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Abstract: This paper presents a new coordinate transformation for unsteady, incompressible 
boundary layer equations that applies to both laminar and turbulent flows. A generalization of this 
coordinate transformation is also proposed. The unsteady boundary layer equations are subsequently 
derived. In addition, the boundary layer equations are derived using a time linearization approach 
and assuming harmonically varying small disturbances. 
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1. INTRODUCTION 

Although the boundary layer equations have a simplified form compared to the Navier-
Stokes equations, they are still a difficult mathematical problem. To simplify the boundary 
layer equations, several coordinate transformation have been proposed in the past. Many of 
these coordinate transformations were developed in the precomputer era when a significant 
analytical effort was put into finding simpler forms for the boundary layer equations. 

Blasius [2] was the first to propose a coordinate transformation to reduce the partial 
differential equations that describe the incompressible boundary layer over a flat plate to an 
ordinary differential equation. Goldstein [6] proposed a coordinate transformation for the 
boundary layer equations of steady, two-dimensional flows, assuming the velocity outside of 
the boundary layer is  and xecU  0 . He also showed that no similar solutions existed 

if   is negative. 
Howarth [8] proposed a coordinate transformation of the compressible flow in a laminar 

boundary layer, assuming Prandtl number is unity and viscosity is proportional to the 
absolute temperature. This coordinate transformation, also known as Howarth-Dorodnitsyn, 
leads to a simplified form of the boundary layer equations that is very similar to the 
incompressible equation. A related coordinate transformation was proposed by Stewartson 
[12]. Stewartson used the same assumptions as Howarth and introduced a coordinate 
transformation that transformed the boundary layer equations for a compressible fluid into 
those for an incompressible fluid. 

Illingworth [9] proposed a coordinate transformation for the flow over a porous plate 
with uniform suction, which reduced the governing equations to a set of ordinary differential 
equations. Mangler [13, p. 296] introduced a coordinate transformation that converts the 
axisymmetric boundary layer equations to the plane boundary layer equations. Görtler [7] 
proposed a coordinate transformation (  , ) for plane and steady laminar boundary layers in 
incompressible fluids with arbitrary outer pressure distribution. The solution of the boundary 
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layer problem is given as a power series in   with the coefficients functions depending on 

 . This series is a formally exact solution of the boundary layer problem. 
Fewer coordinate transformations have been proposed in the last forty years. One of the 

most recent of them was developed by Carter et al. [3], who introduced a composite 
transformation for laminar and turbulent boundary layers. This coordinate transformation 
was conceived to include the two transverse lengths scales of the turbulent boundary layer: 
the boundary-layer thickness and the wall-layer thickness. 

The boundary-layer thickness is captured by using a turbulent generalization of the 
Mangler-Levy-Lees variables. The wall-layer thickness is captured by a coordinate 
transformation based on the appropriate analytical velocity profile expression proposed by 
Whitfield [14]. 

This paper presents a new coordinate transformation for unsteady, incompressible 
boundary layer equations that applies to both laminar and turbulent flows. Section 2 briefly 
presents the governing equations of the unsteady boundary layer for an incompressible fluid. 
The new coordinate transformation is described in Section 3. A generalization of this 
coordinate transformation is also proposed. The unsteady boundary layer equations written 
using the new coordinate transformation are subsequently derived. In addition, the boundary 
layer equations are derived using a time linearization approach and assuming harmonically 
varying small disturbances. 

2. UNSTEADY BOUNDARY LAYER EQUATIONS 

The boundary layer equations are obtained from the mass and momentum conservation 
equations by using a scale analysis [10]. Assuming that the flow is incompressible, that the 
viscosity does not vary with temperature and that very sudden accelerations are excluded, the 
Prandtl’s boundary layer equations are [11, p. 130] 
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where s  and  are coordinates parallel and normal to the boundary, the symbol “ˆ” denotes 
an unsteady, possible nonlinear flow quantity,  and 

n
û v̂  are the velocity components in the 

parallel and normal directions, ̂  is the density,  is the pressure and p̂   is the dynamic 

viscosity. Note that 0s  corresponds to the start of the boundary layer and  
corresponds to the surface of the wall. 

