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Abstract - Xanthogaleruca luteola Müll. (Col.: Chrysomelidae) is a major urban insect pest on elm trees in Iran. Digestion 
in the alimentary canal of the elm leaf beetle is facilitated by some carbohydrases which are responsible for the digestion 
of carbohydrates. The presence of digestive carbohydrases was determined in the digestive system of adult and last larval 
instar of the elm leaf beetle. The specific activity of α-amylase in the digestive system of adult females and last larval instars 
were 0.49± 0.05 and 0.72± 0.07 µmol/min/mg protein, respectively. Also, the amylase activity in the midgut of the last 
larval instar was 3.125- and 4.16-fold higher than that its activity in the foregut and hindgut, respectively. Results showed 
that optimum activity for α-amylase was found at pH 5. As calculated from Lineweaver-Burk plots, the Km values for 
α-amylase were 0.64 and 1.44 mg/ml, when glycogen and starch were used as substrates, respectively. The effect of pH 
and temperature on α- and ß-glucosidase and α- and β-galactosidase activities was determined in the digestive system of 
X. luteola. Results showed that the activity of α- and ß-glucosidases in adult females was higher than in larvae, but the ß-
galactosidase activity in larvae was more than that of the adult. In adult females the glucosidase activity was higher than 
the galactosidase activity. The zymogram pattern in the native gel revealed that X. luteola α-amylase, β-glucosidase and 
β-galactosidase in the digestive system had one, three and one isoforms. α-amylase inhibitors, purified from Phaseolus 
vulgaris L. with an ion-exchange DEAE cellulose column showed good inhibitory activity on X. luteola gut α-amylase.
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INTRODUCTION

The α-amylases (α-1,4-glucan-4-glucanohydrolases, 
EC 3.2.1.1) hydrolyze starch and other polysac-
charides to maltose, maltotriose and maltodextrins 
(Henrissat et al., 2002). These enzymes play a key 
role in the carbohydrate metabolism of microorgan-
isms, plants and animals and insects (Franco et al., 
2002). α-amylases have been found in several insect 
orders, including Coleoptera, where they are usually 
reported in the digestive system (Ishimoto and Ki-
tamura, 1989; Silva et al., 1999). Inhibitors of insect 

α-amylase have already been shown to be an effec-
tive control of insect pests (Shade et al., 1994). Pea 
and azuki transgenic plants expressing α-amylase in-
hibitors from common beans were completely resist-
ant to the Bruchus pisorum (L.) and Callosobruchus 
chinensis (L.) weevils (Ishimoto and Kitamura, 1989; 
Shade et al., 1994).

In insects, digestive glucosidases are important 
for the hydrolysis of di- and oligosaccharides derived 
from hemicelluloses and cellulose and are involved 
in insect-plant interactions (Terra and Ferreira, 
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1994). α-glucosidase (EC 3.2.1.20) is an enzyme that 
catalyzes the hydrolysis of 1, 4-α-glucosidic linkages, 
releasing α-glucose. This enzyme strongly hydro-
lyzes sucrose, maltose, maltodextrin and pNP-α-D-
glucopyranoside. It can be found in the alimentary 
canal, salivary secretions of insects and hypopharyn-
geal glands of some insects, such as Apis mellifera L. 
(Terra et al., 1996; Baker and Lehner, 1972). So far, 
α-glucosidases have been isolated and characterized 
from many insects including Dysdercus peruvianus 
(Hemiptera: Pyrrhocoridae), Sitophilus zeamais (Co-
leoptera: Curculionidae), Apis mellifera (Hymenop-
tera: Apidae), Drosophila melanogaster (Diptera: 
Drosophilidae) and Glyphodes pyloalis Walker (Lep.: 
Pyralidae) (Huber and Mathison,1976; Baker, 1991; 
Silva and Terra, 1997; Tanimura et al., 1979; Ghad-
amyari et al., 2010). β-glucosidase hydrolyzes β1–4 
linkages between two glucoses or glucose-substitut-
ed molecules (such as cellobiose) (Terra et al., 1996). 
In addition to the important digestive role of the 
enzymes, they can also act as elicitors or triggering 
agents of plant defense mechanisms when they are 
present as feeding damage of insect pests (Mattiacci 
et al., 1995). α-D-galactosidases (EC 3.2.1.22) are 
exo-acting glycoside hydrolases that cleave α-linked 
galactose residues from carbohydrates such as meli-
biose, raffinose, stachyose, and gluco- or galactoman-
nans (Meier, and Reid, 1982). ß-D-galactosidases 
(EC 3.2.1.23) is a hydrolase enzyme that catalyzes the 
hydrolysis of β-galactosides into monosaccharides. 
Our knowledge about the galactosidases of insects is 
still rudimentary.  

