
Implementing Modified Burg Algorithms in

Multivariate Subset Autoregressive Modeling

A. Alexandre Trindade∗

February 3, 2003

Abstract

The large number of parameters in subset vector autoregressive
models often leads one to procure fast, simple, and efficient alterna-
tives or precursors to maximum likelihood estimation. We present the
solution of the multivariate subset Yule-Walker equations as one such
alternative. In recent work, Brockwell, Dahlhaus, and Trindade (2002),
show that the Yule-Walker estimators can actually be obtained as a
special case of a general recursive Burg-type algorithm. We illustrate
the structure of this Algorithm, and discuss its implementation in a
high-level programming language. Applications of the Algorithm in
univariate and bivariate modeling are showcased in examples. Uni-
variate and bivariate versions of the Algorithm written in Fortran 90
are included in the appendix, and their use illustrated.

Keywords: binary tree, Fortran 90, pointer linked list, recursive algo-
rithm, Yule-Walker estimation

1 Introduction

AutoRegressive Moving Average (ARMA) models are well-known and pop-
ular in the time series literature. Among others, they are extensively used
to model economic and electrical systems whose evolution in time (mod-
ulo preliminary transformations, de-trending, and de-seasonalizing) can be
well approximated by that of a stationary process. Stationarity constrains
a process to have second order properties that do not evolve with time, i.e.

∗Department of Statistics, University of Florida, P.O. Box 118545, Gainesville, FL
32611-8545 (trindade@stat.ufl.edu)

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27139878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


constant mean, and a covariance structure between any two observations
that depends only on the distance in time (the lag) separating them.

In the multivariate setting, one attempts to model the joint behavior
of several univariate series over the same span of time. The usefulness of
multivariate ARMA models here though, is stymied by identifiability is-
sues concerning the model parameters (see for example Brockwell and Davis
1991, sec. 11.5). A common alternative is to restrict attention to two special
cases: invertible Moving Average (MA) models, and causal AutoRegressive
(AR) models, whose parameters are uniquely determined by the second order
properties of the process. AR models (called Vector Autoregressive (VAR)
in the multivariate case) are often favored over MA models due to their
interpretability, simplicity of estimation, and ease of forecasting. They are
extensively used in signal processing for modeling various phenomena asso-
ciated with speech and audio; see for example Godsill and Rayner (1998).

The d-dimensional vector process {Xt, t = 0,±1, . . .}, is said to be
a VAR process of order p, VAR(p), if it is a stationary solution of the
equations,

Xt = Φ(1)Xt−1 + · · · + Φ(p)Xt−p + Zt,

where, Φ(1), . . . ,Φ(p), are (d × d) constant matrices (the VAR coefficient

matrices), and {Zt} is a sequence of zero-mean uncorrelated random vectors,
each with covariance matrix Σ. We call the process {Zt} white noise, and
write {Zt} ∼ WN(0,Σ). The autocovariance function of Xt is,

E[Xt+hX
′
t] = Γ(h), h = 0,±1, . . . .

A VAR(p) is therefore a linear regression of the current value of the series
on its previous p values i.e. an autoregression. We say that we are modeling
the series on the lagged set {1, . . . , p}.

One can generalize this to modeling on a lagged subset

K = {k1, . . . , km} ⊆ {1, . . . , p}, with k1 < · · · < km ≡ p,

and the coefficient matrices pertaining to the lags not present in the set K,
constrained to be zero. Such models are called Subset Vector AutoRegressive

(SVAR; SAR in the univariate case), and take the form

Xt = ΦK(k1)Xt−k1
+ · · · + ΦK(km)Xt−km

+ Zt, {Zt} ∼ WN(0, UK). (1)

SVAR models are appropriate in situations where one does not wish to
include all the lags of the complete (full-set) VAR model. Two such instances
are:

2



Modeling of seasonal time series. If B denotes the backward shift op-
erator, i.e. BkXt = Xt−k for any positive integer k, then causal SAR
models of the form,

(1 − ψBs) (1 − φ1B − · · · − φpB
p)Xt = Zt,

will exhibit approximate cyclical behavior for appropriate values of
the coefficients ψ, φ1, . . . , φp, and orders s, p, as evidenced by sharp
peaks in the spectral density. This suggests that some seasonal time
series can effectively be modeled as SAR processes.

Figure 1 shows a realization from the SAR(3),

Xt − 0.99Xt−3 = Zt, {Zt} ∼ WN(0, 1),

along with a plot of the spectral density function of the process on
the interval (0, π). The spectral density peaks at a frequency of 2π/3
radians per unit time, which corresponds to a period of length 3.

Fitting best subset models. As in linear regression, one can search for
the “best” subset AR/VAR model up to some maximum order, p.
“Best” can be measured by one’s favorite information criterion, such
as Akaike (AIC), Bayesian (BIC), Schwarz (SIC), or even Minimum
Description Length (MDL). Researchers have devised efficient algo-
rithms to perform this search. One of the earliest attempts was made
by McClave (1975), who used an algorithm adapted from linear re-
gression. Penm and Terrell (1982), introduced an algorithm recursive
in the maximum lag for best subset identification. Zhang and Terrell
(1997) refine the search by inspecting certain statistics. Rather than
performing an exhaustive search through all 2p models, Sarkar and
Sharma (1997) propose a statistical method for identifying the best
subset.

Figure 2 shows the celebrated Canadian Lynx Trappings data. Eco-
logical oscillations in predator-prey populations, mean that the loga-
rithms of this data set are often modeled as a SAR process; a perennial
favorite in the SAR literature. The lower part of the figure shows a
spectral density estimator (the periodogram) for this data, which sug-
gests the period of the oscillations to be approximately 2π/0.6 ≈ 10.5
years. In section 4, we will apply the algorithm of section 2 to perform
an exhaustive search for the best SAR model.

For a given SVAR model order, one typically wishes to find maximum
likelihood (ML) estimates of the parameters. Using standard arguments,

3



Figure 1: The process Xt − 0.99Xt−3 = Zt, {Zt} ∼ WN(0, 1). Top: a
realization of the process with Gaussian noise. Bottom: the corresponding
spectral density function.

