered significant (S).

RESULTS

Chrysosporium merdarium/T. canis eggs interaction

On day 4 post-incubation, percentage of developing eggs was similar to the control group. From that day, developing eggs decreased considerably (Figure 1). Abundant fructification and scarce mycelia of *C. merdarium* was observed by LM and SEM (Figure 2). From day 21, *T. canis* eggs were surrounded by hyphal network. On day 21, eggs were submerged in the hyphal network. On day 28, there were no embryonated eggs and the most were altered (86%) (Figure 3). Some of they exhibited smooth shell. ANOVA for "non-developed" eggs in the experimental group *vs.* the control group showed significant differences in day 28 (Table 1). According to Lysek's evaluation, ovicidal activity of *C. merdarium* against *T. canis* eggs was "very high" (level 5).

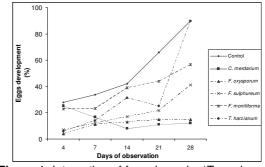


Figure 1: Interaction of fungal species/T. canis eggs



Figure 2: Scanning electron micrograph of a *C.* merdarium culture (day 4)

Fusarium oxysporum/T. canis eggs interaction

By LM, the eggs in contact with the fungus developed progressively, at a lower percentage than in the control group (Figure 1). ANOVA for "non-developed" eggs showed significant differences in day 28 (Table 1). By SEM, the eggs showed a smooth shell from day 7. The percentage of altered eggs with smooth shell increased. From day 14, these characteristics persisted until the end of the experiment (Figure 4). Ovicidal activity of *F. oxysporum* was "very high" (level 5).

Day of culture	Control eggs		Eggs and														
			C. merdarium			F. oxysporum			F. sulphureum			F. moniliforme			T. harzianum		
	\overline{x}	DS	\overline{x}	DS	р	\overline{x}	DS	p	\overline{x}	DS	р	\overline{x}	DS	р	\overline{X}	DS	р
28	9.98	5.62	88.03	7.95	S	85	7.95	S	58.85	5.62	S	43.36	4.59	S	10.18	7.95	ŃS

Table 1: Percentages of non developed eggs co-incubated with fungal species

Analysis of viariance (ANOVA) $p \le 0.05$. S: significant NS: non significant

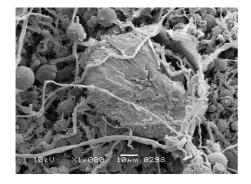
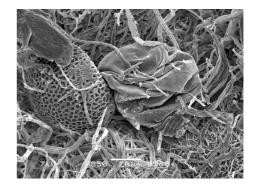


Figure 3: Scanning electron micrograph of a *T. canis* egg, colonized and destroyed by *C. merdarium* (day 28)

Fusarium sulphureum/T. canis eggs interaction


By LM, the eggs developed at a lower percentage than in the control group during the whole experiment (Figure 1). ANOVA for "non-developed" eggs in the experimental group vs the control group showed significant differences (Table 1). By SEM, the number of deformed *T. canis* eggs increased towards days 21 and 28. An important number (72%) of altered eggs with smooth shell was observed (Figure 5). According to Lýsek's evaluation, ovicidal activity of *F. sulphureum* was "high" (level 4).

Fusarium moniliforme/T. canis eggs interaction

From day 4 to 14, the percentages of developing eggs were similar to those of the control group. Then, eggs in contact with the strain continued developing at a lower proportion than the control group (Figure 1). ANOVA for "non-developed" eggs showed significant differences (Table 1). The observations by SEM showed an increase in the hyphal network around the eggs along the experiments. On day 28 the hyphal network was more abundant and almost half of the eggs were altered (Figure 6). According to Lỳsek's evaluation, ovicidal activity of *F. moniliforme* was "intermediate" (level 3).

Trichoderma harzianum/T. canis eggs interaction

The eggs developed progressively, but always at a lower percentage than those in the control group (Figure 1). Embryonated eggs were observed only on day 14 and at

Figure 4: Scanning electron micrograph of deformed and destroyed eggs with smooth shell in the hyphal network of *F. oxysporum* (day 28)

a lower percentage than in the control group. The ANOVA showed no significant differences in day 28 (Table 1). The observations by SEM showed few altered eggs (6%), most of them undamaged in the hyphal network (Figure 7). According to Lysek's evaluation, *T. harzianum* did not show ovicidal activity (level 1) against *T. canis* eggs.