The elm leaf beetle, Xanthogaleruca luteola Müll. 
(Col.: Chrysomelidae) is the most serious pest of the 
elm tree in Iran. Both the adult and larvae feed on 
the parenchyma of leaves, without consuming the 
veins, and cause severe damage to trees. If the dam-
age is severe and occurs several years in a row, the 
trees develop deformed canopies, and suffer vigor 
loss, physiological disorders and reduced photosyn-
thesis, which predisposes them to the action of other 
pests, plant disease and stress factors. They become 
particularly susceptible to scolytid beetles carrying 
spores of the fungus Ceratocystis novo ulmi Brasier, 
which causes the elm tree disease, a serious threat 

to survival of these trees (Romanyk and Cadahia, 
2002). Defoliation also reduces tree shade in sum-
mer and the aesthetical values of elms (Dreistadt et 
al., 2001). Due to the adverse effect of pesticides on 
humans, the application of pesticide in an urban 
area for controlling this pest has some problematic 
side-effects. The study of insect digestive enzymes 
is important because the gut is the major interface 
between the insect and its environment. For an un-
derstanding of how digestive enzymes act on their 
substrates in insects, it is essential to develop meth-
ods of insect control. Some work has been done on 
the carbohydrases in the digestive system of the in-
sect (Ghadamyari et al., 2010; Ramzi and Hosseini-
naveh, 2010; Kazzazi et al., 2005) but work on the 
digestive enzyme of X. luteola is lacking. The aim of 
the present study was to determine the biochemi-
cal characterization of the carbohydrate hydrolyz-
ing enzyme in the digestive system of the elm leaf 
beetle in order to gain a better understanding of the 
digestive physiology of this insect. Plant α-amylase 
inhibitors show great potential as tools to engineer 
resistance of crop plants against pests. These inhibi-
tors are proteins found in several plants, and play 
a key role in natural defenses, especially those that 
feed on starchy food. These inhibitors are particu-
larly abundant in legumes (Franco et al., 2002) and 
cereals (Iulek et al., 2000). In this research, we also 
investigate the inhibitory effects of Phaseolus vul-
garis L. against X. luteola α-amylase. 

MATERIALS AND METHODS

Insects

The insects were collected from elm trees leaves in 
Golestan provinces of Iran and reared on leaves of 
Ulmus densa Litw. Same-aged larvae (24 h after mol-
ting) and adult females were randomly selected for 
the measuring of enzyme activity.

Chemicals

Triton X-100, bovine serum albumin, 3, 5-Dini-
trosalicylic acid (DNS), Starch were purchased 
from Merck (Merck, Darmstadt, Germany). 
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P-nitrophenyl-α-D-glucopyranoside (pNαG), 
p-nitrophenyl-ß-D-glucopyranoside (pNßG), 
p-nitrophenyl-α-D-galactopyranoside (pNαGa) 
p-nitrophenyl-ß-D-galactopyranoside (pNßGa), 
4-methylumbelliferyl-ß-D-glucopyranoside (4-
MUG) and 4-methylumbelliferyl-ß-D-galactopyran-
oside (4-MUGa) were obtained from Sigma (Sigma, 
St Louis, MO, USA). P-nitrophenyl acetate (p-NA) 
was bought from Fluka (Buchs, Switzerland) and 
DEAE Cellulose obtained from Bio-Rad Laborato-
ries Ltd. (UK). 