Realization of a subset AR(3) process

Time

0 20 40 60 80 100

-1
5

-5
0

5
10

Spectral density function

Frequency

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
50

0
10

00

the -2 log likelihood for the vectors X1, . . . ,Xn from the Gaussian SVAR
process of dimension d defined by equation (1), can be shown to be

L (ΦK(k1), . . . ,ΦK(km), UK) = nd log(2π) + log det(Γkm
)

+ (n− km) log det(UK) +
[
X′

1, . . . ,X
′
km

]Γ−1
km

[X′
1, . . . ,X

′
km

]′

+
n∑

t=km+1



Xt −
∑

j∈K

ΦK(j)Xt−j





′

U−1
K



Xt −
∑

j∈K

ΦK(j)Xt−j



 , (2)

where Γkm
= IE

(
[X′

1, . . . ,X
′
km

]′[X′
1, . . . ,X

′
km

]
)
.

Remark 1
The potentially large number of parameters involved in ML estimation

4



Figure 2: The annual Canadian lynx trappings data. Top: numbers of lynx
trapped between 1821 and 1934. Bottom: the periodogram of the data.

Canadian lynx trappings data

Year

1820 1840 1860 1880 1900 1920

0
20

00
60

00

Periodogram

Frequency

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
4*

10
^6

10
^7

(d2km + d2+d
2 of them), and the possible existence of many local minima

which are much larger than the global minimum, makes the numerical search
for the minimizers a difficult problem. The feasibility of ML estimation is
therefore highly dependent upon good initial estimates.

For this, and the reason that one may wish to avoid ML estimation
altogether, it is important to consider alternative fast and simple SVAR
estimation methods for obtaining models with high likelihoods. Recently,
Brockwell, Dahlhaus, and Trindade (2002), introduced a method for doing
just that. Their method, the BDT Algorithm which we consider in section
2, is recursive in the model order, parameter estimates of larger order models
being constructed from those of smaller order models. Since the Brockwell
et al. (2002) paper focuses mostly on theoretical aspects, the main purpose
of this article is to serve as a pragmatic complement to it in the following

5



ways:

(i) Elucidate the recursive structure of the Algorithm.

(ii) Discuss the main issues involved in implementing the Algorithm in a
high-level programming language like Fortran 90.

(iii) Provide coded versions of the Algorithm along with examples that
illustrate its usage.

Section 3 accomplishes the first two goals, in the framework of a binary tree
of pointer-linked nodes. The examples are presented in Section 4, which also
illustrates some meta applications of the Algorithm. (Accompanying data
sets are provided in Appendix B.) Fortran 90 programs implementing a
univariate (BDT.F90) and a bivariate (BDT2.F90) version of the Algorithm
are provided in Appendix C. Appendix A summarizes the function of the
principal subroutines in these programs.

2 Estimation Methods

In this section we discuss alternative SVAR parameter estimation methods
to ML. The first is a generalization of the well-known Yule-Walker method
of moments estimator for full-set modeling, and has not previously appeared
in the literature in this form. The second is a flexible recursive Burg-type
algorithm, introduced by Brockwell et al. (2002), whose structure and im-
plementation is the main focus of this paper. In order to introduce both
methods, we will need to consider not only the (forward) SVAR model (1),
but also the backward SVAR model

Xt =
∑

j∈K∗

ΨK∗(j)Xt+j + Zt, {Zt} ∼ WN(0, VK∗), (3)

where K∗ = {km − km−1, . . . , km − k1, km}, and suppose that the process
{Xt} is causal (meaning that the current value of the series can be expressed
as a function of current and past values of the white noise sequence as,
Xt =

∑∞
j=0 ΥjZt−j).

2.1 Non-Recursive Estimation: The Yule-Walker Equations

If we multiply both sides of (1) by Xt−i, i = 0, k1, . . . , km in turn, and
(noting the causal representation) take expectations, we obtain the so-called

6



Yule-Walker (YW) equations:

Γ(k) =
∑

j∈K

ΦK(j)Γ(k − j), k ∈ K, (4)

UK = Γ(0) −
∑

j∈K

ΦK(j)Γ(j)′. (5)

For the backward SVAR model (3), the corresponding YW equations are

Γ(k)′ =
∑

j∈K∗

ΨK∗(j)Γ(j − k), k ∈ K∗, (6)

VK∗ = Γ(0) −
∑

j∈K∗

ΨK∗(j)Γ(j). (7)

Now define RK and GK to be matrices of autocovariances as follows:
with k0 = 0, define the (i, j)th, i, j = 1, . . . ,m + 1, block-matrix entry of
RK to be,

(RK)(i,j) =

{
Γ(kj−1 − ki−1), j ≥ i
Γ(kj−1 − ki−1)

′, j < i
,

and GK obtained from RK by striking out the first block row and column.
The m + 1 forward YW equations can now be succinctly written in block-
matrix form as,

[Id,−ΦK(k1),−ΦK(k2), . . . ,−ΦK(km−1),−ΦK(km)]RK = [UK , 0, . . . , 0] ,

and the backward YW equations as,

[−ΨK∗(km),−ΨK∗(km − k1), . . . ,−ΨK∗(km − km−1), Id]RK = [0, . . . , 0, VK∗ ] .

Defining
ΓK ≡ [Γ(k1),Γ(k2), . . . ,Γ(km−1),Γ(km)] ,

and
ΦK ≡ [ΦK(k1),ΦK(k2), . . . ,ΦK(km−1),ΦK(km)] ,

we can write (4)-(5) in the reduced block-matrix form

ΓK = ΦKGK , (8)

UK = Γ(0) − ΦKΓ′
K . (9)

These can now be solved for ΦK and UK :

ΦK = ΓKG
−1
K , (10)

UK = Γ(0) − ΓKG
−1
K Γ′

K , (11)

7



where G−1
K denotes any generalized inverse of GK . The solution ΦK , gives

the minimum mean-squared error linear predictor of Xt in terms of Xt−i, i ∈
K. Its mean-squared error is UK . Analogous results hold for the backward
YW equations.

