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Abstract

The problem of plastic spin is phrased in terms of a notion of mechan-
ical equivalence among local intermediate configurations of an elas-
tic/plastic crystalline solid. This idea is used to show that, without
further qualification, the plastic spin may be suppressed at the consti-
tutive level. However, the spin is closely tied to an underlying undis-
torted crystal lattice which, once specified, eliminates the freedom af-
forded by mechanical equivalence. As a practical matter a constitutive
specification of plastic spin is therefore required. Suppression of plastic
spin thus emerges as merely one such specification among many. Re-
strictions on these are derived in the case of rate-independent response.

Keywords: Mechanically equivalent intermediate configurations, plas-
tic spin

1 Introduction

The conventional theory of crystal plasticity rests on a purely kinematical
interpretation of plastic deformation according to which the rate of plastic
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deformation is presumed to be expressible as a superposition of simple shear
rates in the form

ĠG
−1

=
∑

νisi⊗ni, (1)

in which G is the plastic part of the deformation gradient, νi are the slips
and the si and ni are orthonormal vectors specifying the ith slip system.
The sum ranges over the currently active slip systems. This decomposition,
though virtually ubiquitous [1-4], has been criticized on the grounds that
for finite deformations it cannot be associated with a sequence of simple
shears unless these are restricted in a manner that is unlikely to be realized
in applications [5]. In particular, the order of the sequence generally affects
the overall plastic deformation, a fact which is not reflected in (1). In
[6] conditions are given under which (1) yields an approximation to the
deformation associated with a sequence of slips. Again it is not known if
such conditions are realized in practice.

This state of affairs regarding theories based on (1) gives impetus to
alternative models based purely on the continuum mechanics of crystalline
media, such as those advanced in [7-10]. Here our objective is to characterize
an aspect of such models - the plastic spin - which has thus far remained
open to question. In conventional crystal plasticity theory, based on (1),
this issue does not arise. Instead, the νi are determined by suitable flow
rules, arranged to ensure that the response is dissipative, and the skew part
of (1), in which the slip-system vectors are specified, furnishes the plastic
spin.

In Section 2 we summarize the basic purely mechanical theory of elastic-
plastic solids outlined in [10] and [11]. In preparation for the discussion of
mechanical equivalence in Section 4, in Section 3 we split the space of ten-
sors into the direct sum of those that contribute to plastic dissipation and
nilpotent tensors that make no contribution. It is then shown in Section 4
that elements of the former space are mechanically equivalent to elements
of the full space. This leads to the conclusion that the nilpotent plastic
spin may be suppressed at the constitutive level without loss of general-
ity. The same conclusion has been reached elsewhere [2] for the theory of
isotropic elastic/plastic solids. However, implementation [3] of the theory of
crystalline elastic/plastic solids relies on the a priori specification either of
an undistorted lattice or an associated set of slip-system vectors. We show
in Section 5 that when this is done the freedom to suppress the nilpotent
part of the plastic evolution, afforded by the concept of mechanical equiv-
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alence, is lost. Thus, as a practical matter, constitutive equations for the
plastic spin are required. These in turn depend intimately on the nature
of the crystal. In Section 6 we derive restrictions on such dependence aris-
ing from ideas prevalent in the rate-independent theory [12,13], narrowing
substantially the scope of those obtained previously [14,15].

The finding that plastic spin is non-negligible in principle is far from a
shortcoming of the continuum theory. Rather, plastic spin affords additional
freedom to fit predictions of the theory to actual data. Indeed, such freedom
substantially exceeds that afforded by conventional crystal plasticity theory
in which plastic spin is constrained by the structure of (1).

We use standard notation such as At, A−1, A∗, SymA, SkwA, trA
and JA. These are respectively the transpose, the inverse, the cofactor, the
symmetric part, the skew part, the trace and the determinant of a tensor A,
regarded as a linear transformation from a three-dimensional vector space
to itself, the latter being identified with the translation space of the usual
three-dimensional Euclidean point space. We also use Lin to denote the
linear space of second-order tensors, Lin+ the group of tensors with posi-
tive determinant, Orth+ the group of rotation tensors, Sym andSkw the
linear subspaces of symmetric and skew tensors and Sym+ the positive-
definite symmetric tensors; the symbol ⊕ is used to denote the direct sum
of linear spaces. The tensor product of 3-vectors is indicated by interposing
the symbol ⊗, and the Euclidean inner product of tensors A,B is denoted
by A ·B = tr(ABt); the associated norm is |A| =

√
A ·A. In terms of or-

thogonal components, A ·B = AijBij , wherein the usual summation rule
is implied. For a fourth-order tensor A, the notation A[B] stands for the
second-order tensor with orthogonal components AijklBkl. The transpose
At is defined by B · At[A] = A · A[B], and A is said to possess major sym-
metry if At = A. If A · A[B] = At · A[B] and A · A[B] = A · A[Bt] then A
is said to possess minor symmetry. Finally, the notation FA stands for the
tensor-valued derivative of a scalar-valued function F (A).