Sample preparation and enzyme assays

Larvae and adults were immobilized on ice and dis-
sected under a stereo microscope in ice-cold saline 
buffer. Digestive systems were removed and their 
content was eliminated. The samples were trans-
ferred to a freezer (-20 °C). For measuring of enzyme 
activity, the sample was homogenized in cold dou-
ble-distilled water using a hand-held glass homog-
enizer and centrifuged at 10,000 rpm for 10 min at 
4°C. After homogenization they were centrifuged at 
10,000 rpm for 15 min at 4°C. 

Determination of α-amylase activity  
and its kinetic parameters

α-amylase activity was determined at room tempera-
ture in 40 mM phosphate-acetic-citric buffer. The su-
pernatant (10 µl) was added to a tube containing 40 
µl of the buffer and 50 µl of 1% (w/v) starch and incu-
bated for 30 min. The concentration of reducing sug-
ars obtained from the catalyzed reaction was meas-
ured by the dinitrosalicylic acid method according 
to Bernfeld (1955). Absorbance was measured at 545 
nm with a Microplate Reader Model Stat Fax® 3200 
(Awareness Technology Inc.). The pH profiles of the 
α-amylases were determined at room temperature in 
a mixed buffer containing phosphate, glycine and ac-
etate (40 mM of each) adjusted to various pHs (pH 3 
to 12) by adding HCl or NaOH for acidic and basic 
pH values, respectively (Asadi et al., 2010). 

Catalytic activities of the enzymes were inves-
tigated at different concentrations of starch and 

glycogen over the range 0.05-1% (w/v), in 40 mM 
phosphate, glycine and acetate buffer, pH 5.0. The 
Michaelis-Menten constant (Km) and maximal ve-
locity (Vmax) were estimated from the Lineweaver-
Burk plots. The kinetic values are the averages of 
three experiments and standard errors are less than 
10%.

Determination of α- and β-glucosidase  
and α- and β-galactosidase activities

The activities of α- and β-glucosidases and α- and 
β-galactosidase were measured with pNαG, pNβG, 
pNαGa and pNβGa as substrates, respectively. 
Homogenates were incubated for 30 min at 37°C 
with 45 µL of substrate (25 mM) and 115 µL of 40 
mM phosphate-acetic-citric buffer. The reaction 
was stopped by addition of 600 µL of NaOH (0.25 
M). Optical density was measured at 405 nm us-
ing a microplate reader (Stat Fax 3200, Awareness 
Technology, USA) after 10 min. Controls without 
enzymes or without substrates were included. A 
standard curve of absorbance against the amount 
of p-nitrophenol released was constructed to en-
able calculation of the amount of p-nitrophenol re-
leased during the α- and β-glucosidase and α- and 
β-galactosidase assays.

Determination of pH optimum and effect of  
temperature on α- and β-glucosidase and α- and 

β-galactosidase activities

The activity of α- and β-glucosidases and α- and 
β-galactosidases was determined at several pH val-
ues using 40 mM phosphate-acetic-citric buffer. The 
effect of temperature on α- and β-glucosidase and 
α- and β-galactosidase activities were measured us-
ing the homogenate adult by incubating the reaction 
mixture at 20, 30, 40, 50, 60 and 70oC for 30 min, 
followed by measurement of activity. 

Protein concentration

Protein concentrations were estimated as described 
by Bradford (1976), using bovine serum albumin as 
standard.
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Polyacrylamide gel electrophoresis and zymogram 
analysis

Non-denaturing polyacrylamide gel electrophoresis 
(PAGE) (8%) for α-amylase was carried out as de-
scribed by Davis (1964) and electrophoresis was per-
formed with 100 V at 4°C. Afterwards, the gel was 
incubated in 2.5% (v/v) Triton X-100 for 30 min at 
room temperature with gentle agitation. Then, the 
gel was rinsed with deionized water and washed in 
25 mM of Tris-HCl pH 7.4. The washed gel was in-
cubated in fresh buffer containing 1% (w/v) soluble 
starch at 30ºC for 60 min. After being washed with 
distilled water, the gel was subjected to staining with 
Lugol solution (I2 1.3% and KI 3%) at an ambient 
temperature until the appearance of clear zones in 
protein bands with α-amylase activity against a dark 
blue background. 