When fitting SVAR model (1) to a set of observations x1, . . . ,xn from
the zero-mean random vectors X1, . . . ,Xn, one of the simplest approaches
is to substitute sample estimates for the autocovariances in (10) and (11).
Taking the usual estimator of the autocovariance matrix at lag h to be,

Γ̂(h) =







1
n

∑n−h
t=1 xt+hx

′
t , if h ≥ 0,

Γ̂(−h)′ , if h < 0,

(12)

the resulting method of moments estimates are,

Φ̂K = Γ̂KĜ
−1
K , (13)

ÛK = Γ̂(0) − Φ̂KΓ̂′
K . (14)

These are the so-called YW estimates in the full-set case, and we will refer to
their subset generalization by the same name. The fitted YW SVAR model
is therefore,

Xt = Φ̂K(k1)Xt−k1
+ · · ·+Φ̂K(km)Xt−km

+Zt, {Zt} ∼ WN(0, ÛK). (15)

2.2 Recursive Estimation: The BDT Algorithm

By defining the empirical forward and backward prediction error residuals

ε̂K and η̂K∗, associated with models (1) and (3) as,

ε̂K(t) = xt −
∑

i∈K

Φ̂K(i)xt−i, and, η̂K∗(t) = xt −
∑

j∈K∗

Ψ̂K∗(j)xt+j ,

Brockwell et al. (2002), introduce a family of SVAR model parameter esti-
mators, based on Burg’s (1968) recursive algorithm. Their BDT Algorithm,
takes the following form.

8



Algorithm 1 (The BDT Algorithm)

Φ̂K(km) = · · · (16)

Φ̂K(i) = Φ̂J(i) − Φ̂K(km)Ψ̂J∗(km − i), i ∈ J

Ψ̂K∗(km) = V̂J∗Φ̂K(km)′Û−1
J (17)

Ψ̂K∗(j) = Ψ̂J∗(j) − Ψ̂K∗(km)Φ̂J(km − j), j ∈ J∗ (18)

ÛK = ÛJ − Φ̂K(km)V̂J∗Φ̂K(km)′

V̂K∗ = V̂J∗ − Ψ̂K∗(km)ÛJΨ̂K∗(km)′ (19)

ε̂K(t) = ε̂J(t) − Φ̂K(km)η̂J∗(t− km) (20)

η̂K∗(t) = η̂J∗(t) − Ψ̂K∗(km)ε̂J(t+ km) (21)

with initial conditions,

ε̂∅(t) = η̂∅(t) =

{
xt, t ∈ {1, . . . , n},
0, otherwise,

Û∅ = Γ̂(0) = V̂∅,

and the sets J and J∗, formed from the sets K and K∗, respectively, by
omitting km.

A variety of different estimators can be obtained by an appropriate selection
of the boxed reflection coefficient expression in (16). Brockwell et al. (2002),
note that the choice

Φ̂K(km) =

(

1

n

n+km∑

t=1

ε̂J(t)η̂J∗(t− km)′

)

V̂ −1
J∗ , (22)

gives precisely the YW estimators (13) and (14) (reformulated via similar
recursions, the resulting Algorithm is known as Levinson-Durbin), but that
selecting Φ̂K(km) to be the minimizer of the weighted sum of forward and
backward prediction errors

n∑

t=km+1

[
ε̂K(t)′Aε̂K(t) + η̂K∗(t− km)′Bη̂K∗(t− km)

]
, (23)

tends to produce models with consistently higher Gaussian likelihoods. By
selecting different weight matrices A and B, they propose a total of three
additional methods: Burg, Vieira-Morf, and Nuttall-Strand, each being a

9



plausible subset generalization of existing full-set analogues with the same
name.

The BDT Algorithm necessarily couples together the forward and back-
ward modeling problems. Arranging the elements of K on the number line
as shown in Figure 3, allows us to better visualize this coupling. The for-

Figure 3: The set of lags K = {k1, . . . , km} arranged on the number line.

t

0

t

k1 · · ·

t

km−1

t

km

ward set of lags, K, are simply the distances of the elements of K from the
origin; while the backward set of lags, K∗, are the corresponding distances
from km.

Note that the YW estimator, Φ̂K(km), obtained from (13), requires the
inversion of ĜK , which is of dimension md. Recursive algorithms are better
suited to searching for a best subset model with a specified maximum number
of lags, and involve inversion of matrices whose dimension is at most d (d2

in some instances).

3 Implementing the BDT Algorithm

Apart from the special case of YW, estimators arising from the BDT Algo-
rithm cannot in general be reformulated in a non-recursive manner. The in-
tricate structure of the recursions, a by-product of the forward and backward
model coupling, can seem rather daunting from a programming perspective.
In this section therefore, we discuss the main issues involved in implement-
ing this Algorithm in a high-level programming language like Fortran 90.
An important goal is to minimize computing time, and our approach will be
to create a linked list of nodes in the form of a binary tree. In the process,
we will make use of recursive pointers, recursive subroutines, and data types
that incorporate recursive definitions.

3.1 Building a binary tree of linked nodes

The recursive solution of the equations defining the BDT Algorithm, gen-
erates a collection of estimators of SVAR models of increasing orders, until
the required order is reached. Suppose modeling on the set of lags {1, 3, 7}

10



is desired. To determine where application of the algorithm should begin,
we first need to work down to derived subsets of lags comprised of just one
lag. This is done by successively forming the J and J ∗ subsets of lags for
each parent set of lags K, as shown in Figure 4. Each of the subsets J and
J∗ then assumes the role of a parent lag, K, and the procedure is repeated.
In the resulting binary tree structure, we will refer to all the modeling infor-
mation pertaining to a set of lags as a node. The number of lags in a node
will define its level in the tree. The strategy for this recursive tree-building
will then be as follows:

Pseudocode 1 (Build Tree)

level := m
while level > 1 do

for each node in current level do

compute lags in J and J ∗ subnodes
direct pointers to J and J ∗ subnodes od

level := level − 1 od

Figure 4: Binary tree of linked nodes for modeling on the set of lags {1, 3, 7}.

K = {1, 3, 7}

�
�

�
�

�
�	

J J∗

@
@

@
@

@
@R

K = {1, 3} K = {4, 6}

�
�

�
�

�	

Q
Q

Q
Q

Q
Q

QQs

J J∗

�
�

�
�

�
�

��+

@
@

@
@

@R

J∗ J

K = {1} K = {2} K = {4}

11



For programming, it will be necessary to rewrite the backward model
equations (17), (18), (19), and (21), in the unstarred lags format:

Ψ̂K(km) = V̂J Φ̂K∗(km)′Û−1
J∗ , (24)

Ψ̂K(j) = Ψ̂J(j) − Ψ̂K(km)Φ̂J∗(km − j), j ∈ J, (25)

V̂K = V̂J − Ψ̂K(km)ÛJ∗Ψ̂K(km)′, (26)

η̂K(t) = η̂J(t) − Ψ̂K(km)ε̂J∗(t+ km), (27)

obtained by noting that (K∗)∗ = K, and (J∗)∗ = J . The unstarred lags rep-
resentation carifies how the backward model estimates should be computed
for any given node. Letting node be a user-defined derived data type, and
K = {k1, . . . , km} denote a generic set of lags for a given node, this data
type should then consist of the following components:

(i) lags - vector containing the current set of lags, K, on which modeling
is desired (type integer).