2 Basic theory

In the purely mechanical theory, variables of interest include the motion
χ(x,t) and the plastic deformation tensor K(x,t), where x is the position
of a material point in a fixed reference placement κr of the body. The
values y = χ(x,t) are the positions of these points at time t and generate
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the current placement κt of the body as x ranges over κr. The deformation
gradient, F =∇χ, is assumed to be invertible with JF > 0. These variables
are used to define the elastic deformation

H = FK. (2)

We impose JH > 0 and conclude that JK > 0. The plastic deformation is
related to the more commonly used measure G by G = K−1.

The elastic strain energy of the body is

U =

∫
κt

ψ(H)dv, (3)

where ψ is the spatial strain-energy density. Attention is confined to materi-
ally uniform bodies, exemplified by single crystals. These have the property
that the strain-energy density does not depend explicitly on x. However,
most of the following discussion, concerned with local aspects of the theory,
remains valid if this restriction is relaxed. We are concerned mainly with
the constitutive structure of the theory and therefore restrict attention to
smooth processes.

The local equations of motion are

divT+ ρb = ρÿ, T ∈ Sym in κt, (4)

where T is the Cauchy stress, ρ is the mass density, div is the spatial diver-
gence (i.e., the divergence with respect to y), superposed dots are used to
denote material derivatives (∂/∂t at fixed x), and b is the body force per
unit mass.

The decomposition (2) is associated with a vector space κi called the
local intermediate configuration, which is mapped to the translation spaces
of κr and κt by K and H, respectively. Our main objective is to characterize
intermediate configurations that are mechanically equivalent. To this end,
several preliminary concepts are needed.

The strain-energy function referred to κi is

W (H) = JHψ(H), (5)

and generates the Cauchy stress via the formula [10]

TH∗ =WH. (6)
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Necessary and sufficient for the symmetry of T (cf. (4)2) is that W depend
on H through the elastic Cauchy-Green deformation tensor [10]

C = HtH. (7)

Thus,

W (H) = Ŵ (C). (8)

Equation (6) then provides

JHT = HSHt, (9)

where S is the elastic 2nd Piola-Kirchhoff stress given by S = Ŝ(C), with

Ŝ(C) = 2ŴC. (10)

If κi is natural, in the sense that Ŝ(I) = 0, then realistic constitutive
hypotheses for metallic crystals [10] associate it with an undistorted state of
the underlying crystal lattice. Then, the strain-energy functionW is subject
to the restriction

W (H) =W (HR), (11)

where R ∈ Orth+ is an element of the symmetry group for the material (see
[8,10] for further discussion). Using (10), it is straightforward to demon-
strate that

Ŝ(R
t
CR) = RtŜ(C)R. (12)

To make use of restrictions arising from material symmetry in crystalline
solids, it is necessary to specify information about the undistorted lattice
(Section 5). It is shown in [10] that undistorted κi may be attained by an
equilibrium (i.e., inertia-less) deformation of an arbitrarily small unloaded
sub-body, granted the degree of smoothness required by the mean-stress
theorem.

The sum of the kinetic and strain energies of an arbitrary part p ⊂ κt of
the body is ∫

π
ΦdV ; Φ = Ψ+ 1

2ρr |ẏ|
2 , (13)

where π, with piecewise smooth boundary ∂π, is the region occupied by p
in κr, and

Ψ(F,K) = J−1
K W (FK) (14)
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is the referential strain-energy density.
The dissipation, D, is the difference between the mechanical power P

supplied to p and the rate of change of the total energy in p. Thus,

D = P − d
dt

∫
π
ΦdV. (15)

This is expressible in the form [11]

D =

∫
π
DdV, (16)

where
D = E · K̇K

−1
(17)

in which
E = ΨI− FtP (18)

is Eshelby’s energy-momentum tensor, and

P = TF∗ (19)

is the usual Piola stress. Thus the dissipation is non-negative for every
sub-body if and only if D ≥ 0. We find it convenient to use (17) in the form

JKD = E ′ ·K−1K̇, (20)

where
E ′ = JKKtEK−t (21)

is the Eshelby tensor, pushed forward to κi. This is purely elastic in origin.
In particular [10],

