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Abstract: This paper presents a new coordinate transformation for unsteady, incompressible
boundary layer equations that applies to both laminar and turbulent flows. A generalization of this
coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently
derived. In addition, the boundary layer equations are derived using a time linearization approach
and assuming harmonically varying small disturbances.
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1. INTRODUCTION

Although the boundary layer equations have a simplified form compared to the Navier-
Stokes equations, they are still a difficult mathematical problem. To simplify the boundary
layer equations, severa coordinate transformation have been proposed in the past. Many of
these coordinate transformations were developed in the precomputer era when a significant
analytical effort was put into finding smpler forms for the boundary layer equations.

Blasius [2] was the first to propose a coordinate transformation to reduce the partial
differential equations that describe the incompressible boundary layer over aflat plate to an
ordinary differential equation. Goldstein [6] proposed a coordinate transformation for the
boundary layer equations of steady, two-dimensional flows, assuming the velocity outside of
the boundary layer isU = ce** and « > 0. He also showed that no similar solutions existed
if a isnegative.

Howarth [8] proposed a coordinate transformation of the compressible flow in alaminar
boundary layer, assuming Prandtl number is unity and viscosity is proportiona to the
absolute temperature. This coordinate transformation, also known as Howarth-Dorodnitsyn,
leads to a simplified form of the boundary layer equations that is very similar to the
incompressible equation. A related coordinate transformation was proposed by Stewartson
[12]. Stewartson used the same assumptions as Howarth and introduced a coordinate
transformation that transformed the boundary layer equations for a compressible fluid into
those for an incompressible fluid.

[llingworth [9] proposed a coordinate transformation for the flow over a porous plate
with uniform suction, which reduced the governing equations to a set of ordinary differential
equations. Mangler [13, p. 296] introduced a coordinate transformation that converts the
axisymmetric boundary layer equations to the plane boundary layer equations. Gortler [7]
proposed a coordinate transformation (&, 7 ) for plane and steady laminar boundary layersin

incompressible fluids with arbitrary outer pressure distribution. The solution of the boundary
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layer problem is given as a power seriesin & with the coefficients functions depending on
n . Thisseriesisaformally exact solution of the boundary layer problem.

Fewer coordinate transformations have been proposed in the last forty years. One of the
most recent of them was developed by Carter et a. [3], who introduced a composite
transformation for laminar and turbulent boundary layers. This coordinate transformation
was conceived to include the two transverse lengths scales of the turbulent boundary layer:
the boundary-layer thickness and the wall-layer thickness.

The boundary-layer thickness is captured by using a turbulent generalization of the
Mangler-Levy-Lees variables. The wall-layer thickness is captured by a coordinate
transformation based on the appropriate analytical velocity profile expression proposed by
Whitfield [14].

This paper presents a new coordinate transformation for unsteady, incompressible
boundary layer equations that applies to both laminar and turbulent flows. Section 2 briefly
presents the governing equations of the unsteady boundary layer for an incompressible fluid.
The new coordinate transformation is described in Section 3. A generalization of this
coordinate transformation is also proposed. The unsteady boundary layer equations written
using the new coordinate transformation are subsequently derived. In addition, the boundary
layer equations are derived using a time linearization approach and assuming harmonically
varying small disturbances.

2. UNSTEADY BOUNDARY LAYER EQUATIONS

The boundary layer equations are abtained from the mass and momentum conservation
equations by using a scale analysis [10]. Assuming that the flow is incompressible, that the
viscosity does not vary with temperature and that very sudden accelerations are excluded, the
Prandtl’ s boundary layer equations are [11, p. 130]
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where s and n are coordinates parallel and normal to the boundary, the symbol “™ denotes
an unsteady, possible nonlinear flow quantity, 0 and o are the velocity components in the
paralel and normal directions, p is the density, p is the pressure and u is the dynamic

viscosity. Note that s=0 corresponds to the start of the boundary layer and n=0
corresponds to the surface of the wall.
Equations (1)-(3) with the three unknowns G, © and P can be reduced to a system of

two equations with two unknowns U and o by eliminating the pressure p. To eliminate the
pressure, the ssmomentum equation (2) is written at the edge of the boundary layer where the
viscous term y% and the convection term p%;—:: can be neglected. One obtains:

on

INCASBULLETIN, Volume 3, Issue 4/ 2011



37 A Coordinate Transformation for Unsteady Boundary Layer Equations
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where the subscript “€” denotes values at the edge of the boundary layer.
Note that it is not necessary to use the index e for the density p and pressure p because

the density is constant and the pressure does not vary with the n coordinate. Substituting
eguation (4) into the ssmomentum equation (2) yields:
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Equations (1) and (5) represent the two partial differential equations which must be
solved to obtain the two unknowns U and o .