(ii) level - scalar specifying the level of the node in the tree (type integer).

(iii) ΦK , ΨK - vectors of forward and backward model coefficient matri-
ces; that is ΦK = {ΦK(k1), . . . ,ΦK(km)}, and ΨK = {ΨK(k1), . . . ,ΨK(km)}
(type real).

(iv) UK , VK - estimates of the white noise covariance matrices for the for-
ward and backward modeling problems (type real).

(v) εK(t), ηK(t) - vectors of prediction error residuals for the forward and
backward modeling problems (type real).

(vi) reg, str - pointers to the J and J ∗ subnodes, respectively, one level
below the current level (type node, defined recursively).

The tree can be linked by recursive calls to a RECURSIVE SUBROUTINE,
with level, lags, and a pointer of type node as arguments. This routine
should also set a flag to signal when a particular node has been initialized
(linked in the list), but the remaining components, (iii)-(vi), not yet evalu-
ated (node unfilled). The flag, setting the first row and column entry of UK

to zero for example, will be used by a subsequent node-filling routine. Two
pointers should emanate from each node, reg pointing to J , and str to J ∗.
At level 1, these pointers should point nowhere (NULLIFY). From Figure 4,
we note that both nodes at level 2 have the set {2} as their J ∗ subnode. Two
copies of this subnode can be made, each linked to its appropriate parent
node. This duplication of nodes can be avoided by a more complex program,
since otherwise exactly 2m nodes are created for modeling on m initial lags.

12



3.2 Filling the nodes

Once the tree with all appropriate linking pointers is in place, we will need
to evaluate the remaining components, (iii)-(vi), of each node. This can
be done by “walking” through the tree, following the linked list of nodes.
Once again, a RECURSIVE SUBROUTINE taking a pointer as argument can be
employed to achieve this, certifying first that each node has not yet been
filled by checking the flag alluded to earlier.

The recursion should be implemented in such a way that the tree is
walked to level 1 where the node-filling can begin. From Figure 4, we note
that this involves filling nodes {1}, {2}, and {4} first. With these, we can
now fill nodes {1, 3} and {4, 6}, at level 2. The operation terminates at
the top node, {1, 3, 7}, if the pointer to this node is passed as the original
argument to the recursive node-filling subroutine. The pseudo-code for this
phase of the implementation could therefore be:

Pseudocode 2 (Fill Tree)

call node filling routine with pointer to top node as argument
while level of current node > 1 do

call node filling routine with reg pointer as argument
if current node unfilled then fill it fi

call node filling routine with str pointer as argument
if current node unfilled then fill it fi od

if level of current node = m then fill top node od

This coding will give filling-precedence to nodes at low levels that em-
anate from parents with respect to which they are J subnodes. In example
4, this would result in the following filling order: {1}, {2} (J ∗ subnode of
{1, 3}), {1, 3}, {4}, {2} (J ∗ subnode of {4, 6}), {4, 6}, {1, 3, 7}.

Note that in the univariate case there is no distinction between forward
and backward model parameters for the same set of lags; that is, the YW
equations give ÛK ≡ V̂K , and Φ̂K ≡ Ψ̂K , for any set K. Both this and the
fact that all parameters are scalars, greatly simplifies the programming task
when d = 1.

4 Examples

Included in Appendix C are BDT.F90 and BDT2.F90. These are, respec-
tively, univariate and bivariate Fortran 90 programs implementing the BDT

13



Algorithm. The programs utilize a few linear algebra subroutines in the In-
ternational Mathematical and Statistical Library (IMSL). In this section we
document how to run the programs in order to fit a particular SAR/SVAR
model to a given data set, and illustrate some potential meta applications
that involve repeated modeling with each of the programs in the inner loop.
(We have not provided the programs for Examples 3-5, but they are available
from the author upon request.)

4.1 Example 1: Running BDT.F90

In order to fit the model

Xt = φK(1)Xt−1 + φK(2)Xt−2 + φK(3)Xt−3 + φK(4)Xt−4

+ φK(10)Xt−10 + φK(11)Xt−11 + Zt, {Zt} ∼ WN(0, σ2),

of Table 2 to the mean-corrected base 10 logarithms lynx data (lynx10.tsm
in Appendix B) of Figure 2, we ran the compiled version of BDT.F90 with
the following inputs at the prompt (>):

%%%%%%%%%%%%%% Univariate SAR Modeling Program %%%%%%%%%%%%%%%

File name of time series for modelling:

> lynx10.tsm

Do you wish to mean-correct the observations (1=yes, 0=no)?

> 1

There are 114 observations.

First obs is -0.47391147326671135 last is 0.6273039283027888

Enter the number of lags to be modeled (<27):

> 6

Enter the lags:

> 1 2 3 4 10 11

Enter the method for obtaining the reflection coefficients:

Yule-Walker (1), Burg (2), Vieira-Morf (3), Nuttall-Strand (4):

> 2

**************************************************

The estimated subset Burg AR coefficients are:

Phi( 1): 1.15639

Phi( 2): -0.50191

Phi( 3): 0.19869

Phi( 4): -0.21127

Phi(10): 0.37899

14



Phi(11): -0.42454

**************************************************

Burg WN variance estimate : 3.61762021546651741E-2

RSS/n WN variance estimate: 3.69130827522938937E-2

-2 Log Likelihood (Burg) : -46.962408999128101

-2 Log Likelihood (RSS/n): -46.985742242956121

AICC (RSS/n) : -31.929138811254461

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

This gives the Burg estimators. The Yule-Walker estimates can be obtained
by selecting “1” in the last step. The remaining estimators proposed by
Brockwell et al. (2002), can be obtained by selecting “3” (Vieira-Morf),
and “4” (Nuttall-Strand). The RSS/n is the MLE of σ2 for the given set
of SAR coefficient estimates, {φ̂K(k1), . . . , φ̂K(km)}, thus it comes as no
surprise that the -2 Log Likelihood based on it is never larger than the -2
Log Likelihood based on the Burg σ̂2. The AICC is a bias-corrected version
of AIC; see Brockwell and Davis (1991).