0n

Equations (1)-(3) with the three unknowns , û v̂  and  can be reduced to a system of 

two equations with two unknowns u  and 

p̂

ˆ v̂  by eliminating the pressure . To eliminate the 
pressure, the s-momentum equation (2) is written at the edge of the boundary layer where the 

viscous term 
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where the subscript “e” denotes values at the edge of the boundary layer. 
Note that it is not necessary to use the index e for the density ̂  and pressure  because 

the density is constant and the pressure does not vary with the n coordinate. Substituting 
equation (4) into the s-momentum equation (2) yields: 
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Equations (1) and (5) represent the two partial differential equations which must be 
solved to obtain the two unknowns u  and ˆ v̂ . 

Due to the fact that the continuity equation is a first-order partial differential equation 
and the s-momentum equation is a second-order partial differential equation, it is necessary 
to impose three boundary conditions. The boundary conditions vary depending on whether 
the boundary layer position is along a wall or in a wake. If the boundary layer develops on a 
wall, the no-slip condition is: 

,0)0,(ˆ)0,(ˆ  nsnsu v   

At the edge of the boundary layer, the velocity of the boundary layer must match the 
velocity of the inviscid flow field, so that: 

).(ˆ),(ˆ sunsu e    

where   is the thickness of the boundary layer. 
Additional details about the boundary conditions are not given here because, as will be 

presented in the next section, the boundary layer equations will not be solved in the 
“physical coordinates.” 

A coordinate transformation or “stretching” of the governing equations will be applied 
prior to formulating the difference equations. 

3. COORDINATE TRANSFORMATION 

The main goals of the coordinate transformation are to remove the singularity in the 
equations at the leading edge or stagnation point and to generate a coordinate frame for 
computation in which the boundary layer thickness remains as constant as possible [1, p. 
355]. Three coordinate transformations will be presented in the following sections. The first 
coordinate transformation is similar to the transformation used in the Blasius similarity 
solution. The second coordinate transformation generates a more compact grid than the 
modified Blasius transformation. 

The third coordinate transformation represents a generalization of the previous two 
coordinate transformations. 

3.1. Modified Blasius Coordinate Transformation 

In the Blasius coordinate transformation the rectangular Cartesian physical coordinates (s, n) 
are transformed to ( ,s ) coordinates. The crucial element of the transformation is the 

definition of the   variable: 
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where   is the kinematic viscosity. 
The modified version of the Blasius coordinate transformation proposed herein replace

 by , which is considered constant. 
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The primes denote differentiation with respect to  . After the substitution of (9)-(12) 
into (5), one obtains: 
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2 û

 v





̂
1 un

u
n  ˆˆ  where vu̂  represents the Reynolds stresses. Assuming that the 

turbulence is modeled using Bousinesq’s eddy viscosity, the term  v





̂
1

be replaced by 

un
u

n  ˆˆ  can 

 n
ub 

 ˆˆ  when
 re 

n
u

u  1v
b


 ˆ1ˆ


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3.2. Novel Coordinate Transformation 

The basic idea of the Blasius coordinate transformation is to define the dimensionless 

coordinate  ~ /n , where the boundary layer thickness   is of the order of eus ˆ/ . The 

vari e square root of the length s is true for laminar 
flows but not for turbulent flows where boundary layer thickness varies more rapidly. For 

ation of the boundary layer thickness as th
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example, in the case of the turbulent flat plate flow, the boundary layer thickness   varies as 

5
4

s  (for the 
7

th er velocity distribution law, [11, p. 63 ]), while for the la w on 

the flat plate 
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Most often, the flow on the airfoils has both laminar and turbulent regions. For this 

reason, it would be ideal if one could obtain a coordinate transformation which would 
commodat  both laminar and turbulent flows. The most natural way would be to define the 
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3.3. A Generalization of the Coordinate Transformation 

Comparing equations (15) and (16) one observes that both can be written in a m re gen
form: 
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4. TIME-LINEARIZED UNSTEADY BOUNDARY LAYER EQUATIONS 

The boundary layer equation (17) is an unsteady nonlinear third-order parabolic partial 
differential equation. Two main approaches can be used to solve this equation. The first 
ap it 
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proach is to use time marching for solving the boundary layer equation [4]. Although 
ms straightforward, this approach is computationally expensive. Using time marching fo

an unsteady two-dimensional boundary layer problem is roughly as expensive as solving a 
steady three-dimensional boundary layer problem. 

