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ON RECONSTRUCTION OF STRUCTURE

OF A LINEAR SYSTEMWITH TIME DELAY

Abstract. The problem of reconstruction of a structure of a linear system with delay

is considered. A solution algorithm stable with respect to the informational noise and

computational errors is specified. The algorithm is based on the method of auxiliary

positionally controlled models.
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1. INTRODUCTION

A linear system described by the following vector equation with time delay

ẋ(s) = Ax(s) + Bx(s − τ), s ∈ [0, T ], (1)

x(ν) = x0(ν), ν ∈ [−τ, 0],

is considered. Here x ∈ Rq is the phase vector of the system, τ = const ∈ (0,+∞)

is a constant time delay, A and B are (q × q)-dimensional matrices. An initial state

x0(ν), ν ∈ [−τ, 0], is a continuous function x0(ν) ∈ C(−τ, 0;Rq). It is assumed that

the system structure (i.e., matrices A and B) is unknown. It is only known that they

belong to convex, bounded, and closed sets F1 ⊂ Rq×q
M and F2 ⊂ Rq×q

M , respectively.

A priori information on system (1) consists of the fixed sets F1 and F2, initial

state x0(s) and time delay τ . The goal of the work is to design an algorithm of recon-

struction of unknown matrices A and B with some accuracy µ through (inaccurate)

measurements of the phase trajectory of system (1). Note that the same trajectory

may be generated by different pairs of matrices (A,B) from the set F1 ×F2. In this
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case, we will as a rule reconstruct not “true” matrices A and B, but another pair

(A∗, B∗), A∗ ∈ F1, B∗ ∈ F2, such that the solution of the equation

ẏ(s) = A∗y(s) + B∗y(s − τ), s ∈ [0, T ],

y(ν) = x0(ν), ν ∈ [−τ, 0],

coincides with x(s), s ∈ [0, T ]. The rule of “choice” of this pair (A∗, B∗) will be

specified below. We want to construct an algorithm for calculating matrices A1 and

B1 with the properties:

‖A∗ − A1‖q×q ≤ µ, ‖B∗ − B1‖q×q ≤ µ.

Input data of the algorithm are results of (inaccurate) measurements of the phase

state x(s), 0 ≤ s ≤ T of the system at sufficiently frequent moments τi ∈ [0, T ],

τi+1 = τi + γ, τ0 = 0, γ = const > 0. These results are vectors ξh
i ∈ Rq satisfying the

inequalities
∥
∥ξh

i − x(τi)
∥
∥ ≤ h.

Here the symbol h ∈ (0, 1) denotes the value of the measurement error.

In [1], an algorithm for dynamical reconstruction of an n-dimensional function

u(· · · ) (control) was indicated for a system described by the ordinary differential
equation

ẋ(t) = f(t, x(t)) + f1(t, x(t))u(t)

provided that a convex, bounded, and closed set P ⊂ Rn, containing u(t), is known,

i.e., a set P such that

u(s) ∈ P for a.a. s ∈ [0, T ] (2)

is known. The algorithm is based on the combination of methods of the theory of

guaranteed control [2] and the method of smoothing functional (Tikhonov’s method),

well-known in the theory of ill-posed problems [3, 4]. Then, in the case when the set

of admissible disturbances has the form

P (·) = {u(·) ∈ L2(0, T ;Rn) : u(s) ∈ P for a. e. s ∈ [0, T ]}, (3)

the problems of dynamical reconstruction of inputs were also studied for other classes

of systems, in particular, for those described by:

(a) ordinary differential equations,

(b) equations with time delay,

(c) parabolic and hyperbolic equations,

as well as variational inequalities with distributed and boundary control (for more

details, see surveys [5–7]).

The method studied in these papers can also be used in the case when unknown

parameters are subject to reconstruction. In the present paper, we will design an

algorithm for reconstruction of matrices A and B with use of the ideas, developed

in [8–10].
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2. AUXILIARY STATEMENT

We introduce a family of continouos linear operators S(xT (·)) depending on elements
xT (·) ∈ C(0, T ;Rq) and acting from R2q×q into L2(0, T ;Rq). Namely, for every

u ∈ R2q×q, we define

(S(xT (·)))(s)u = Z(x(s), x(s − τ))u for a. a. s ∈ [0, T ].