Due to the fact that the continuity equation is a first-order partial differential equation
and the ssmomentum equation is a second-order partia differential equation, it is necessary
to impose three boundary conditions. The boundary conditions vary depending on whether
the boundary layer position is along awall or in awake. If the boundary layer develops on a
wall, the no-dlip condition is:

G(ssn=0)=3(s,n=0) =0,

At the edge of the boundary layer, the velocity of the boundary layer must match the
velocity of theinviscid flow field, so that:

U(s,n = 8) = 0,(9).

where § isthe thickness of the boundary layer.

Additional details about the boundary conditions are not given here because, as will be
presented in the next section, the boundary layer equations will not be solved in the
“physical coordinates.”

A coordinate transformation or “stretching” of the governing equations will be applied
prior to formulating the difference equations.

3. COORDINATE TRANSFORMATION

The main goals of the coordinate transformation are to remove the singularity in the
equations at the leading edge or stagnation point and to generate a coordinate frame for
computation in which the boundary layer thickness remains as constant as possible [1, p.
355]. Three coordinate transformations will be presented in the following sections. The first
coordinate transformation is similar to the transformation used in the Blasius similarity
solution. The second coordinate transformation generates a more compact grid than the
modified Blasius transformation.

The third coordinate transformation represents a generaization of the previous two
coordinate transformations.

3.1. Modified Blasius Coordinate Transfor mation

In the Blasius coordinate transformation the rectangular Cartesian physical coordinates (s, n)
are transformed to (s, 77) coordinates. The crucia element of the transformation is the

definition of the » variable:
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where v isthe kinematic viscosity.

The modified version of the Blasius coordinate transformation proposed herein replaces

U, by u,, which is considered constant.

Instead of solving the boundary layer equations written with the G, o variables, one
follows Blasius [11, p. 136] and introduces a stream function y . The difference from

Blasius' approach isthat in the present analysis, the stream function  varies not only in the
n-direction but also in time and in the s-direction. The stream function y is defined by using

adimensionless stream function f(s, n,t):

v (s.m.t)=vsu, f(s7.t)

By introducing the stream function  , the continuity equation is identically satisfied. If

one writes the velocities U and o using the stream function

and one takes into account the expressions of the derivatives:
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The primes denote differentiation with respect to 7 . After the substitution of (9)-(12)
into (5), one obtains:

1:-, od, . od af" ., 0f of
fm —ff e+u e =3 f’——f” 13
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Note that the momentum equation (13) was derived using the assumption that the viscosity
u is congtant. This hypothesis is true for laminar flows without temperature variation. For

turbulent flow (with or without temperature variation) the term £ ":—;‘ must be replaced by

5 (,u = —pu w) where pu's’ represents the Reynolds stresses. Assuming that the

turbulence is modeled using Bousinesq's eddy viscosity, the term ; (yﬁ - puy ) can

be replaced by v%(ﬁg—ﬂ) where

For turbulent flows, equation (5) can be written as:

a_0+ "a_a Aa_u au e+ 0 a_l]e_,_vi "8_0 14

ot s on ot ° os anl on (14)
Using the nondimensional stream function f , equation (14) becomes:
P I A od, . ou of’ of’ of

bf") +=ff"+s £+ el=s| T +f - f" 15
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As claimed at the beginning of this section, by considering u, to be constant, the
transformed momentum equation (15) is simpler than for the case u, = U,, for which the
momentum equation is[4]:

i)« PrLg o p(if s Qe g ) o 2 pof piof
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where

3.2. Novel Coordinate Transformation
The basic idea of the Blasius coordinate transformation is to define the dimensionless
coordinate 77 ~n/ & , where the boundary layer thickness § is of the order of /v s/, . The

variation of the boundary layer thickness as the square root of the length sis true for laminar
flows but not for turbulent flows where boundary layer thickness varies more rapidly. For
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example, in the case of the turbulent flat plate flow, the boundary layer thickness ¢ varies as
s% (for the < th power velocity distribution law, [11, p. 638]), while for the laminar flow on

theflat plate & variesas s%.