For zymogram analysis of β-glucosidase and 
β-galactosidase, the samples were mixed with sample 
buffer and applied onto a polyacrylamide gel (4 and 
10% polyacrylamide for the stacking and resolving 
gels, respectively). Electrophoresis was performed 
with 100 V at 4°C. Afterwards, the gel was immersed 
in 3 mM 4-MUG and 4-MUGa in 0.1 M sodium 10 
acetate (pH 5.5) for 10 min at room temperature to 
develop bands showing ß-glucosidase and ß-galac-
tosidase activities, respectively. The blue-fluorescent 
bands appear in a few minutes under UV.

Purification of P. vulgaris α-amylase inhibitor from 
seeds

Seeds were ground to a powder and extracted with 
0.15 M NaCl with continuous stirring for 1 h at 4°C. 
The material was then centrifuged at 6,000 ×g at 4°C 
for 30 min. The supernatant was heated to 80°C and 
centrifuged at 6,000 ×g for 15 min. The supernatant 
was fractionated with ammonium sulfate. Following 
dialysis, the fraction was applied to an ion-exchange 
DEAE cellulose column equilibrated with 20 mM 
Tris-HCl buffer, pH 7.0, with a flow rate of 0.5 ml/
min. The column was eluted with a linear NaCl gra-
dient of 0-0.5 M at the flow rate of 0.5 ml/min. The 
absorbance of the effluent was monitored at 280 nm. 

Amylase inhibition assay

10 µl enzyme was pre-incubated with 10 µl inhibitor 
and 30 µl buffer (pH 5) for 30 min at 37°C; then the 
same procedure for the amylase assay was performed, 
and amylase activity was determined by measuring 
absorbance at 540 nm. Experiments were performed 
in triplicate. 

Statistical analysis

The data were compared by one-way analysis of vari-
ance (ANOVA) followed by Tukey’s test when sig-
nificant differences were found at P = 0.05 using SAS 
program (SAS, 1997).

RESULTS

Alpha-amylase activity and effect of pH on its activity

The activity of α-amylases was assessed in crude ex-
tracts. The data revealed that α-amylase is present in 
the digestive system of larvae and adult females of 
X. luteola. The specific activity of α-amylase in the 
digestive system of last larval instar was 1.46-fold 
higher than that of the adult female (Table 1). Also, 
the amylase activity in the midgut of the last larval 
instar was 3.125- and 4.16-fold higher than that in 
the foregut and hindgut, respectively (Fig. 1). Results 
showed that the optimal pH for α-amylase in the di-
gestive system was 5 (Fig. 2). 

Kinetic parameters of α-amylase

α-amylases revealed a Michaelis-Menten type kinet-
ics when hydrolyzing soluble starch and glycogen at 

Table 1. The specific activities (nmol/min/mg protein) of diges-
tive carbohydrases in adult and larvae of X. luteola

Stage

Enzymes Last larval instar 
(Mean±SE) Adult (Mean±SE)

α-glucosidases 146.09±2.345 451.56±1.03
ß-glucosidases 304.73±0.12 495.93±0.17

α-galactosidases 43.20±0.15 61.45±0.3
β-galactosidases 515.28±0.17 115.10±0.07

α-amylase 72.96± 0.07 49.86± 0.05
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their optimum pH. As calculated from Lineweaver-
Burk plots, the Km and Vmax values for soluble starch 
and glycogen at 37 ºC are presented in Table 2.