E ′(C) = Ŵ (C)I −CŜ(C), (22)

implying that
E ′(RtCR) = RtE ′(C)R, (23)

if R ∈ Orth+ is a material symmetry transformation.
The equations of motion are augmented by a flow rule for the plas-

tic deformation. Typically [10] this specifies K−1K̇ in terms of a consti-
tutive response function, which must be such as to satisfy the material-
symmetry transformation rule K−1K̇ → Rt(K−1K̇)R. A framework for
rate-independent response is described in Section 6.
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3 Nilpotent plastic flows

Consider the linear spaceN of tensors with representative elementN defined
by

N · E ′ = 0. (24)

By writing

E ′ = ZC−1 with Z(C) = Ŵ (C)C−CŜ(C)C (25)

and invoking the symmetry of Ŝ, we have Z(C) ∈ Sym and therefore

N ⊇M = {M: MC−1 ∈ Skw}, (26)

in which C is associated with E ′ via (22).
M is the three-dimensional linear space spanned by {[Skw(ei⊗ej)]C; i ̸=

j}, where {ei} is any orthonormal basis for E3. Its orthogonal complement
with respect to Lin is

M⊥ = {L: LC ∈ Sym}. (27)

This is the six-dimensional linear space spanned by {[Sym(ei ⊗ ej)]C
−1}.

Thus every tensor has a unique representation as the sum of elements of M
andM⊥. To establish that N ⊆M , if true, and thus that N =M, we would
need to show, given C ∈ Sym+, that N · E ′ = NC−1 ·Z(C) vanishes only if
NC−1 ∈ Skw. However, the premise does not preclude the possibility that
NC−1 /∈ Skw because Z(C) is fixed by C and thus not an arbitrary element
of Sym. If the elastic strain is small, as is often assumed in practice, then
C may be replaced by I with an error on the order of the small strain, so
that M is then approximated by Skw.

It follows from the definitions that the projection of K−1K̇ onto M has
no effect on dissipation. This leads us to pose the question of whether or
not this projection plays an essential role, or if it can be suppressed without
affecting the initial-boundary-value problem and hence without restricting
the mechanical phenomena that the theory can be used to describe. This is
more widely known as the problem of plastic spin, which has been a vexing
issue in theories of plasticity that do not rely on slip-system kinematics. In
the affirmative case the freedom afforded by the choice of κi may be used to
simplify the theory accordingly. That this is possible in the case of isotropy
has been firmly established in [2].
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Indeed, if it is assumed that plastic flow is inherently dissipative [10]; i.e.,
that D ≥ 0 and that D vanishes if and only if K̇ vanishes, then K−1K̇ ∈M
implies that K̇ = 0. From this perspective elements of M do not qualify as
bona fide plastic flows; we call them nilpotent flows. This is the content of
the principle of actual evolution elucidated in [8]. This is not to say that
the part of the plastic flow belonging to M must vanish, however. Here we
study the role played by the projection of K−1K̇ onto M . In particular,
we study the question of whether or not the restriction K−1K̇ ∈ M⊥ may
be imposed without loss of generality. In the case of small elastic strain,
this is equivalent to the question of whether or not the plastic spin may be
suppressed.

4 Mechanical equivalence

Consider two local intermediate configurations, κi1 and κi2 , associated with
a given reference placement κr. We wish to characterize the relationship
between these configurations arising from the requirement that they be me-
chanically equivalent, in the sense that solutions to properly posed initial-
boundary-value problems are invariant under replacement of one by the
other. We begin by setting down some fairly obvious properties that one
would expect of such a relationship.

(i) As a minimal requirement, we stipulate that mechanically-equivalent
local intermediate configurations should correspond to the same motion
y = χ(x, t). They are therefore associated with one and the same deforma-
tion gradient F(x, t). It follows from (2) that if H1 and H2 are the elastic
deformations from κi1 and κi2 to κt, and if K−1

1 and K−1
2 are the plastic

deformations from κr to κi1 and κi2 , then there is A ∈ Lin+ such that

H1 = H2A and K1 = K2A. (28)

Conversely, these yield the invariance of F; integration then furnishes the
invariance of χ modulo uniform translation.

(ii) As further requirements, we impose the invariance of the Cauchy
stress T(y, t) and the strain energy stored in an arbitrary part of the body.
Let W1(H1) and W2(H2) be the strain-energy functions associated with κi1
and κi2 . Then, from (6),

TH∗
1 = (W1)H1 and TH∗

2 = (W2)H2 . (29)
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Our assumption about the energy implies that the referential strain energy
density is invariant; eqs. (9), (14) then combine to yield

W1(H1) = JAW2(H2) and JAS2 = AS1A
t, (30)

where S1,2 are the 2nd Piola-Kirchhoff stresses relative to κi1,2 , derived from
W1 and W2 respectively by formulas like (10). These relations ensure the
mechanical equivalence of any pair of local configurations in the case of
purely elastic response; i.e., in the absence of dissipation.