Here Z(x(s), x(s − τ)) is a (2q × q) × q-matrix with the following structure:

Z(x(s), x(s − τ)) =

=

2q×q columns
︷ ︸︸ ︷




x′(s) 0 . . . 0 x′(s − τ) 0 . . . 0

0 x′(s) . . . 0 0 x′(s − τ) . . . 0
...

...
. . .

...
...

...
. . .

...

0 0 . . . x′(s) 0 0 . . . x′(s − τ)











q rows.

Primes denote transposition (i. e., the symbol x′(s) means the vector-row correspon-

ding to the vector-column x(s)). The symbol xT (·) is used to recall that the function
is defined on the interval [0, T ].

We introduce the one-to-one mapping Q : Rq×q
M × Rq×q

M → R2q×q which trans-

forms every matrix

F = (A,B), (4)

A =





a11 a12 . . . a1q

a21 a22 . . . a2q

...
...
. . .

...

aq1 aq2 . . . aqq





, B =





b11 b12 . . . b1q

b21 b22 . . . b2q

...
...
. . .

...

bq1 bq2 . . . bqq





into the vector-column

uF = QF =

= (a11, . . . , a1q, a21, . . . a2q, . . . aq1, . . . , aqq, b11, . . . , b1q, b21, . . . b2q, . . . bq1, . . . , bqq)
′.

In this case, the mapping Q−1 transforms the vector

u = (a11, . . . , a1q, a21, . . . a2q, . . . aq1, . . . , aqq,

b11, . . . , b1q, b21, . . . b2q, . . . bq1, . . . , bqq)
′ ∈ R2q×q

into the pair of matrices F = Fu of form (4).

Equation (1) may be written in the form

ẋ(s) = S(xT (·))(s)uF , s ∈ [0, T ],
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i. e.,

ẋ(s) = S(xT (·))(s)QF, s ∈ [0, T ],

which can be written as a functional equation in the space L2(0, T ;Rq):

b(·) = S∗(xT (·))(·)uF ,

where

b(s) = x(s) − x0(s) for a. e. s ∈ [0, T ].

The family of continouos linear operators S∗(xT (·)) : R2q×q → L2(0, T ;Rq) is defined

by the rule

S∗(xT (·))(s)w =





s∫

0

S(xT (·))(g) dg



 w, s ∈ [0, T ], (w ∈ R2q×q).

Let F∗ = F1 ×F2,

U1 = {u ∈ QF∗ : b(s) = S∗(xT (·))(s)u for a. a. s ∈ [0, T ]}.

It is easily seen that this set is convex, bounded, and closed. Therefore, the set

U∗ = arg min{‖u‖ : u ∈ U1}

is a singleton: U∗ = {u0}.
Let

Rj = sup{‖F‖q×q : F ∈ Fj}, j = 1, 2,

R3 = sup{‖Q(A,B)‖ : A ∈ F1, B ∈ F2},
R = max{R1 + R2, R3},

ξh(s) = ξh
i , s ∈ [τi, τi+1), i ∈ [0 : n], (5)

ξh(s) = x0(τi), s ∈ [τi, τi+1), i ∈ [−rn : −1], τi =
iT

n
, rn = [τ/n].

The symbol [a] denotes the integer part of a. Then the following equality holds:

(
S∗(ξ

h
T (·))

)
(s) =

i(s)−1
∑

i=0

γZ
(
ξh
i , ξh

i−rn

)
+ (s − τi(s))Z(ξh

i(s), ξ
h
i(s)−rn

), t ∈ [0, T ].

Here

γ = γn = T/n, i(s) = [sn/T ], τi(s) = i(s)T/n.

We introduce the function

bh,n(s) = ξh
i − ξh

0 , s ∈ [τi, τi+1).
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Lemma 1. The following inequality is valid:

‖b(·) − bh,n(·)‖L2
≤ d1(h, 1/n) =

√
T (2h + RCT/n),

where

C1 = (‖x0‖ + R

0∫

−τ

‖x0(ν)‖ dν)(1 + RT exp(RT )),

C = max{C1, max
ν∈[−τ,0]

‖x0(ν)‖}.