4.2 Example 2: Running BDT2.F90

To fit the bivariate SVAR model

Xt = ΦK(1)Xt−1 + ΦK(3)Xt−3 + Zt, {Zt} ∼ WN(0, UK),

to the sun2.tsm data (Appendix B), we ran the compiled version of BDT2.F90
with the following inputs at the prompt (>):

%%%%%%%%%%%%%%% Bivariate SVAR Modeling Program %%%%%%%%%%%%%%%

Enter file name of time series for modelling:

>sun2.tsm

Do you wish to mean-correct the observations (1=yes, 0=no)?

>1

There are 50 observations.

First obs is 53.5200 last is 35.6200

First obs is -10.4800 last is 27.6200

Enter the number of lags to be modeled (<27):

>2

Enter the lags:

>1 3

Is the true white noise covariance matrix known (1=yes, 0=no)?

15



>0

Enter the method for obtaining the reflection coefficients.

Yule-Walker (1), Burg (2), Vieira-Morf (3), Nuttal-Strand (4):

>3

***************************************************

Estimated subset Morf coefficient matrices:

Phi( 1 ):

-0.853995 1.571658

-0.913452 1.279817

Phi( 3 ):

0.029511 0.092263

0.291517 -0.150232

***************************************************

Estimated Morf (forward) WN covariance matrix:

145.678543 220.305063

220.305063 580.954041

-2 Log Like (Morf) : 812.877439308433

-2 Log Like (RSS/n): 812.820447412800

Estimated RSS/n (forward) WN covariance matrix:

143.844793 221.765063

221.765063 598.346541

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Like the univariate program, two estimates of UK are given: the first is
method-specific (method 3, Vieira-Morf, in this case), the second, RSS/n, is
the MLE of UK holding ΦK(1) and ΦK(3) fixed at their estimated values.
In the multivariate case, there is no known closed form for the RSS/n esti-
mate like there was in the univariate case (see Appendix A.6). If the data
was obtained via simulation and a “1” was entered at the 5th prompt, the
program would use the furnished value of UK as the initial guess for RSS/n
in the optimizing routine. Since we entered “0”, the program will use the
Morf WN estimate as the initial guess.

4.3 Example 3: Best Subset Searching

The lynx data of Figure 2 is often cited in the literature in connection
with SAR modeling. Using YW estimation and their own respective non-
exhaustive search algorithms, Tong (1977), Penm and Terrell (1982), Zhang

16



and Terrell (1997), and others, identify a SAR(1,2,4,10,11), i.e. K = {1, 2, 4, 10, 11},
as the best SAR model according to a variety of information criteria. It is
important to realize that some of these search methods are non-exhaustive
and statistical in nature, and will therefore not guarantee a correct identifi-
cation with certainty.

Using the BDT Algorithm, we performed an exhaustive search for the
minimum AICC SAR model, for the mean-corrected base 10 logarithms of
the lynx data. Letting p denote the maximum lag considered in the search
(meaning that 2p models had to be checked), we considered p = 4, 8, and
12, in turn. This set of searches was performed for each of the YW and Burg
estimation methods. The number of subsets out of the 2p that resulted in
non-causal fitted models, as well as the corresponding computational (CPU)
times taken by each search, were recorded. The AICC (RSS/n) of the best
SAR model was also computed.

Table 1: Results of best (minimum AICC) SAR model search for the mean-
corrected base 10 logarithms of the Canadian lynx data of Figure 2.

Estimation Lags in AICC of Prop. of non CPU time
method p best subset best model causal models (secs)

4 1,2,4 -9.89 3/16 1.2
YW 8 1,2,4,8 -16.17 78/256 21.3

12 1,2,4,10,11 -31.80 1392/4096 637.2

4 1,2,4 -10.08 3/16 1.8
Burg 8 1,2,4,8 -16.27 81/256 29.6

12 1,2,3,4,10,11 -31.93 1489/4096 678.7

The results are summarized in Table 1. The best SAR model with max-
imum lag 12 found by the YW method, coincides with that identified by
other researchers as discussed above; but that arrived at by the new subset
Burg method, adds lag 3, and has a slightly lower value of AICC. Note also
that the proportion of subsets resulting in non-causal fitted models (meaning
that a SAR model with these lags is inappropriate for the data), remained
steady at approximately 1/3 across all searches. At the same value of p,
CPU times for Burg are slightly higher than those for YW, both growing
exponentially with p. The computations were carried out on a Sun Enter-

17



prise 450 unix server, equipped with about 4G of memory. The most severe
limiting factor in this type of computation is available memory, since at least
2p pointers have to be allocated.

In Table 2, we present the parameter estimates of the best SAR model
identified by each respective method when p = 12. The constrained ML
estimates were obtained via the ITSM2000 package (Brockwell and Davis,
2002), starting with the Burg estimates.

Table 2: Best SAR models fitted to the mean-corrected base 10 logarithms
of the Canadian lynx data, as identified by each respective method. The
Maximum Likelihood estimates were obtained by starting with the Burg
estimates, and constraining the ML search to the same SAR lags.

Parameter Estimates by Method
Maximum Likelihood Burg Yule-Walker

φK(1) 1.148 1.156 1.094
φK(2) −0.502 −0.502 −0.357
φK(3) 0.199 0.199
φK(4) −0.217 −0.211 −0.127
φK(10) 0.351 0.379 0.324
φK(11) −0.401 −0.425 −0.362
σ2 0.037 0.037 0.038

AICC −32.22 −31.93 −31.80

4.4 Examples 4 and 5: Adaptive Behavior

In these simulated bivariate examples, we illustrate the component-wise con-
vergence of the Burg and YW estimates to their true values, as a function
of observation number or time. This adaptive behavior is important in on-
line applications where it is desirable to monitor the convergence of the
estimates, particularly when observation number is still low. Note however
that the BDT Algorithm is recursive in the model order, not observation
number, and is therefore not truly adaptive in that sense. The entire Algo-
rithm needs to be re-run from scratch whenever a new observation becomes
available.

The characteristic polynomial of SVAR model (1) is

P (z) = det
[

Id − ΦK(k1)z
k1 − · · · − ΦK(km)zkm

]

.