Most often, the flow on the airfoils has both laminar and turbulent regions. For this
reason, it would be ideal if one could obtain a coordinate transformation which would
accommodate both laminar and turbulent flows. The most natural way would be to define the
dimensionless coordinate is 7(s,n) = n/ 6(s). The boundary layer thickness &, however, is
not easily available from the boundary layer codes. A related variable, the mean value of the
displacement thickness, could be used instead, especially when the displacement thickness is
avariable used in the coupling of viscous and inviscid regions.

In the proposed coordinate transformation the dimensionless coordinate is defined as

n(s,n) = n/ A’ (s) where A" is the mean value of the displacement thickness [5, p. 48]. A

nondimensional stream function f(s,n,t) is defined as f(s,n,t) =y(sn,t)/ A (S)u,. For
simplicity one considers u, = 1. By using the stream function y , the continuity equation (1)
is identically satisfied. Taking into account equations (6), (7) and the expressions of the
derivatives:
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As before, the index s denotes differentiation with respect to the s variable and primes
denote differentiation with respect to the n variable. After substituting these terms in the

momentum equation (14), one obtains:
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3.3. A Generalization of the Coordinate Transfor mation

Comparing equations (15) and (16) one observes that both can be written in a more general

form:
(b2 Aisff”+Ai(ali Aa“) A{af Lpof f"afJ (17)

0S ot 0s 0S

For the Blasius modified coordinate transformation, A = s, while for the novel
coordinate transformation, A = A, The similarity of the results is remarkable and suggests
generaization. Note that in the Blasius modified coordinate transformation 7 ~1/ Vs and
v ~+/s, while for the novel coordinate transformation 77 ~1/ A" and  ~ A’ . It results that in

both cases 77~1/\/E and z/}~\/E. This result can be generalized as follows: for a
coordinate  transformation n(s,n) = n/la ()] and a stream  function
w(s,n) =a p(s) f(s,n) the parameter A in the momentum equation (17) has the value

A =[a (9%
An immediate application of the generalized coordinate transformation is the definition
of the nondimensional coordinate 77 using the time-average value of the boundary layer

thickness & .
By defining 7 = n/ &5(s) and y(s,n) = f(s,n) S one obtains the momentum equation:

A Rl i
ot 0s ot 0s 0s

4. TIME-LINEARIZED UNSTEADY BOUNDARY LAYER EQUATIONS

The boundary layer equation (17) is an unsteady nonlinear third-order parabolic partial
differential equation. Two main approaches can be used to solve this equation. The first
approach is to use time marching for solving the boundary layer equation [4]. Although it
seems straightforward, this approach is computationally expensive. Using time marching for
an unsteady two-dimensional boundary layer problem is roughly as expensive as solving a
steady three-dimensiona boundary layer problem.

The second possible approach for solving the unsteady boundary layer equation is to
linearize the boundary layer equation about some nominal mean flow.

Thisis avalid approximation as long as the flow unsteadiness is small compared to the
mean flow. Since up to this point no assumption was made about the variation in time of the
small disturbances, one could calculate them by marching in time.

However, one can introduce a further simplification by assuming that the unsteady part
of the flow is harmonicin time.

This assumption removes the explicit time dependency from the unsteady boundary
layer equation.

This section derives the time-linearized unsteady boundary layer equations using the
coordinate transformation proposed herein and assuming harmonically varying small
disturbances.
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The nondimensional stream function f and the edge velocity U, can be expanded in the
perturbation series:

f(s,m,t) = F(s,) + Re[f (s,7) el '] (19)

G,(s,1) = U,(9) + Re[ug(s) el '] (19)

Note that the amplitudes of the unsteady parts, f(s,77) and u.(S) are complex and Re
denotes the real part. Note also that the mean flow variables are represented by upper case
characters.

The next step in the linearization process is to substitute the flow decomposition (18)
and (19) into the boundary layer equation (17). To provide a better explanation of this
derivation, the result for each term of equation (17) will be presented separately. The
exponential el ' which accompanies the perturbation will be omitted to clarify the
explanation. The presence of the exponential e/ “! isassumed for al the first-order terms.