Proof. The following estimate is true:

‖x(s)‖ ≤ ‖x0‖ +

s∫

0

‖Ax(y) + Bx(y − τ)‖ dy, s ∈ [0, T ].

From the inequalities ‖A‖q×q ≤ R1, ‖B‖q×q ≤ R2, we get

‖x(s)‖ ≤ ‖x0‖ + R

0∫

−τ

‖x0(ν)‖ dν + R

s∫

0

‖x(y)‖ dy, s ∈ [0, T ].

By virtue of Gronwall’s lemma, we deduce that

‖x(s)‖ ≤ C1, ‖ẋ(s)‖ ≤ RC, s ∈ [0, T ]. (6)

Note that the following inequality is valid for s ∈ [τi, τi+1):

‖x(s) − ξh
i ‖ ≤ h +

s∫

τi

‖ẋ(ν)‖ dν ≤ h + RCT/n. (7)

Therefore, by virtue of (6), (7), there is

‖b(·) − bh,n(·)‖2
L2

=
n−1∑

i=0

τi+1∫

τi

‖x(ν) − x0 − ξh
i + ξh

0 ‖2 dν ≤

≤
n−1∑

i=0

τi+1∫

τi

(2h + RCT/n)2 dν
n − 1

n
T (2h + RCT/n)2 ≤ T (2h + RCT/n)2.

The lemma is proved.

Lemma 2. The following inequality is true:

∥
∥S∗(xT (·)) − S∗(ξ

h
T (·))

∥
∥
L2

≤ d2(h, 1/n) = 2T

√

qT

3
(h + RCT/n).
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Here the symbol ξh
T (·) means a function ξh(t), t ∈ [0, T ], defined by (5).

Proof. From (7) there follows:

‖{(S(xT (·)) − S(ξh
T (·))}(s)uF ‖ ≤

√
2q(h + RCT/n)‖uF ‖, s ∈ [0, T ].

Therefore,

‖S∗(xT (·)) − S∗(ξ
h
T (·))‖L2

=

=




 sup

‖uF ‖≤1

T∫

0

∥
∥
∥
∥
∥
∥

t∫

0

(S(xT (·)) − S(ξh
T (·)))(s) dsuF

∥
∥
∥
∥
∥
∥

2

dt






1/2

≤

≤






T∫

0





t∫

0

√

2q(h + RCT/n) ds





2

dt






1/2

≤
√

2q(h + RCT/n)





T∫

0

t2 dt





1/2

≤

≤ 2T

√

qT

3
(h + RCT/n).

The lemma is proved.

3. SOLUTION ALGORITHM

For solving the problem, let us take a pair of matrices of the form Q−1u0 as matrices

A∗ and B∗ subject to reconstruction. Namely, we will calculate

(A∗, B∗) = Q−1u0.

Introduce a dynamical control system

ż(t) = v(t), z(0) = 0 (8)

on an “artificial” time interval R+ = [0,+∞). A system state z(t), t ∈ R+, and

control v(t) are elements of the Euclidean vector space R2q×q. Our goal is to

construct a control function v(·) such that for the corresponding trajectory z(·) of
system (8), relation z(t)/t is “close” to u0, provided t is large enough. Controls v(t)

in system (8) will be formed by the feedback control rule. This rule is identified with

the function

U : R+ × R2q×q → QF∗.

For every δ > 0, let us define a δ-trajectory zδ(·) generated by the rule U(t, z):

zδ(0) = 0, zδ(t) = zδ(tj) + vδ
j (t − tj),

t ∈ [tj , tj+1], tj = jδ, vδ
j ∈ U(tj , zδ(tj)).
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Introduce the functional

Λα

(
t | zδ(t)

)
= ‖S∗(xT (·))(·)zδ(t) − tb(·)‖2

L2
+ α

t∫

0

‖żδ(ν)‖2
dν − αtJ0, (9)

where α is an auxiliary parameter, which (along with
t∫

0

‖żδ(ν)‖2 dν) plays the role

of the “smoothing functional” [3, 4],

J0 = ‖u0‖2
,

well-known in the theory of ill-posed problems. Hereinafter, the symbol ‖·‖L2
denotes

the norm in the space L2(0, T ;Rq); the symbol ‖·‖L2
denotes the norm in the space

of bounded linear operators acting from R2q×q to L2(0, T ;Rq); the symbol 〈·,·〉L2

denotes the inner product in the space L2(0, T ;Rq). The functional Λα is an analog

of Lyapunov’s functional. We will indicate a rule of choice of control by the feedback

principle U(t, z) such that the following inequalities hold:

Λα(t|zδ(t)) ≤ Λα(tj |zδ(tj)) + c1(t − tj)

{

(t − tj) + tj

(

h +
1

n

)}

,

t ∈ [tj , tj+1).