α- and β-glucosidase and α- and β-galactosidase  
activities

The specific activity of α-glucosidase in the digestive 
system of the adult was 3.08-fold higher than that 
in the last larval instar, whereas the β-glucosidase 
activity in the digestive system of the adult female 
was 1.62-fold higher than its activity in the diges-
tive system of the last larval instar (Table 1). Also, 
the α-glucosidase activity in the foregut, midgut 
and hindgut of the last larval instar were 73.9±0.76, 

105.2± 1.2 and 91.9± 0.84 nmol/min/mg proteins, 
respectively. Also, the β-glucosidase activity in mid-
gut was higher than that in foregut and hindgut of 
last larval instar (Fig. 1). 

The specific activity of α-galactosidase in the 
digestive system of adult female and last larval in-
star was determined. The obtained results show that 
the specific activity of α-galactosidase in the diges-
tive system of the adult female was 1.41-fold higher 
that in the last larval instar, whereas the activity of 
β-galactosidase in the digestive system of larvae was 
higher than its activity in the adult female digestive 
system (Table 1). The α-galactosidase activity in the 
midgut was higher than in the foregut and hindgut of 

Fig. 1. Comparison of the activities of α-amylase, α- and ß-glucosidases and α- and β-galactosidases extracted from different parts of 
digestive system of X. luteola. Different letters indicate that the activity of enzymes in different tissue is significantly different from each 
other by Tukey’s test (p < 0.05).
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Fig. 2. The effect of pH on the activities of α- and ß-glucosidases, α- and ß-galactosidases and α-amylase extracted from the digestive 
system of X. luteola.

Fig. 3. The effect of temperature on the activities of α- and ß-glucosidases and α- and ß-galactosidases extracted from the digestive 
system of X. luteola
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the last larval instar. Also, the β-galactosidase activ-
ity in the midgut was 2.12-fold and 3.71-fold higher 
than its activity in the foregut and hindgut of the last 
larval instar, respectively (Fig. 1). 

Effect of pH and temperature on α- and β-glucosidase 
and α- and β-galactosidase activities

The effect of pH on the hydrolytic activity towards 
pNαG, pNßG, pNαGa and pNßGa was tested us-
ing 40 mM phosphate-acetic-citric buffer (pH 
2–12). Maximum activity in the digestive system 
was observed at pH 5 and 4 for α-glucosidase and 
α-galactosidase, respectively, whereas, the optimal 
pH for ß-glucosidase and ß-galactosidase activity 
were 6 and 3, respectively (Fig. 2). The X. luteola α- 
and ß-glucosidase has an optimum temperature ac-
tivity at 60 and 50°C, respectively. Also, the optimal 
temperature for α-galactosidase in the digestive sys-
tem was 40 and 60°C (Fig. 3). 

Zymogram analysis

The crude extracts of X. luteola were analyzed by na-
tive PAGE. After amylase activity staining, one ma-
jor isoform of α-amylase was clearly detected. Also, 
the zymogram pattern in the native gel revealed that 
X. luteola β-glucosidase and β-galactosidase in the 
digestive system had three and one isoform, respec-
tively (Fig. 4). 

Effects of P. vulgaris inhibitors on X.  
luteola amylase activity

The ammonium sulfate fraction was further fraction-
ated on an ion-exchange DEAE cellulose column. 

Fig. 4. Zymogram of ß-glucosidase, ß-galactosidase, α-amylase 
and esterase found in the digestive system of last larval instar of 
X. luteola.

Fig. 5. The ratios of ß-glucosidases/ß-galactosidase and 
α-glucosidase/α-galactosidase in the digestive system of X. lu-
teola. 

 

ß-glucosidase              ß-galactosidase         α-amylase               
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The obtained profile showed three major peaks and 
three minor peaks (Fig. 6). Assay of peaks (Table 3) 
revealed that the two peaks of P. vulgaris strongly in-
hibited the X. luteola gut α-amylase while the others 
did not. The peak numbers 27 and 28 had the highest 
inhibitory effect on α-amylase activity.  