(iii) It is natural to impose the additional requirement that the dissipa-
tion be invariant for an arbitrary part of the body. Using (20) and (28)2,
the referential dissipation densities D1,2 associated with κi1,2 may be shown
to satisfy

D1 = D2 + J−1
K2

E ′
2 · ȦA

−1
, (31)

where E ′
2 is the push-forward of the Eshelby tensor to κi2 , given by

E ′
2 = Ŵ2I−C2S2, (32)

in which C2 = Ht
2H2 and Ŵ2(C2) =W2(H2), use having been made of the

connection
E ′
1 = JAA

t(E ′
2)A

−t, (33)

which follows from (21) and (28)2.
The invariance of the dissipation; i.e., D1 = D2, is seen to follow if and

only if

E ′
2 · ȦA

−1
= 0. (34)

With reference to (24) and (26), this restriction is met by any transformation
A(t) ∈ Lin+ that satisfies the differential equation

ȦA
−1 ∈M2, (35)

where
Mα = {M: MC−1

α ∈ Skw}; α = 1, 2. (36)

This result may by used to show that part (ii) of the definition of me-
chanical equivalence may be relaxed to stipulate either the invariance of the
energy or of the Cauchy stress, but not both; that is, invariance of one im-
plies that of the other. To see this we write (34), which is satisfied by virtue
of (35), in the form

(Ht
2TH∗

2 −W2I) · ȦA
−1

= 0, (37)
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wherein T is the common value of T1 and T2 by hypothesis. This is equiv-
alent, by (28)1, to

TH∗
1 · Ḣ1 = JATH∗

2 · Ḣ2 + J̇AW2, where J̇A = A∗ · Ȧ. (38)

Using (29) we find that this reduces to Ẇ1 = (JAW2)
·, implying that W1 is

given, modulo an unimportant constant, by (30)1. Thus (29) and (35) yield
(30)1.

We note that (35) yields a constant value of JA. This follows easily

from the vanishing of J̇A/JA = tr(ȦA
−1

) = tr(Ω2C2), for any Ω2 ∈ Skw.
Therefore solutions to (35) belong to Lin+ if and only if A(t0) ∈ Lin+.
Given A(t0), A(t) is uniquely determined by (35) for any - hence every -

element of M2. Further, every element of M2 is expressible as ȦA
−1

with
A(t) ∈ Lin+.

Conversely, that (30)1 and (35) yield the invariance of the Cauchy stress
follows by differentiating (30)1 and applying formulas like (6). After some
algebra making use of the properties of the inner product, together with
H∗

1A
t = JAH

∗
2, which follows from (28)1, we arrive at the intermediate result

JAT1H
∗
2 ·Ḣ2+JAT1H

∗
2 ·H2(Ω2C2) = JAT2H

∗
2 ·Ḣ2, whereΩ2 is an arbitrary

skew tensor and use has been made of J̇A = 0. Further, T1H
∗
2 ·H2(Ω2C2) =

T1 ·H2(Ω2C2)(H
∗
2)

t in which H2(Ω2C2)(H
∗
2)

t = JH1H2Ω2H
t
2 ∈ Skw; the

inner product withT1 vanishes, leaving the residual equation JAT1H
∗
2·Ḣ2 =

JAT2H
∗
2 · Ḣ2, which implies that T1H

∗
2 = T2H

∗
2 and hence that T1 = T2.

From (28)2 we have

K−1
1 K̇1 = A−1(K−1

2 K̇2 + ȦA
−1

)A. (39)

We wish to know if it is possible to impose K−1
1 K̇1 ∈ M⊥

1 while preserv-
ing the mechanical equivalence of κi1 and κi2 . Thus we impose (35). We
require the following simple lemma: Suppose G1 ∈ M1 and define G2 by
A−1G2A = G1 forA ∈ Lin+. ThenG2 = AΩ1C1A

−1 for someΩ1 ∈ Skw,
and, from (28)1, it follows thatG2 = AΩ1A

tC2AA−1 =Ω2C2, whereΩ2 =
AΩ1A

t ∈ Skw. Therefore G2 ∈ M2. We have shown that M2 = AM1A
−1;

equivalently, M1 = A−1M2A. Using this with (35), we conclude from (39),
in which K−1

1 K̇1 ∈M⊥
1 is imposed, that A−1(K−1

2 K̇2)A ∈M1⊕M⊥
1 = Lin,

which is equivalent to K−1
2 K̇2 ∈ Lin. Thus the restriction K−1

1 K̇1 ∈ M⊥
1

does not impose any restriction on K−1
2 K̇2.