(10)

Here c1 is a constant which may be written explicitly.

Let the rule of choice of control U(t, z) has the form

U(t, z) = Uα(t, z) =

= arg min
{
2

〈
S∗(ξ

h
T (·))(·)z − tbh,n(·), S∗(ξT (·))(·)u

〉

L2
+ α ‖u‖2

: u ∈ QF∗

}
.
(11)

Theorem 1. The rule of feedback control U(t, z) (11) guarantees that inequality (10)

holds.

Proof. For the initial time moment there is

Λα(0 | zδ(0)) = 0. (12)

Thus, inequality (10) is true for t = 0. Suppose that this inequality is true for all

t ∈ [0, tj ]. Take an arbitrary number s ∈ [tj , tj+1] and prove (10) for t = s. It is not

difficult to see that

‖zδ(t)‖ ≤ tR, t ≥ 0.

Using lemmas 1, 2, we derive

‖sj(x, zδ)−sj(ξ, zδ)‖L2
≤ ‖S∗(xT (·))(·)−S∗(ξ

h
T (·))‖L2

‖zδ(tj)‖+tj‖b(·)−bh,n(·)‖L2
≤

≤ tj(d1(h, 1/n) + Rd2(h, 1/n)). (13)
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Here

sj(x, zδ) = S∗(xT (·))(·)zδ(tj) − tjb(·) ∈ L2(0, T ;Rq),

sj(ξ, zδ) = S∗(ξ
h
T (·))(·)zδ(tj) − tjbh,n(·).

Taking into account the definition of functional Λα (see (9)), we obtain

Λα(s|zδ(s)) = Λα(tj |zδ(tj)) + µj + νj + α(‖vδ
j‖2 − J0)(s − tj), (14)

where

µj = 2(s − tj)
〈
sj(x, zδ), S∗(xT (·))(·)vδ

j − b(·)
〉

L2

,

νj = ‖S∗(xT (·))(·)vδ
j − b(·)‖2

L2
(s − tj)

2.

Note

S∗(xT (·))(·)u0 − b(·) = 0.

We conclude from (14) that

Λα(s|zδ(s)) =

= Λα(tj |zδ(tj)) + νj + 2(s − tj)
{[〈

sj(x, zδ), S∗(xT (·))(·)vδ
j − b(·)

〉

L2

+ α‖vδ
j‖2

]

−

−
[

〈sj(x, zδ), S∗(xT (·))(·)u0 − b(·)〉L2
+ α‖u0‖2

]}

.

Further we get the following estimates

‖S∗(xT (·))(·)vδ
j − b(·)‖L2

≤ d0R + b0,

‖sj(x, zδ)‖L2
≤ (d0R + b0)tj ,

d0 = ‖S∗(xT (·))(·)‖L2
, b0 = ‖b(·)‖L2

.

(15)

Consequently, by virtue of (13), (15), the following inequality is valid:

Λα(s|zδ(s)) ≤ Λα(tj |zδ(tj)) + νj + 2(s − tj) ×

×
{[

〈sj(ξ, zδ), S∗(xT (·))(·)vδ
j − b(·)〉L2

+ α‖vδ
j‖2

]

−

−
[

〈sj(ξ, zδ), S∗(xT (·))(·)u0 − b(·)〉L2
+ α‖u0‖2

]}

+ 4(s − tj)tjd3(h, 1/n),

d3(h, 1/n) =
(
d1(h, 1/n) + Rd2(h, 1/n)

)
(d0R + b0). (16)

Besides, from (15) (using again (13)) it follows that

‖sj(ξ, zδ)‖L2
≤ tjd4(h, 1/n),

d4(h, 1/n) = b0 + d0R + d1(h, 1/n) + Rd2(h, 1/n).
(17)
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It is easily seen that

νj ≤ (s − tj)
2(b0 + d0R)2.