DISCUSSION

Our data present evidence that α-amylase is present 
in the digestive system of the adult and last larval in-
star of X. luteola. The specific activity of α-amylases 
from the digestive system of larvae was 1.46-fold 
higher than that of the adult female (Table 1). Our 
results showed that there is a significant difference 
in the activity of α-amylases in the foregut, midgut 
and hindgut of the last larval instar (Fig. 1). The op-
timum pH activity of X. luteola larval amylase was 5 
(Fig. 2). α-amylases in the insect are generally most 
active in a neutral to slightly acidic pH condition 
(Baker, 1983; Terra et al., 1996). Optimal pH values 
for amylases in larvae of several coleopterans were 
4-5.8 (Baker, 1983). Also, in other non coleopteran 
insects, the optimum pH were 6.5 in Lygus hesperus 
Knight and Lygus lineolaris (Palisot de Beauvois), 6 
in Erinnyis ello L. (Lepidoptera: Sphingidae) (Terra 
et al., 1996) and 5 in Brachynema germari Kolenati 
(Hemiptera: Pentatomidae) (Ramzi and Hosseini-
naveh, 2010). 

The activity of α-amylase was also characterized 
by zymogram analysis after native PAGE which al-
lowed visualization of the enzyme activity in situ. 
The results indicated one α-amylase isoform in the 
crude digestive system of last larval instar (Fig. 4). 
α-amylases from the digestive system of Eurygaster 
integriceps Puton (Heteroptera: Scutelleridae) (Ka-
zzazi et al., 2005) and B. germari (Ramzi and Hos-
seininaveh, 2010) showed one isoform. Wisessing 
et al., (2008) showed that Callosobruchus maculates 
α-amylase had one isoform with a molecular weight 
of 50 kDa. However, the number of α-amylases iden-
tified in different insect species varied from 1 to 8 iso-
forms, e.g. Helicoverpa armigera (Hubner), Spodop-
tera litura (F.), C. chinensis and Corcyra cephalonica 
(Stainton) exhibited more than five isoforms where-

Fig. 6. Retained fraction obtained after ion-exchange DEAE cel-
lulose chromatography, equilibrated with 20 mM Tris-HCl buf-
fer, pH 7.0, with a flow rate of 0.5 ml/min. Dashed line represents 
a 0-0.5 M NaCl linear gradient.

Table 2. Kinetic parameters of α-amylases from digestive system 
of X. luteola on starch and glycogen

substrate Km (mg/ml) Vmax (µmol/min/mg 
protein) Km/ Vmax

Starch 1.34 1.52 0.88

Glycogen 0.64 0.515 1.24

Table 3. Inhibition of α-amylase by inhibitors extracted from P. 
vulgaris 

Fraction No. Mean inhibition (%)
2 0
3 0
4 0
5 0
6 0
7 0
8 0

16 0
17 0
26 35.6
27 66.2
28 72.4
36 31.2
37 36.9
38 30.5
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as Sitophilus oryzae (L.) and Tribolium castaneum 
(Herbst) possessed only one isoform (Siva-Kumar et 
al., 2006). Also, the different forms of α-amylases in 
insect midgut lumen have been observed in C. macu-
latus and Zabrotes subfasciatus (Bohemann) and Ten-
ebrio molitor L. (Coleoptera Tenebrionidae) (Cam-
pos et al., 1989; Silva et al., 1999). Also, two forms 
of α-amylase isoforms was reported in the crude 
midgut, salivary glands and hemolymph of Naranga 
aenescens L. (Lepidoptera Noctuidae) (Asadi et al., 
2010). 

The kinetic behavior of X. luteola α-amylase to-
wards starch and glycogen was significantly different. 
The affinity of X. luteola α-amylase toward glycogen 
was higher than towards starch. Km values calculated 
for the hemolymph α-amylase of Mamestra brassicae 
L. and silkworm were 0.33 and 0.57 mg/ml, respec-
tively (Tanabe and Kusano, 1984; Matsumura, 1934). 
Also, Ramzi and Hosseininaveh (2010) showed that 
the Km values of α-amylase in the midgut and sali-
vary glands of B. germari were 0.77 and 0.41 mM, 
respectively. 