The second possible approach for solving the unsteady boundary layer equation is to 
linearize the boundary layer equation about some nominal mean flow. 

This is a valid approximation as long as the flow unsteadiness is small compared to the 
mean flow. Since up to this point no assumption w

ll disturbances, one could calculate them by marching in time. 
However, one can introduce a further simplification by assuming 
e flow is harmonic in time. 
This assumption removes the explicit time dependency from the unsteady boundary 

layer equation. 
This section derives the time-linearized unsteady boundary layer equations using the 

coordinate transformation prop
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The nondimensional stream function f̂  and the edge velocity eû  can be expanded in the 
perturbation series: 
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Collecting the zeroth-order terms, one obtains the mean flow equation of the boundary layer: 

fFfFFFff ssss  ˆˆ  

ssss fFfFFFff  ˆˆ  

)(
2

1
)( 111 FFFFAUUAFFAFB sssees   (20)

Equation (20) is identical to the steady boundary layer equation so that one can conclude 

Collecting the first-order terms one obtains the small disturbance boundary layer 
equations: 

 

that the mean flow represents in fact the steady flow. 

)(

)()(
2

1
)()( 11 seeseees

FfFfFfjA

UuuUujAfFfFAfBFb







   
1 ssss fFf 
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overning equations have been developed, the next step in properly defining the 
problem is to impose the appropriate boundary conditions. The boundary conditions depend 
on whether the shear layer develops along a wall or in a wake. A separate reatment is
necessary for the boundary layer starting point. 

5.1. Wall Boundary C

5. BOUNDARY CONDITIONS 

Once the g

 t  

onditions 

Because the boundary layer is modeled by a third-order parabolic partial differential 
equation, one needs three boundary conditions at each station in the s-direction. The no-slip 
boundary conditions at the wall are: 

,(ˆ)0,(ˆ  nsnsu v 0)0   (21) 

At t es the continuity of the velocity :  ûhe edge of the boundary one impos

e
n

unsu ˆ),(ˆlim 


 (22) 

The boundary conditions (21) and (22) must be written using the nondimensional 

potential function  and the coordinate system (f̂ ,s ). To write the boundary condition 

0ˆ u  as a function of f̂ , one uses (6) and (8): 

fu
f

us
ssn  00 

The boundary condition becomes: 

)0,(ˆ  sf

uu
u 








 ˆ

ˆˆˆ
ˆ 00 

 (23) 

 

The second boundary condition 

0  

0)0,(ˆ nsv  states that the airfoil is a streamline
As a result, this boundary condition written in terms of the nondimensional strea

uter edge is ob

The boundary layer equations are parabolic equations so that in order to solve them one 
needs to impose initial conditions in addition to imposing boundary conditions. An initia
bou d initial 
cond

with

. 
m 

function f̂  is: 

0)0,(ˆ sf   

The boundary condition for the o tained using (23) which yields: 

0/ˆ),(ˆlim uusf e   (24) 


l 
ndary condition is needed at the boundary layer starting points. The impose
ition is a similarity solution obtained by solving Blasius’ equation [11, p. 136]: 

0ˆ2ˆˆ  fff   

 the boundary conditions: 

0)0,(ˆ sf   

INCAS BULLETIN, Volume 3, Issue 4/ 2011 



Paul G. A. CIZMAS 44 
 

 
 

0)0,(ˆ  sf

 
0/ˆ),(ˆlim uusf e





 

 
Figure 1. Airfoil wake and the wake-cut 

5.2. Wake Boundary Conditions 

Let us consider the flow over an airfoil. In the wake region, the two shear layers coming 
from the suction and pressure sides of the airfoil merge. The position of the merging line is 
computed by the inviscid flow solver. 