T. canis control eggs

They developed normally, exhibiting their typical fossate surface and a diameter $60-80\mu$ m in all observations (Figure 8). By LM, 90% larval development in the eggs was observed by day 28.



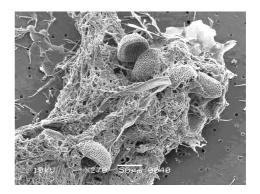
Figure 5: Scanning electron micrograph of a *T. canis* egg cultured with *F. sulphureum* (day 28)

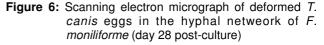
DISCUSSION

Chrysosporium merdarium was a fungus with very high ovicidal activity on T. canis eggs in vitro. In our experiments its mycelial development was slow and regular, and it was only abundant on day 21. Subsequently, there were numerous altered eggs trapped in the hyphal network. This delayed growing of the presence vegetative mycelium allowed the of embryonated eggs on day 7. Eggs with smooth shell from day 14 would imply the secretion of enzymes degrading chemical compounds in the egg's outer layer. Its ovicidal activity would be due to mechanical and enzymatic effects. This species is a common environmental pollutant and is occasionally isolated from human infections. It can cause skin and nail infections. Rarely, it was isolated from patients with bone marrow transplant and chronic granulomatose disease (Roilides et al., 1999). Consequently, its use as a biological control agent on T. canis eggs is limited.

Fusarium oxysporum also showed very high ovicidal activity. The observation of altered eggs with smooth shell would indicate an enzymatic and mechanical action by this fungus. Mennan et al. (2005) investigated the effects of F. oxysporum on Heterodera cruciferae, parasite of cabbage plants. This fungal species is a natural control of nematode cysts in the soil as it can penetrate cysts through their wall reducing their viability. Other authors like Akinsanmi and Adekunte (2003) showed the negative effect of F. oxysporum on Meloidogyne incognita eggs. plant nematode parasite. Regarding its effects on human health, this fungal species causes opportunistic mycosis (Girmenia et al., 2000). In immunocompetent individuals, it can cause keratitis, onychomycosis and occasionally peritonitis and cellulites (Dignani and Anaissie, 2004). Due to the above mentioned characteristics, the use of F. oxysporum as a biological control agent on T. canis eggs is limited.

Fusarium sulphureum showed high ovicidal activity on *T. canis* eggs. They were trapped in the hyphal network from day 4. By day 21, there were eggs with smooth shell which would be due to the enzymatic action of the fungus. In the bibliography consulted, there were no previous studies on the effects of *F. sulphureum* on nematode eggs. It is only known to affect potatoes (Lees *et al.*, 2001), but there are no reports on its pathogenic role in humans. This species is a candidate to be used as a biological control agent on nematode eggs, but a preliminary study has to be carried out on its effect on animal and human health and potential environmental damage.


Fusarium moniliforme showed intermediate ovicidal activity. This result is similar to the one reported by Lysek *et al.* (1982) when they isolated this fungal specie from Cuban soil samples and cultured it *in vitro* with *Ascaris lumbricoides* eggs. This fungus causes opportunistic mycosis (Girmenia *et al.*, 2000). It can cause onychomycosis, keratitis and occasionally peritonitis and cellulites in immunocompetent people, as *F. oxysporum* (Dignani and Anaissie, 2004). In agriculture, this specie is


considered pathogenic for *Lilium* sp. cultivation as it affects the production of flowers (Lori *et al.*, 1999). The use of this fungal specie as an antagonist of nematode eggs shows moderate efficiency and has many adverse effects.

Trichoderma harzianum did not affect the viability of *T. canis* eggs. These results agree with those published by Meyer *et al.* (1990) when testing *in vitro* the antagonism of 20 fungal species, including *T. harzianum*, on *Heterodera glycines* eggs. Several studies show that *T. harzianum* secrets chitinase-type enzymes (Limon *et al.*, 2001; Viterbo *et al.*, 2001; Boer *et al.*, 2004; Binod *et al.*, 2007) but there was no effect on *T. canis* eggs. Regarding its effects on human health, *T. harzianum* can cause disseminated mycosis (Guarro *et al.*, 1999).

From all evaluated fungal species in this work, *F. sulphureum*, only, would be used as biological control agent on *T. canis* eggs in public parks.