In other words, given any plastic flow in Lin based on the use of κi2 ,
there exists a mechanically-equivalent κi1 such that K−1

1 K̇1 ∈ M⊥
1 . This
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generalizes a result in [11] pertaining to small elastic strains. Because Lin is
nine-dimensional whereas M⊥ is only six-dimensional, it would thus appear
that constitutive equations for plastic flow may be dramatically simplified
without affecting the predictive capacity of the theory. This is the point of
view advanced in [11] for the case of small elastic strain. However, as argued
in the next Section, this conclusion is premature.

5 Lattices

It is natural to appeal to concepts in crystal-elasticity theory in the course
of contemplating further conditions to be imposed in a reasonable definition
of mechanical equivalence for crystalline solids. Central to that theory is the
idea that linearly independent lattice vectors li (i ∈ {1, 2, 3}) are mapped
to their images ti in κt in accordance with the Cauchy-Born hypothesis. To
accommodate plasticity, this hypothesis is assumed to apply to the elastic
deformation. Thus, ti = Hli where lj are the lattice vectors in κi. It is
natural to view the lattice set {li} associated with κi as an intrinsic property
of the material. Accordingly, it is uniform (i.e., independent of x) in a
materially-uniform body.

The ti are observable in principle. In practice they are computed from
their measurable duals ti [16]. We therefore extend the definition of mechan-
ical equivalence to include the requirement that {ti} be invariant. Further,
(2) yields ti = Fri, where ri = Kli are the lattice vectors in κr. Then, each
ri(= F−1ti) is also invariant, and

li(2) = Ali(1); A = li(2) ⊗ li(1), (40)

where li(α), etc., are the lattice vectors in κiα ; α = 1, 2. A transformation
from one local intermediate configuration to another mechanically equivalent
one thus corresponds to a transformation of lattice vectors. The evolutions
of these lattices are related by

l̇i(1) = A−1[l̇i(2) − ȦA
−1

li(2)], (41)

and they are mechanically equivalent if A(t) satisfies (35). Consequently the
notion of mechanical equivalence may be phrased in terms of relationships
among lattices associated with intermediate configurations. The plastic de-
formation is given by K = ri ⊗ li, where the lj are the duals of the lj . The
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elastic deformation is given by H = ti⊗ li; and the deformation gradient by
F = ti ⊗ ri.

A trivial example of mechanical equivalence is furnished by the case
C2 = I. Then, (28)1 and (35) result in A(t) ∈ Orth+ and C1 = I; the
mechanically equivalent lattices are undistorted and related by a rotation.
If one is stress-free, then both are stress-free by virtue of (30)2. If the elastic
strain is small, then, to leading order, mechanically-equivalent lattices are
also related by rotations. This conclusion is consistent with [11]. In the case
of finite elastic strain, however, a mechanically-equivalent transformation
induces a lattice distortion.

When implementing the theory one encounters the need to specify the
initial orientation of the lattice {li}. This arises from the practical necessity
to ensure that an initial value of the plastic deformation, and hence that of
the stress via (2) and (9), can be fixed unambiguously, so that the initial-
boundary-value problem consisting of the equation of motion and the flow
rule for the plastic deformation can be forward-integrated in time. In the
simplest case, guided by the natural view that the undistorted lattice is an
intrinsic material property, the analyst would assume the li to be material
vectors and thus impose l̇i = 0, effectively fixing them once and for all.
This is consistent with the notion that plasticity is associated with flow of
material relative to the actual lattice, and the consequent fact that actual
lattice vectors are not material vectors (ṙi ̸= 0 if and only if K̇ ̸= 0).

Having made this assumption, suppose the analyst uses κi2 , with l̇i(2) =

0, together with some flow rule to compute a plastic flow K−1
2 K̇2. This

flow may be used to construct A(t) in such a way as to eliminate the
projection of K−1