18



The model is causal if the zeroes of its characteristic polynomial are all
greater than one in magnitude. It is well-known that in the univariate full-
set case, the YW estimators can be severely biased if the roots of the AR
characteristic polynomial are close to the unit circle (quasi-non-stationarity).
To allow for the expected dependence of performance on the location of the
zeroes of P (z), we considered causal models with different configurations of
these zeroes. A total of 250 observations were sequentially simulated from
the basic SVAR(2) model,

Xt = ΦXt−2 + Zt ≡

[
Φ11 Φ12

Φ21 Φ22

]

Xt−2 + Zt, , Zt ∼ N2(0, I2),

and we started estimation at observation number 10.

Example 4

Φ =

[
0.547 −0.300
0.700 −0.457

]

, P (z) = (1 − 0.25z2)(1 + 0.16z2),

with roots of characteristic polynomial: ±2, ±2.5i.

Example 5

Φ =

[
1.414 −0.300
0.700 0.497

]

, P (z) = (1 − 0.982z2)(1 − 0.952z2),

with roots of characteristic polynomial: ±1.02, ±1.03.

The results are displayed in Figure 5, where we plot the component-
wise departures of the estimated SVAR coefficient matrices from their true
values, Φij − Φ̂ij, i, j = 1, 2, as a function of observation number. The
pattern of convergence between the two methods is similar in Example 4, but
dramatically different in Example 5. Although based on a single simulated
realization presented only to illustrate a meta application of the bivariate
BDT Algorithm, this phenomenon is nevertheless consistent with what has
been noted about the behavior of YW versus Burg in quasi-non-stationary
modeling. Since both estimators and the MLE all have the same asymptotic
distribution, there is little cause for concern with large samples; it is with
small samples that one should exercise caution when selecting an estimation
method. The more extensive analysis by Brockwell et al. (2002), suggests
that Burg is in general a better estimator than YW.

19



Figure 5: Departures of the 4 estimated components of the SVAR coefficient
matrix from their true values, by method, for the simulated realizations of
Examples 4 and 5.

Ex 4: YW Method

Observation Number

50 100 150 200 250

-0
.5

0.
0

0.
5

Ex 4: Burg Method

Observation Number

50 100 150 200 250

-0
.5

0.
0

0.
5

Ex 5: YW Method

Observation Number

50 100 150 200 250

-0
.5

0.
0

0.
5

Ex 5: Burg Method

Observation Number

50 100 150 200 250

-0
.5

0.
0

0.
5

5 Conclusion

We have discussed the popularity of multivariate subset autoregressive mod-
els, and highlighted the importance of fast, simple, and efficient methods for
the estimation of their parameters. One such set of estimators is obtained via
the classical Yule-Walker method-of-moments, which we have presented as
the solution to a system of simultaneous linear matrix equations. A recently
introduced more general estimation method, the BDT Algorithm, is recur-
sive in the order of the fitted model, thus avoiding the (potentially large)
matrix inversions required in solving the Yule-Walker equations. By suitably
modifying the reflection coefficient calculation, this Algorithm can produce
a variety of estimators with different finite sample properties, among them
Yule-Walker. We have illustrated the recursive structure of this Algorithm,

20



and discussed its implementation in a high-level programming language like
Fortran 90. The speed of the Algorithm was assessed in finding a best subset
model for the Canadian lynx data, and shown, in problems of moderate size,
to be a feasible alternative to non-exhaustive search techniques which do not
guarantee correct subset identification. We concluded with two simulated
bivariate examples that illustrate the adaptive performance of the Yule-
Walker and Burg estimators, implemented via the BDT Algorithm. We find
that the Burg estimates tend to stabilize more quickly than Yule-Walker,
and are far less affected by proximity of the model to non-stationarity.

6 Acknowledgements

The author would like to acknowledge NSF for partial support of this re-
search through grant number DMS-9972015, and the invaluable suggestions
provided by the referee who also reviewed the code.

References

[1] Brockwell, P.J., Dahlhaus, R., and Trindade, A.A. (2002), ”Mod-
ified Burg Algorithms for Multivariate Subset Autoregression”,
Technical Report 2002-015, Department of Statistics, University of
Florida.

[2] Brockwell P.J., and Davis R.A. (1991), Time Series: Theory and

Methods (2nd ed.), New York: Springer-Verlag.

[3] Brockwell P.J., and Davis R.A. (2002), Introduction to Time Series

and Forecasting, Second Ed., New York: Springer-Verlag.

[4] Burg, J.P. (1968), ”A New Analysis Technique for Time Series
Data”, in Modern Spectrum Analysis, (1978), D.G. Childers (ed.),
NATO Advanced Study Institute of Signal Processing with empha-
sis on Underwater Acoustics, New York: IEEE Press.

[5] Godsill, S.J., and Rayner P.J.W. (1998), Digital Audio Restoration:

A Statistical Model-Based Approach, Berlin: Springer.

[6] Hooke, R., and Jeeves T. (1961), ”A direct search solution of numer-
ical and statistical problems”, Journal of Association for Computing

Machinery, 8, 212-229.

21



[7] McClave, J. (1975), “Subset Autoregression”, Technometrics, 17,
213-220.

[8] Penm, J.H. and Terrell R.D. (1982), ”On the Recursive Fitting of
Subset Autoregressions”, Journal of Time Series Analysis, 3, 43-59.

[9] Sarkar, A. and Sharma, K.M.S. (1997), “An Approach to Direct
Selection of Best Subset AR Model”, Journal of Statistical Compu-

tation and Simulation, 56, 273-291.

[10] Tong, H. (1977), “Some comments on the Canadian lynx data”,
Journal of the Royal Statistical Society, Series A, 140, 432-436.

[11] Zhang, X. and Terrell, R.D. (1997), “Projection Modulus: A New
Direction for Selecting Best Subset Autoregressive Models”, Journal

of Time Series Analysis, 18, 195-212.

A Description of Principal Program Subroutines

As already stated, the core of the subset modeling programs Burg and Burg2

is the globally visible MODULE Tree, with SUBROUTINE Make Tree its driving
subroutine. In this section, we will provide a brief description of the essential
functions of its main constituent subroutines.