These results guarantee posterior studies about the mechanisms (chemical and/or mechanical) the fungi use to destroy the *T. canis* eggs.

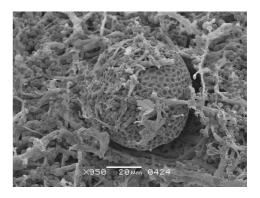


Figure 7: Scanning electron micrograph of a *T. canis* egg in the hyphal network of *T. harzianum* (day 28)

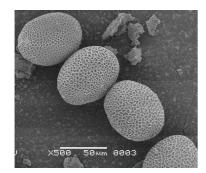


Figure 8: Scanning electron micrograph of *T. canis* eggs (day 28 post-culture)

ACKNOWLEDGEMENTS

The authors thank Ing. María Inés Urrutia for the statistical analysis; and Teresa Jones for translate the manuscript, Patricia Sarmiento for the Scanning Electron Microscopy, Facultad de Ciencias Naturales y Museo, UNLP. This work was supported by Universidad Nacional de La Plata.

REFERENCES

- Akinsamni, O. and Adekunte, O. (2003). Effect of *Fusarium oxysporum* f. sp. *glycines* and *Sclerotium rolfsii* on the pathogenicity of *Meloidogyne incognita* Race 2 to soybean. *Plant Soil* 253, 429-435.
- Basualdo, J., Minvielle, M., Pezzani, B. and Niedfeld. G. (1995). Relationship between parasitical inoculum and immunologic parameters in experimental toxocariasis.Zentralblatt für Bakteriologie, Parasitenkunde,Infektionskrankheiten und Hygiene 282, 465-473.
- Basualdo, J., Ciarmela, M., Sarmiento, P. and Minvielle, M. (2000). Biological activity of Paecilomyces genus against Toxocara canis eggs. Parasitology Research 86, 854-859.
- Binod, P., Sukumaran, R., Shirke, S., Rajput, J. and Pandey, A. (2007). Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against *Helicoverpa armigera*. Journal of Applied Microbiology 103, 1845-1852.
- Boer, H., Munck, N., Natunen, J., Wohlfahrt, G., Söderlund, H., Renkonen, O. and Koivula, A. (2004). Differential recognition of animal type β4galactosylated and α3-fucosylated chitooligosaccharides by two family 18 chitinases from *Trichoderma harzianum. Glycobiology* 14, 1303-1313.
- Chandrawathani, P., Jamnah, O., Waller, P., Höglund, J., Larsen, M. and Zahari, W. (2002).
 Nematophagous fungi as a biological control agent for nematode parasites of small ruminants in Malaysia: a special emphasis on *Duddingtonia flagrans. Veterinary Research* 33, 685-696.
- Chandrawathani, P., Jamnah, O., Adnan, M., Waller, P., Larsen, M. and Gillespie, A. (2004). Field studies on the biological control of nematode parasites of sheep in the tropics, using the microfungus

Duddingtonia flagrans. Veterinary Parasitology 120, 177-178.