The present study clearly shows that the lar-
vae and adult female of X. luteola possess α- and 
β-glucosidase and α- and β-galactosidase activities 
in the digestive system. Comparing the activities 
against the p-nitrophenyl glycosides of glucose 
and galactose, the ratios of ß-glucosidase/ß-galac-
tosidase were as 0.59 and 4.3 for larvae and adult 
females of X. luteola, respectively, when activities 
were determined in whole digestive system (Fig. 5), 
whereas the ratio of α-glucosidase/α-galactosidase 
was as 3.38 and 7.3 for larvae and adult female of 
X. luteola, respectively (Fig. 5). These results show 
that the ß-galactosidase and α-glucosidase activi-
ties in the digestive system of larvae are greater 
than the ß-glucosidase and α-galactosidase ac-
tivities, whereas the activities of the glucosidases 
were higher than the galactosidase activities in 
the adult stage. Feeding is usually intensified at 
the last larval instar for saving energy as nutrient 
macromolecules (carbohydrates, protein and li-
pid). Also, the oviposition usually occurs during 
high energy demand consequently leading to high 

metabolic rates in adults compared with larvae. 
Therefore, high feeding in larvae and high energy 
demand in adults may explain these differences in 
the ratios of α-glucosidase/α-galactosidase and ß-
glucosidase/ß-galactosidase in the adult and lar-
vae. The ratios of ß-glucosidase/ß-galactosidase 
was reported as 88.5 in Rhynchosciara americana 
Wiedemann (Diptera: Sciaridae) (Terra et al., 
1979), 105 in Stomoxys calcitrans (Deloach and 
Spotes, 1984), 58 in the midgut tissue of Rhodnius 
prolixus (Terra et al., 1988), and 2.5 in C. macu-
lates (Gatehouse et al., 1985). Also, In Dysdercus 
peruvianus, the ß-glucosidase/ß-galactosidase ra-
tio in the midgut tissue is 28.7, but in the whole 
midgut (epithelium plus luminal contents) the 
ratio is 3.0, suggesting a major contribution of ß-
galactosidase activity by the seed meal present in 
gut lumen (Silva and Terra, 1997). The ratios of ß-
glucosidase/ß-galactosidase found in the adult of 
X. luteola are of the same order as that found in C. 
maculates (Gatehouse et al., 1985) and D. peruvi-
anus (Silva and Terra, 1997). It seems the ratios of 
ß-glucosidase/ß-galactosidase in X. luteola and C. 
maculates were lower than R. americana, S. calci-
trans and R. prolixus. Ferreira et al. (1998) report-
ed that high ß-glucosidase activity is found in the 
foliage feeder, Abracris flavolineata De Geer (Or-
thoptera: Acrididae), in the stored plant product 
feeder T. molitor Linnaeus (Coleoptera: Tenebrio-
nidae), and in the pollen-feeder Scaptotrigona bi-
punctata Lepeletier (Hymenoptera: Apidae). Also, 
our results showed that the ß-glucosidase activity 
in adults was higher than that of α- and ß-galactos-
idase and α-glucosidase activities. In contrast, low 
ß-glucosidase activity is found among predaceous 
insects exemplified by Pheropsophus aequinoctialis 
Linnaeus (Coleoptera: Carabidae) and Pyrearinus 
termitilluminans Costa (Coleoptera: Elateridae) 
(Ferreira et al., 1998). Also, the results of Ferreira et 
al. (1998) showed that high ß-glucosidase activity 
could be associated with feeding on plants or plant 
products; other data disagree with this suggestion. 
β-glucosidase activity is low in the decaying plant-
feeder R. americana and in feeders of plant aerial 
parts, exemplified by S. frugiperda, E. ello and Dia-
traea saccharalis (Fabricius) (Ferreira et al., 1998). 
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Our results showed that α-galactosidase activity is 
relatively low in the digestive system of larvae and 
adult females. The lowest and highest activity in 
the digestive system related to α-galactosidase and 
β-galactosidase, respectively. 