1 K̇1, given by (39), onto M1. Naturally the flow rule for
K−1

1 K̇1 thus derived is automatically such that K−1
1 K̇1 ∈M⊥

1 , and the as-
sociated lattice {li(1)}, which is mechanically equivalent to {li(2)}, satisfies
l̇i(1) = −A−1Ȧli(1). Constitutive functions based on the use of {li(2)}may be
used with the transformations (30) and (33) to compute their counterparts
based on the evolving lattice {li(1)}; these include a flow rule that is seem-
ingly simplified by the fact that its projection onto M1 vanishes. However,
the computation of the lattice {li(1)} relative to which these apply requires
the flow rule for κi2 , which may have a non-zero projection onto M2. Said
differently, to obtain the lattice relative to which plastic spin vanishes it is
necessary to have knowledge of the plastic spin computed on the basis of the
given lattice! Because of this there is no convincing basis for the belief, ex-
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pressed by ourselves [10,11] and others, that plastic spin may be suppressed
without loss of generality in flow rules for plastic evolution. On the con-
trary, the freedom to add M to M⊥ in the formulation of flow rules may
well be required to advance the theory to the point of offering meaningful
agreement with empirical data. Nevertheless we show in the next Section
that theory offers guidelines for narrowing the possibilities.

6 Rate-independent theory

Following conventional ideas for the description of rate-independent response
we assume plastic flow to be possible only if the material is in a state of yield.
We express this idea as the requirement that the elastic deformation belong
to a manifold that may be parametrized by other variables. For example,
motivated by G.I. Taylor’s formula giving the flow stress as a function of
dislocation density, and using the fact that the stress S may be expressed
in terms of C via (10), we assume yield to be possible only if [10,13]

G(C, α) = 0, (42)

where G is a suitable yield function and

α = JKK−1CurlK−1 (43)

is the (geometrically necessary) dislocation density. Here Curl is the refer-
ential curl operation defined in terms of the usual vector operation by

(CurlA)c =Curl(Atc) (44)

for any fixed vector c. Relevant to our development is the current yield sur-
face, defined, for fixed α, by G(·, α) = 0. For simplicity’s sake we assume G
to be differentiable, so that the yield surface defines a differentiable manifold
in Sym.

Plastic evolution; i.e., K̇ ̸= 0, is deemed to be possible only when (42) is
satisfied, and the variable C is always constrained to belong to the current
elastic range defined by G(·, α) ≤ 0, assumed to be a connected set in Sym.
In view of our restriction to materially uniform bodies we require that the
same yield function pertain to all material points.

In [10] it is shown that (42) is invariant under superposed rigid-body
motions and (global) changes of reference placement and is thus intrinsic
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to the material, provided that the function G is likewise invariant. Similar
statements apply to the reduced strain-energy function (8) and to the asso-
ciated stress, given by (10). In particular, the stated invariance properties
are possessed by the tensors C and α [10,17]. Further, the yield function is
subject to the same material-symmetry restriction as that imposed on the
strain-energy function; i.e. [10],

G(C, α) =G(RtCR,RtαR). (45)

It is important to note that the dislocation density is well-defined under sym-
metry transformations only if the symmetry group is discrete (see Theorem
8 of [7]). Accordingly, yield functions of the kind considered are meaningful
only for crystalline solids.

The body is dislocated if α does not vanish; in this case K−1 is not a
gradient and from (2) it follows that neither is H. In fact [17],

α = JHH−1curlH−1, (46)

in which curl is the spatial curl. Then, κi has only local significance in
the sense that it cannot be identified with a global placement of the body
in Euclidean space. That is, a differentiable position field that identifies
material points in κi does not exist.

Most workers assume the plastic evolution K−1K̇ to be such as to max-
imize the dissipation under the constraint that C belong to the current
yield surface. This in turn is a provable consequence of the widely adopted
I’llyushin postulate [18]. In the present context this condition takes the
form [11]

[E ′(C)− E ′(C∗)] ·K−1K̇ ≥ 0; G(C, α) = 0, (47)

where C∗ is a fixed elastic deformation in the elastic range. This inequality
is preserved under material symmetry transformations. Thus the problem
is to characterize the plastic flow such that the actual dissipation (cf. (20))
is maximized relative to that associated with any admissible state; i.e.,

max(E ′ ·K−1K̇) subject to G(C, α) ≤ 0, (48)

which is a standard optimization problem subject to an inequality con-
straint. The Kuhn-Tucker necessary condition [19] immediately generates
the flow rule

(E ′
C)

t[K−1K̇] = µGC, (49)
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where µ ∈ R+ is a Lagrange multiplier and (E ′
C)

t, the transpose of the
derivative of E ′(C), is a linear transformation from Lin to Sym. If µ = 0
thenK−1K̇ belongs to the null spaceN of (E ′

C)
t. It follows from the fact that

the domain and range of (E ′
C)

t are respectively nine- and six-dimensional
that N is necessarily three-dimensional.