A.1 Build Node Tree

This is a RECURSIVE SUBROUTINE that initializes the tree of nodes by al-
locating pointers to and from nodes. It takes on the level, lags, and
a pointer of type node as arguments. It begins execution at the unique
node of level m (top node), creating pointers to the J and J ∗ subnodes
(this node%reg and this node%str, respectively). Following these point-
ers to level m − 1, Build Node Tree subsequently allocates pointers to
the subnodes in level m − 2. It achieves this by calling itself with the
appropriate arguments:level should be the current level minus one, and
pointers this node%reg and this node%str. The procedure is repeated,
always following pointer this node%reg before this node%str, until level 1
is reached. At this point, the two pointers are initialized and made to point
nowhere (NULLIFIED). By the order of precedence inherent in it, the routine
then backs up one level and proceeds to follow pointer this node%str to
the “dead end” at level 1.

22



In this fashion, the tree is initialized from left (J) to right (J ∗), with
the pointer to the subnode J ∗ of the rightmost node being allocated last.
If we refer back to figure 4, the nodes for the tree of this example will be
initialized in the following order:

{1, 3, 7} → {1, 3} → {1} → {2} → {4, 6} → {4} → {2}.

In order for subsequent routines to identify an initialized but unfilled
(constituents of node empty) node, Build Node Tree will set this node%v

(this node%vf%mat(1,1) in BDT2.F90) to zero, upon allocation of point-
ers.

A.2 Fill Tree

A RECURSIVE SUBROUTINE, taking on a pointer of type node as argument.
Its function is to traverse the now initialized tree, and using the flag for an
unfilled node, fill it by calling Fill Node.

A.3 Fill Node

A RECURSIVE SUBROUTINE, called by Fill Tree, whose function is to fill the
particular node that its pointer argument points to. It is in this routine
that the BDT Algorithm proper is applied, modifying the reflection coef-
ficient calculation according to the selected method. Care must be taken
when calculating the forward and backward prediction errors, εK(t) and
ηK(t), before termination of the routine. Each should be calculated over a
sufficiently large range of t values (1 ≤ t ≤ n + km for Yule-Walker, and
1 + km ≤ t ≤ n for the remaining methods), since subsequent nodes may
use them.

A.4 Print Node Tree

With its pointer argument, the RECURSIVE SUBROUTINE Print Node Tree

will traverse the now completed tree of nodes, and proceed to print the
estimated coefficients and white noise variance stored in each node.

A.5 Causal Check

This routine is needed in the bivariate program only, in order to ensure
the obtained VAR model is causal before proceeding with the likelihood
calculations. In the univariate program, this function is performed within

23



the likelihood calculation routine itself. The strategy is to use the state
space representation to write a VAR(p) as a VAR(1), as follows:

Random vectors {Xt, . . . ,Xt−km
} from model (1), will satisfy the rela-

tionships
















Xt

Xt−1

Xt−2

...

Xt−km+1
















=
















0 0 · · · 0 k1 · · · km

Id 0 · · · · · · · · · · · · 0
0 Id 0

. . .
...

. . .
...

. . .

0 · · · Id 0































Xt−1

Xt−2

Xt−3

...

Xt−km
















+
















Zt

0
0

...

0
















,

which can be written in the compact form

Yt
︸︷︷︸

(dkm×1)

= A
︸︷︷︸

(dkm×dkm)

Yt−1
︸ ︷︷ ︸

(dkm×1)

+ Wt
︸︷︷︸

(dkm×1)

. (28)

In block matrix form, vectors Yt and Wt have length km, while the square
matrix A has dimension km. Note that the only nonzero entries of the
first block matrix row of A are {ΦK(k1),ΦK(k2), . . . ,ΦK(km−1),ΦK(km)},
occurring at block matrix column numbers {k1, k2, . . . , km−1, km}, respec-
tively. The covariance matrix of Wt is

ΣW = IE








Zt

0
...
0








[
Z′

t,0
′, . . . ,0′

]
=








Σ 0 · · · 0
0 0 · · · 0
...

. . .
...

0 · · · · · · 0







,

where we use Σ in place of UK . (28) is now a VAR(1) of dimension dkm,
and its causality (and thus that of the original process) can be assessed by
determining if all eigenvalues of A are less than 1 in absolute value.

A.6 Likelihood/Approx Likelihood

In the univariate program, we compute the exact likelihood in SUBROUTINE

Likelihood. The only sizeable difficulty is in evaluating the model au-
tocovariances γ(0), . . . , γ(km), accomplished by inverting the Yule-Walker
equations. The −2 log likelihood, L(φK , σ

2), for the data x1, . . . ,xn, is

24



then evaluated via the Innovations Algorithm (Brockwell and Davis, 1991,
prop. 5.2.2, and equation 8.7.4):

L(φK , σ
2) = n log(2πσ2) +

n∑

t=1

log(rt−1) +
1

σ2

n∑

t=1

(xt − x̂t)
2/rt−1.

In the bivariate program, SUBROUTINE Likelihood uses the same ap-
proach to compute the likelihood, i.e. the Multivariate Innovations Algo-
rithm (Brockwell and Davis, 1991, prop. 11.4.2, and equation 11.5.5):

L(ΦK ,Σ) = nd log(2π) +

n∑

t=1

log | Vt−1 | +

n∑

t=1

(Xt − X̂t)
′V −1

t−1(Xt − X̂t).

Computing the model autocovariance matrices, Γ(1−km), . . . ,Γ(0), . . . ,Γ(km−
1), is a much more formidable task here, but this can be accomplished via
the state space formulation of the previous subsection. Transforming the
SVAR(K) to the VAR(1) of equation (28), gives the following solution for
the autocovariances ΓY (·) of the process {Yt}:

ΓY (h) =

{
AΓY (h)A′ + ΣW , h = 0
AΓY (h− 1), h > 0

,

whence we obtain

vec (ΓY (0)) =
[
Id2k2

m

−A⊗A
]−1

vec (ΣW ) .

The required autocovariance matrices can be found in the first block row
and column of the (km × km) block matrix ΓY (0), since

ΓY (0)
︸ ︷︷ ︸

(dkm×dkm)

=








Γ(0) Γ(1) · · · Γ(km − 1)
Γ(−1) Γ(0) · · · Γ(km − 2)

...
. . .

...
Γ(1 − km) · · · Γ(−1) Γ(0)







.