After substituting the perturbation series (18) and (19) into (17) and neglecting the
second-order terms, one obtains:

©fn = (BF") + (bF") + (B f"

N N T Iy
2 2 2 2
OU, +0, O - U, U, + ja)ue+Ue%+ue Ve
ot 0s 0s 0s 0s
of . |
— > jof
ot

frf > FF +F f/+F f

fof" > FF" +F f"+F"f,
Collecting the zeroth-order terms, one obtains the mean flow equation of the boundary layer:
LAY 1 n ! !/ n
(BF)+ASEFF + AU U = A (F'F - FF) (20)

Equation (20) isidentical to the steady boundary layer equation so that one can conclude
that the mean flow represents in fact the steady flow.

Collecting the first-order terms one obtains the small disturbance boundary layer
equations:

bF"Y +(Bf") + AiS%(F f"+F" )+ A(jou, +U u, +u,U,)

— Ao+ F i+ R —F £ = F" )
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5. BOUNDARY CONDITIONS

Once the governing equations have been developed, the next step in properly defining the
problem is to impose the appropriate boundary conditions. The boundary conditions depend
on whether the shear layer develops along a wall or in a wake. A separate treatment is
necessary for the boundary layer starting point.

5.1. Wall Boundary Conditions

Because the boundary layer is modeled by a third-order parabolic partial differential
equation, one needs three boundary conditions at each station in the s-direction. The no-dip
boundary conditions at the wall are:

U(ssn=0)=3(s,n=0)=0 (21)
At the edge of the boundary one imposes the continuity of the velocity G:
lim U(s,n) = {, (22)

The boundary conditions (21) and (22) must be written using the nondimensional
potential function f and the coordinate system (s,7). To write the boundary condition

4 = 0 asafunction of f,oneu%(G) and (8):
. 61// Uy
U= — AV ——U f, 23
on \/vs 877 VS 0 (23)
The boundary condition becomes:
f'(sn=0)=0

The second boundary condition o(s,n = 0) = 0 statesthat the airfoil isastreamline.
As a result, this boundary condition written in terms of the nondimensiona stream

function f is:
f(s,7=0)=0
The boundary condition for the outer edge is obtained using (23) which yields:
Jim £/(s,7) =0, /o (24)

The boundary layer equations are parabolic equations so that in order to solve them one
needs to impose initial conditions in addition to imposing boundary conditions. An initial
boundary condition is needed at the boundary layer starting points. The imposed initial
condition isasimilarity solution obtained by solving Blasius' equation [11, p. 136]:

ff+2f"=0
with the boundary conditions:

f(sn=0)=0
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f'(sn=0)=0

lim f'(s,7) = G,/ u,
n—0

Wake-cut Na

Figure 1. Airfoil wake and the wake-cut
5.2. Wake Boundary Conditions

Let us consider the flow over an airfail. In the wake region, the two shear layers coming
from the suction and pressure sides of the airfoil merge. The position of the merging lineis
computed by the inviscid flow solver.

The wake merging line (or wake-cut) represents the line along which the two shear
layers merge, as shown in Figure 1. The wake-cut is assumed to be an impermeable line,
having equal pressure on both sides. Boundary conditions must be imposed for both shear
layers coming from the pressure and suction sides of the airfoil. As a result, six boundary
conditions must be imposed. It is also necessary to impose that the wake-cut be a stream line
at the inner edge:

f(s775, =0)=0

f(sm,, =0)=0

where the subscripts su and pr denote the suction and pressure side, respectively.

Along the wake-cut, the two shear layers must be continuous, that is, their velocities and
slopes must be continuous:

f\,(5‘177pr =0)= 1’:\,(5‘1775u =0)

f(s,7, =0) = —f"(8,77, = 0) (25)

The minus sign in the boundary condition (25) is necessary because of the discontinuity
of the n coordinate along the wake-cut. The boundary conditions at the outer edge of the

wake shear layers are identical to the boundary conditions (24) at the edge of the boundary
layer along the wall.
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6. CONCLUSIONS

A coordinate transformation was introduced to remove the singularity in the equations at the
leading edge and to generate a coordinate frame for computation in which the boundary layer
thickness remains as constant as possible. A novel coordinate transformation was proposed,
where the coordinate normal to the wall was nondimensionalized by the displacement
thickness. A generalization of the coordinate transformation was also developed. Then, by
making the assumption that the fluid flow is composed of a mean flow plus a harmonically
varying small unsteady disturbance, the nonlinear unsteady viscous flow equations were
linearized. The paper concluded with a presentation of the shear layer boundary conditions
aong the airfoil and in the wake.
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