The α- and β-glucosidase and α- and 
β-galactosidase activities was determined at differ-
ent temperatures ranging from 20 to 80°C. The X. 
luteola α- and ß-glucosidase has an optimum tem-
perature activity at 60 and 50°C, respectively. Also, 
the optimal temperature for α- and ß-galactosidase 
in the digestive system was 60 and 40°C, respec-
tively (Fig. 3), which is consistent with the α- and 
ß-glucosidase activities in G. pyloalis (45°C) (Gh-
adamyari et al., 2010). Ramzi and Hosseininaveh, 
2010, showed that α- and ß-galactosidase of B. ger-
mari has an optimal activity in 30°C and 35°C for 
midgut and salivary glands, respectively. Biologi-
cal reactions are catalyzed by proteins – enzymes, 
and each enzyme has a temperature above which 
its three dimensional structure is disrupted by heat. 
Therefore, biological reactions occur faster with 
increasing temperature up to the point of enzyme 
denaturation, above which enzyme activity and the 
rate of the reaction decrease sharply (Agblor et al., 
1994; Applebaum).

The zymogram pattern in the native gel revealed 
that X. luteola β-glucosidase and β-galactosidase in 
the digestive system had three and one isoform, re-
spectively (Fig. 4). In other coleopteran insects, the 
ß-glucosidase in the digestive system of Rhynchopho-
rus ferrugineus (Olivier) and Osphranteria coerules-
cens Redt. has four isoforms. Also, β-galactosidase in 
the digestive system of R. ferrugineus and O. coeru-
lescens has one and six isoforms, respectively (unpub-
lished data). 

Our results showed that the activities of 
α-amylase in the midgut of the elm leaf beetle 
were 3.125- and 4.16-fold higher than that in the 
foregut and hindgut, respectively (Fig. 1). Also, 
high activities of α- and ß-glucosidases and α- and 
β-galactosidase were observed in the midgut, with 
completion in other parts of digestive system, of the 

last larval instar. These data suggested that the mid-
gut is the secreting site of carbohydrases in X. lute-
ola. In Odontotermes formosanus and Coptotermes 
formosanus, the activities of ß-glucosidase in the 
midgut were higher than those in the foregut and 
hindgut. This indicates that the midgut of these two 
termites also has the function of cellulose secretion 
(Mo et al., 2004). In fact, the midgut of C. formosa-
nus could secrete endogenous cellulose (Nakashima 
et al., 2002). 

Amylase, glucosidases and galactosidases play 
an important role in insect digestion. These en-
zymes are important in the initial and final phases 
of food digestion of X. luteola. Insect-resistant 
crops have been one of the major successes of ap-
plying plant genetic engineering technology to 
agriculture. The secondary metabolites in plants 
can act as protective agents against insects either 
by repellence or through direct toxicity. Many dif-
ferent types of secondary metabolites, including 
alkaloids, terpenes, steroids, iridoid glycosides, 
aliphatic molecules, phenolics (Hsiao, 1985) and 
others, have been demonstrated to confer resist-
ance to different plant species against insects. 
Among them, carbohydrase inhibitors seem to 
play an important role in host plant resistance to 
insects. Study of the carbohydrates in herbivorous 
insects is important not only for understanding di-
gestion biochemistry but also for developing insect 
pest management strategies. Our results showed 
that α-amylase inhibitors that were purified from 
P. vulgaris by ion-exchange DEAE cellulose chro-
matography exhibited good inhibitory activity on 
X. luteola gut α-amylase. Peaks 27 and 28 inhibited 
amylase activity by 66.2 and 72.4%, respectively. 
Previous research showed that α-amylase inhibi-
tors from P. vulgaris seeds are detrimental to the 
development of the cowpea weevil C. maculatus 
and Azuki bean weevil C. chinensis (Ishimoto and 
Kitamura, 1989; Shade et al., 1994). It would seem 
that P. vulgaris seeds are promising sources of 
amylase inhibitor genes for the production of elm 
trees with a resistance to X. luteola. However, ad-
ditional studies are needed to further investigate 
this possibility. 
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