The wake merging line  along which the two hear 
laye he wake-cut is assumed to be an impermeable line, 
havi oundary conditions must be imposed for both shear 

ts

(or wake-cut) represents the line s
rs merge, as shown in Figure 1. T
ng equal pressure on both sides. B

layers coming from the pressure and suction sides of the airfoil. As a result, six boundary 
conditions must be imposed. It is also necessary to impose that the wake-cut be a stream line 
at the inner edge: 

0)0,(ˆ ussf    

0)0,(ˆ rpsf   
 

where the subscrip  us  and rp  denote the suction and pressure side, respectively. 
Along the wake-cut, the two shear layers must continuous, that is, their velocities and

slopes must be continuous: 

oundary condition (25) is necessary because of the discontinuity 
of the 

be  

)0,(ˆ)0,(ˆ  rp sfsf   us  

)0,()0,( usrp sfsf  (25) 

The minus sign in the b

ˆˆ  

  coordinate along the wake-cut. The boundary conditions at the outer edge of the
wake shear layers are identical to the boundary conditions (24) at the edge of the boundary
layer along the wall. 
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6. CONCLUSIONS 

A coordinate transformation was introduced to remove the singularity in the equations at the 
lead

aking the assumption that the fluid flow is composed of a mean flow plus a harmonically 
ing small unsteady disturbance, the nonlinear unsteady viscous flow equations were 

linearized. The paper concluded with a presenta ayer boundary conditions 
along the airfoil and in the wake. 

, Proceedings of the Royal Society (London) Vol. A355, pp. 225-238, 
1977. 

[5] P. G. A. Cizmas, A Simultaneously ndary Layer Model of Stall Flutter in 
Turbomachinery, Ph.D. Dissertation, 995. 

 

ing edge and to generate a coordinate frame for computation in which the boundary layer 
thickness remains as constant as possible. A novel coordinate transformation was proposed, 
where the coordinate normal to the wall was nondimensionalized by the displacement 
thickness. A generalization of the coordinate transformation was also developed. Then, by 
m
vary

tion of the shear l

REFERENCES 

[1] D. A. Anderson, J. C. Tannehill and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, 
McGraw-Hill, New York, 1984. 

[2] H. Blasius, The Boundary Layers in Fluids with Little Friction, Zeitschrift für Mathematik und Physik, Vol. 
56, 1908, pp. 1-37; also in NACA TM 1256, 1950. 

[3] J. E. Carter, D. E. Edwards and M. J. Werle, Coordinate Transformation for Laminar and Turbulent Boundary 
Layers, AIAA Journal, Vol. 20, No. 2, pp. 282-284, 1982. 

[4] T. Cebeci, Calculation of Unsteady Two-Dimensional Laminar and Turbulent Boundary Layers with 
Fluctuations in External Velocity

 Coupled Potential/Bou
Duke University, May 1

[6] S. Goldstein, A note on the boundary layer equations, Mathematical Proceedings of the Cambridge 
Philosophical Society, Vol. 35, pp. 338-340, 1939. 

[7] H. Gortler, A new series for calculation of steady laminar boundary layer flows, Journal of Mathematics and 
Mechanics, Vol. 6, pp. 1-66, 1957. 

[8] L. Howarth, Concerning the effect of compressibility on laminar boundary layers and their separation, em 
Proceedings of the Royal Society of London. Series A, Mathematical and Physical, Vol. 194, No. 1036, 
pp. 16-42, 1948. 

[9] C. R. Illingworth, Some solutions of the equations of flow of a viscous compressible fluid, Proceedings of the 
Cambridge Philosophical Society, Vol. 46, pp. 469-478, 1950. 

[10] L. Prandtl, Fluid Motion with Very Small Friction, Proceedings of the Third International Mathematical 
Congress, Heidelberg, Germany, 1904. 

[11] H. Schlichting, Boundary-Layer Theory, 7th ed., McGraw-Hill, New York, 1979. 
[12] K. Stewartson, Correlated incompressible and compressible boundary layers, em Proceedings of the Royal 

Society of London. Series A, Mathematical and Physical, Vol. 200, No. A1060, pp. 84-100, 1949. 
[13] F. M. White, Viscous Fluid Flow, 2nd ed., McGraw-Hill, New York, 1991. 
[14] D. L. Whitfield, Analytical Description of the Complete Turbulent Boundary-Layer Velocity Profile, AIAA 

Journal, Vol. 17, No. 10, pp. 1145-1147, 1979. 

 
 