Because of the role of the Eshelby tensor in inequality (47), and because
the latter is so closely related to the elastic range, it is natural to consider
yield functions that depend on C implicitly through E ′. This specialization
is allowed by the invariance of the elastic range and the dissipation under su-
perposed rigid-body motions and compatible changes of reference placement
[10]. Thus we consider yield functions of the form

G(C, α) = F (E ′(C), α). (50)

The elastic range is then the set S defined by F (E ′(·), α) ≤ 0, and we
assume F to be differentiable. Further, F satisfies the material symmetry
rule F (E ′, α) = F (RtE ′R,RtαR).

Of course E ′(C) ∈ Lin for every C ∈ Sym+, but in general not every
element of Lin is expressible in the form E ′(C); that is, there is not a unique
element of Sym+ corresponding to a given element of Lin. This issue is
central to the considerations of [14,15]. Following that work we define a
second elastic range K by the requirement F (·, α) ≤ 0 in which the domain
is now Lin. It is then clear that S ⊂ K. We also have S ⊆ T ⊂ K, where
T = K ∩M and M is the subset of Lin defined by E ′C ∈ Sym. However,
we cannot assert that S and T are equivalent unless we can show that the
equation

E ′C = Ŵ (C)C−CŜ(C)C (51)

has a unique solution C ∈ Sym+ for every E ′ ∈ M. That is, the restriction
E ′C ∈ Sym for E ′ ∈ Lin and C ∈ Sym+ does not in general yield a unique
C such that E ′ = E ′(C). Having said this we note that if the elastic strain is
small, then (51) reduces to S = −SymE ′ to leading order, which has a unique
solution for the elastic strain E = 1

2(C− I) under realistic hypotheses on
the elastic constitutive response [10,11]. This yields a unique C ∈ Sym+

provided that |SymE ′| is not too large. Thus, as a practical matter, we
expect S and T to be equivalent in real metallic crystals in which the elastic
strain is invariably small. In connection with this point we remark that
a counter-example has been exhibited in [14] showing that in general no
bijection exists between S and K. However, this demonstration makes use
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of extreme elastic strains that undoubtedly lie well outside the elastic range
of any real metallic crystal and which are therefore inadmissible on physical
grounds. This observation lends further support to the plausibility of our
assumption that S and T are equivalent in practical applications.

The foregoing inclusions suggest that we replace (48) by the problem

max(E ′ ·K−1K̇) subject to F (E ′, α) ≤ 0 and W = 0, (52)

where
W = Skw(E ′C). (53)

The constraints are equivalent to the requirement E ′ ∈ T , whereas F (·, α) is
defined on Lin. Thus we regard F (·, α) as a smooth extension of F (E ′(·), α)
from T to Lin and satisfying the same material symmetry rule. We now have
an optimization problem with both inequality and equality constraints. The
relevant version of the Kuhn-Tucker necessary condition for this problem is
[19]

K−1K̇ = (λF +Ω ·W)E ′ , (54)

where λ ∈ R+ and Ω ∈ Skw are Lagrange multipliers and the derivative
FE ′ , an element of Lin, is evaluated on T . It is straightforward to derive
(Ω ·W)E ′ = ΩC and thus to obtain the flow rule

K−1K̇ = λFE ′ +ΩC. (55)

We observe from (26) that the term ΩC belongs to the three-dimensional
space M and is thus nilpotent. Therefore the dissipation is (cf. (20))

JKD = λE ′ · FE ′ . (56)

Because λ ≥ 0, the dissipation is positive only if λ > 0 and thus only
if E ′ · FE ′ > 0. Further, material symmetry transformations yield FE ′ →
RtFE ′R and (55) then requires that Ω → RtΩR.

In [10] a constitutive hypothesis is made to the effect that contributions
to the flow rule of the form ΩC may be suppressed. While this is permissible
from the viewpoint of mechanical equivalence as defined in Section 4, it is
restrictive from the viewpoint discussed in Section 5. Nevertheless it is
possible to derive certain restrictions that Ω must satisfy.

To this end we use the chain rule on S (assumed equivalent to T ),
obtaining

GC = (E ′
C)

t[FE ′ ]. (57)
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Comparison of (49) and (55) shows that the combination (λ− µ)FE ′ +ΩC
belongs to the null space N of (E ′

C)
t. Then (λ−µ)FE ′ belongs toM⊕N , the

dimension of which does not exceed six. However, this is possible only if µ =
λ because FE ′ ∈ Lin and therefore has a non-zero part in (M ⊕N )⊥, which
has dimension three at least. Indeed, at this stage λ and µ are arbitrary
non-negative scalars and the imposition of µ = λ in (49) and (55) entails no
loss of generality. Consequently Ω is restricted by the requirement ΩC ∈ N ;
i.e.,

(E ′
C)

t[ΩC] = 0. (58)

This result is more stringent than that derived in [14,15]. In that
work the extension of the Kuhn-Tucker theorem to equality- and inequality-
constrained problems is not used and attention is confined to the case of
plastic incompressibility. In terms of the present model it is shown there
that K−1K̇ − λFE ′ ∈ N . Here we have K−1K̇ − λFE ′ ∈ M ∩ N , which
simplifies the problem of deriving restrictions on Ω.