We again use lemmas 1, 2. From (16), (17) we obtain

Λα(s|zδ(s)) ≤ Λα(tj |zδ(tj)) + 2(s − tj)
{[

〈sj(ξ, zδ), S∗(ξ
h
T (·))(·)vδ

j 〉L2
+ α‖vδ

j‖2
]

−

−
[

〈sj(ξ, zδ), S∗(ξT (·))(·)u0〉L2
+ α‖u0‖2

]}

+

+ 4(s − tj)tjd5(h, 1/n) + (s − tj)
2(b0 + d0R)2, (18)

where

d5(h, 1/n) = d3(h, 1/n) + d4(h, 1/n)d2(h, 1/n)R ≤ c0

(

h +
1

n

)

,

c0 is a constant which may be written explicitly. By definition of mapping U(t, z)

(see (11)), the following inequality holds:

[

〈sj(ξ, zδ), S∗(ξT (·))(·)vδ
j 〉L2

+ α‖vδ
j‖2

]

−

−
[

〈sj(ξ, zδ), S∗(ξT (·))(·)u0〉L2
+ α‖u0‖2

]

≤ 0. (19)

In this case, from (18), (19), we obtain

Λα(s|zδ(s)) ≤ Λα(tj |zδ(tj)) + 4(s − tj)tjd5(h, 1/n) + (s − tj)
2(b0 + d0R)2

for s ∈ [tj , tj+1).

The theorem is proved.

Let us choose sequences of positive numbers {αn}, {hn} and {tn} such that

αn → 0, hn → 0, tn → +∞,

(αn + δn)/tn → 0, δn/αn → 0, tn(hn + 1/n)/αn → 0 as n → ∞.
(20)

Then the following theorem holds.

Theorem 2. If conditions (20) are fulfilled, then

zδn
(tn)/tn → u0, as n → ∞. (21)

Proof. From (10) and (12), we derive

Λαn
(tn|zδn

(tn)) ≤ c1

(
δntn + t2n(hn + 1/n)

)
.

Thus, the following inequalities are valid:

‖S∗(xT (·))(·)zδn
(tn) − tnb(·)‖2

L2
≤ c1

(
δntn + t2n(hn + 1/n)

)
+ 2αnR2tn, (22)
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tn∫

0

‖żδn
(ν)‖2 dν ≤ c1

(
δntn
αn

+ t2n
hn + 1/n

αn

)

+ tnJ0. (23)

Dividing both sides of inequality (22) by t2n, we obtain

‖S∗(xT (·))(zδn
(tn)/tn) − b(·)‖2

L2
≤ c2(δn/tn + hn + 1/n) + 2αnR2/tn. (24)

By the convexity of the norm, using Jensen’s inequality we get

1

t

t∫

0

‖żδn
(ν)‖2 dν ≥

∥
∥
∥
∥
∥
∥

1

t

t∫

0

żδn
(ν) dν

∥
∥
∥
∥
∥
∥

2

= ‖zδn
(t)/t‖2 ∀t > 0.

Hence, from (23) we deduce that

‖zδn
(tn)/tn‖2 ≤ c1(δn/αn + tn(hn + 1/n)/αn) + J0. (25)

Convergence (21) follows from (24), (25). Note that the set QF∗ is convex, bounded,

and closed. In this case the following inclusion is true:

zδn
(tn)/tn =

n−1∑

j=0

vδn

j δn/tn ∈ QF∗.

The sequence {zδn
(tn)/tn}∞n=1 is bounded, so, without loss of generality, we may set

zδn
(tn)/tn → u∗ ∈ QF∗ as n → ∞.

Taking into account (24), we conclude that

u∗ ∈ U1.

Besides, by (25) there is

‖u∗‖ ≤ ‖u0‖.
However, the set U1 contains a single element of minimal norm. Thus, u

∗ = u0. The

theorem is proved.

Theorem 3. If conditions (20) are fulfilled, then

Q−1zδn
(tn)/tn → (A∗, B∗), as n → ∞.
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