- Ciarmela, M., Minvielle, M., Lori, G. and Basualdo, J. (2002). Biological interaction between soil fungi and *Toxocara canis* eggs. *Veterinary Parasitology* 103, 251-257.
- Cohen, A. (1974). Critical point drying. *In:* Principles and Techniques of Scanning Electron Microscopy. Hayat, M. (ed.). Von Nostrand Reinhold, New York. pp. 3-49.
- Dignani, M. and Anaissie, E. (2004). Human fusariosis. *Clinical Microbiology and Infection* **10**, 67-75.
- Domsch, K., Gams, W. and Anderson, T. (1993). Compendium of soil Fungi. Verlag, Germany.
- Faedo, M., Larsen, M. and Thamsborg, S. (2000). Effect of different times of administration of the nematophagous fungus *Duddingtonia flagrans* on the transmission of ovine parasitic nematodes on pasture – a plot study. *Veterinary Parasitology* 94, 55-65.
- Gillespie, S., Pereira, M. and Ramsay A. (1991). The prevalence of *Toxocara canis* ova in soil samples from parks and gardens in the London area. *Public Health* 105, 335-339.
- Girmenia, C., Pagano, L., Corvatta, L., Mele, L., Del Favero, A., Martino, P. (2000). The epidemiology of fusariosis in patients with haematological diseases. *British Journal of Hematolology* 111, 272-276.
- Glickman, L. and Magnaval, J. (1993). Zoonotic roundworm infections. *In:* Infectious disease clinics of North America. Maguire, J. and Keystone, J. (eds.). WB Saunders Company, Philadelphia. pp. 717-732.
- Guarro, J., Antolin-Ayala, M., Gené, J., Gutiérrez Calzada, J., Nieves-Díez, C. and Ortopeda, M. (1999). Fatal case of *Trichoderma harzianum* infection in a renal transplant recipient. *Journal of Clinical Microbiology* 37, 3751-3755.
- Huang, X., Zhao, N. and Zhang, K. (2004). Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. *Research in Microbiology* 155, 811-816.
- Lees, A. and Bradshaw, J. (2001). Inheritance of resistance to *Fusarium sulphureum* in crosses between *S. tuberosum* potato cultivars measured on field and glasshouse grown tubers. *Potato Research* 44, 147-152.
- Limon, M., Margolles-Clark, E., Benítez, T. and Penttilä (2001). Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from *Trichoderma harzianum*. *FEMS Microbiology Letters* **198**, **57-63**.
- Lori, G., Wolcan, S. and Monaco, C. (1999). Fusarium moniliforme, nuevo patógeno de los cultivares asiáticos de Lilium. Investigación Agraria. Producción y Protección Vegetales 14, 117-130.
- Lýsek, H., Fassatiova, O., Cuervo Pineda, N. and Lorenzo Hernández, N. (1982). Ovicidal fungi in soils of Cuba. Folia Parasitologica (Praha) 29, 265-270.
- Lýsek, H. and Nigenda, G. (1989). Capacidad de autodeshelmintización del suelo. Salud Pública de Mexico 31, 763-771.

Mal. J. Microbiol. Vol 6(1) 2010, pp. 75-80

- Mennan, S., Aksoy, M. and Ecevit, O. (2005). Antagonistic effect of *Fusarium oxysporum* on *Heterodera cruciferae*. *Journal of Phytopathology* 153, 221-225.
- Meyer, S., Huettel, R. and Sayre, R. (1990). Isolation of fungi from *Heterodera glycines* and in vitro bioassays for their antagonism to eggs. *Journal of Nematology* 22, 532-537.
- Olivares-Bernabeu, C. and López-Llorca, L. (2002). Fungal egg-parasites of plant-parasitic nematodes from Spanish soils. *Revista Iberoamericana de Micología* 19, 104-110.
- Overgaauw, P. (1997). Aspects of *Toxocara* epidemiology: Human Toxocariosis. *Critical Reviews in Microbiology* 23, 215-231.
- Paraud, C., Hoste, H., Lefrileux, Y., Pommaret, A., Paolini, V., Pors, I. and Chartier, C. (2005). Administration of *Duddingtonia flagrans* chlamydospores to goats to control gastro-intestinal nematodes: Dose trials. *Veterinary Research* 36, 157-166.
- Roilides, E., Sigler, L., Bibashi, E., Katsifa, H., Flaris, N. and Panteliadis, C. (1999). Disseminated infection due to Chrysosporium zonatum in a patient with chronic granulomatous disease and review of non-Aspergillus fungal infections with this disease. *Journal of Clinical Microbiology* 37, 18-25.
- Saumell, C. (2002). Control mediante hongos nematófagos. Disertation, Universidad del Centro.
- Tikhonov, V., López Llorca, L., Salinas, J. and Hans Borje, J. (2002). Purification and characterization of chitinases from the nematophagous fungi *Verticillium chlamydosporium* and *V. suchlasporium*. *Fungal Genetics and Biology* **35**, 67-78.
- Viterbo, A., Haran, S., Friesem, D., Ramot, O. and Chet, I. (2001). Antifungal activity of a novel endochitinase gene (chit 36) from *Trichoderma harzianum* Rifai TM. *FEMS Microbiology Letters* 200, 169-174.
- Waghorn, T., Leathwick, D., Chen, L., Gray, R. and Skipp, R. (2002). Influence of nematophagous fungi, earthworms and dung burial on development of the free-living stages of Ostertagia (Teladorsagia) circumcincta in New Zealand. Veterinary Parasitology 104, 119-129.