To make the problem (58) explicit we need to characterize the null space
N . Thus consider a one-parameter family of elastic deformations C(u) ∈
Sym+ with u in some open interval. Differentiating (22) with respect to u
furnishes

E ′
C[Ċ] = Ẇ I− ĊS−CṠ. (59)

Using (10) in the form Ẇ = 1
2 Ŝ · Ċ and Ṡ = 2ŴCC[Ċ] and noting that

Ċ ∈ Sym may be chosen arbitrarily, we derive

E ′
C[B] = 1

2(Ŝ ·B)I−BŜ− 2C(ŴCC[B]) for all B ∈ Sym. (60)

Thus for any A ∈ Lin,

B · (E ′
C)

t[A] = A · E ′
C[B] = 1

2(Ŝ ·B)I ·A−A ·BŜ−2A ·C(ŴCC[B]). (61)

Using the properties of the inner product, the symmetry of Ŝ and the major
symmetry of ŴCC, we recast this as

B · (E ′
C)

t[A] = 1
2(I ·A)B · Ŝ−B · Sym(AŜ)− 2B · ŴCC[A

tC]. (62)

Accordingly, because B is an arbitrary element of Sym,

(E ′
C)

t[A] = 1
2(I ·A)Ŝ− Sym(AŜ)− 2ŴCC[A

tC] for all A ∈ Lin, (63)
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and N is the set of all tensors that annul the right-hand side. It is straight-
forward to show that the material symmetry N → RtNR is satisfied (see
also [14]).

For A = ΩC with Ω ∈ Skw we have I ·A = tr(ΩC) = Ω ·C, which
vanishes identically. Further, AtC = −CΩC ∈ Skw, and ŴCC[A

tC] thus
vanishes by the minor symmetry of ŴCC. Therefore (58) reduces to

Sym[ΩCŜ(C)] = 0, (64)

which is equivalent to
Sym[ΩE ′(C)] = 0 (65)

by virtue of (22). These restrictions are preserved under material symmetry
transformations R ∈ Orth+. We emphasize the fact that (64) is not a
general requirement. It applies only in the case of yield functions that
depend on C via E ′(C), and even then only when the restrictions described
in the paragraph containing (51) are satisfied.

For small elastic strain CŜ(C) is of order |E| where E = 1
2(C− I). This

vanishes at leading order; i.e., at order unity, reducing (64) to an identity. In
this case there are no a priori restrictions on Ω apart from the requirement
that its constitutive specification satisfy material symmetry. In the general
case (64) (or (65)) connects Ω to the elastic deformation and to the crystal
properties via the stress-deformation relation. The characterization of so-
lutions Ω thus requires detailed consideration of the particular crystalline
response at hand.

It is appropriate to regard (2) and the equations of motion (4), together
with the elastic constitutive equation (9), the yield function and the flow
rule, as constituting an initial-boundary-value problem for the deformation
χ(x, t) and plastic deformation K(x, t). In particular, the flow rule requires
the specification of an initial value K0(x) = K(x, t0). Granted {li}, this is
given via K0(x) = ri(x,t0)⊗ li by the values of the referential lattice vectors
ri(x,t0) = F(x, t0)

−1ti(x, t0), wherein ti are computed from their empiri-
cally determined duals ti [16]. The latter are then predicted at any time
t1 > t0 by the coupled theory for the fields χ and K, and constitutive equa-
tions for Ω, subject to (64), may be adjusted as needed to enhance agree-
ment with the measured field ti(x, t1). To be sure this is a formidable task,
but one which is ultimately necessary for the assessment of the predictive
potential of any theory for plastic flow in crystalline solids.
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Mehanički ekvivalentne elastoplastične deformacije i
problem plastičnog spina

Problem plastičnog spina je analiziran koristeći pojam mehaničke ekvivalen-
cije medju lokalnim medjukonfiguracijama elastoplastičnog kristalnog ma-
terijala. U nekim slučajevima korǐsćenje plastičnog spina nije neophodno u
konstitutivnoj analizi, ali je njegova konstitutivna specifikacija neophodna
u analizi plastičnog ponašanja većine kristalnih struktura. Detaljna analiza
je sprovedena za slučaj elastoplastičnih deformacija u odsustvu viskoznih
efekata.
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