Due to the computational intensity involved in finding ΓY (·) however, the
bivariate routine Likelihood is extremely slow. We opt instead to approx-
imate the autocovariances via the causal representation

Γ(h) =

∞∑

j=0

Ψh+jΣΨ′
j,

25



truncating the summation at 100 terms, and computing the likelihood via
(2). This “approximate likelihood”, is computed in SUBROUTINE Obj Fun.
SUBROUTINE Approx Likelihood not only calls Obj Fun in order to com-
pute this approximate likelihood for ΣAL, but also searches for the white
noise covariance matrix that maximizes the likelihood for the given VAR
coefficient matrices (ΣML). It does so by using ΣAL as an initial guess,
and by repeated calls to SUBROUTINE Hooke, which employs a direct search
algorithm to locate the global minimum of an objective function of several
variables (Hooke and Jeeves, 1961).

B Data Sets

B.1 lynx10.tsm

2.42975228000241

2.50650503240487

2.76715586608218

2.94001815500766

3.16879202031418

3.45040308615537

3.59417147911491

3.77400573025821

3.69460519893357

3.4111144185509

2.71850168886727

1.99122607569249

2.26481782300954

2.4456042032736

2.61172330800734

3.35888620440587

3.42894429003557

3.53262700122889

3.2610248339924

2.61172330800734

2.17897694729317

1.65321251377534

1.83250891270624

2.32837960343874

2.73719264270474

3.01410032151962

26



3.32817566143832

3.40414924920969

2.98091193777684

2.55750720190566

2.57634135020579

2.35218251811136

2.55630250076729

2.86391737695786

3.2143138974244

3.43536650661266

3.45803319249651

3.32613095671079

2.83505610172012

2.47567118832443

2.37291200297011

2.38916608436453

2.7419390777292

3.21031851982623

3.51995918075207

3.82743389540078

3.62879748556671

2.83695673705955

2.40654018043395

2.67486114073781

2.55388302664387

2.89431606268444

3.20248831706009

3.22427401429426

3.35237549500052

3.15411952551585

2.87852179550121

2.47567118832443

2.30319605742049

2.35983548233989

2.67117284271508

2.8668778143375

3.31005573775089

3.44886084560744

3.64650175003161

3.39984671271292

27



2.58994960132571

1.86332286012046

1.5910646070265

1.69019608002851

1.77085201164214

2.27415784926368

2.57634135020579

3.11126251365907

3.60541279815305

3.5434471800817

2.76863810124761

2.02118929906994

2.1846914308176

2.58771096501891

2.87966920563205

3.11627558758054

3.53970323894783

3.84453930212901

3.80023578932735

3.57909732655264

3.26387267686522

2.53781909507327

2.58206336291171

2.90741136077459

3.14238946611884

3.4334497937616

3.57978359661681

3.4900990050633

3.47494433546539

3.57863920996807

2.82865989653532

1.90848501887865

1.90308998699194

2.03342375548695

2.35983548233989

2.60097289568675

3.05384642685225

3.3859635706007

3.55315454816963

3.46760810558363

28



3.18667386749974

2.72345567203519

2.68574173860226

2.8208579894397

3

3.20139712432045

3.42439155441028

3.53096768157191

B.2 sun2.tsm

101.000000000000000 82.000000000000000

66.000000000000000 35.000000000000000

31.000000000000000 7.000000000000000

20.000000000000000 92.000000000000000

154.000000000000000 125.000000000000000

85.000000000000000 68.000000000000000

38.000000000000000 23.000000000000000

10.000000000000000 24.000000000000000

83.000000000000000 132.000000000000000

131.000000000000000 118.000000000000000

90.000000000000000 67.000000000000000

60.000000000000000 47.000000000000000

41.000000000000000 21.000000000000000

16.000000000000000 6.000000000000000

4.000000000000000 7.000000000000000

14.000000000000000 34.000000000000000

45.000000000000000 43.000000000000000

48.000000000000000 42.000000000000000

28.000000000000000 10.000000000000000

8.000000000000000 2.000000000000000

0.000000000000000E+000 1.000000000000000

5.000000000000000 12.000000000000000

14.000000000000000 35.000000000000000

46.000000000000000 41.000000000000000

30.000000000000000 24.000000000000000

16.000000000000000 7.000000000000000

4.000000000000000 2.000000000000000

8.000000000000000 17.000000000000000

36.000000000000000 50.000000000000000

29



62.000000000000000 67.000000000000000

71.000000000000000 48.000000000000000

28.000000000000000 8.000000000000000

13.000000000000000 57.000000000000000

122.000000000000000 138.000000000000000

103.000000000000000 86.000000000000000

63.000000000000000 37.000000000000000

24.000000000000000 11.000000000000000

15.000000000000000 40.000000000000000

62.000000000000000 98.000000000000000

124.000000000000000 96.000000000000000

66.000000000000000 64.000000000000000

54.000000000000000 39.000000000000000

21.000000000000000 7.000000000000000

4.000000000000000 23.000000000000000

55.000000000000000 94.000000000000000

96.000000000000000 77.000000000000000

59.000000000000000 44.000000000000000

47.000000000000000 30.000000000000000

16.000000000000000 7.000000000000000

37.000000000000000 74.000000000000000

C Coded Versions of the BDT Algorithm

C.1 Code for BDT.F90

MODULE tree

! Here we define the data type NODE which will contain

TYPE node

INTEGER :: level ! level in tree: top=m, bottom=1

INTEGER :: lags(26) ! lags for node are stored here

DOUBLE PRECISION :: phi(26) ! coefficients for node

DOUBLE PRECISION :: v ! MSE (white noise) for node

DOUBLE PRECISION :: eps(1:10100) ! the epsilons for the node

DOUBLE PRECISION :: eta(-99:10000)! the etas for the node

TYPE (node), POINTER :: reg, star ! pointers to the regular and

END TYPE node ! starred subnodes one level down

! These will contain the end results

30



DOUBLE PRECISION :: topphi(26), topv, acvf(1000)

! Other globals

INTEGER :: n, m, method

DOUBLE PRECISION, ALLOCATABLE :: x(:)

CHARACTER :: stamp*4

CONTAINS

SUBROUTINE make_tree(original_lags)

INTEGER, ALLOCATABLE :: toplags(:)

INTEGER, INTENT (IN) :: original_lags(m)

DOUBLE PRECISION :: x(n)

TYPE (node), POINTER :: top_node

NULLIFY (top_node) !associates top_node so we can use it

ALLOCATE(toplags(m))

toplags=original_lags

! now build the tree of node lags

CALL build_node_tree(m,toplags,top_node)

! now fill the tree, ie. get coeffts and MSE’s of each node

CALL fill_tree(top_node)

! node tree built, so print it

CALL print_node_tree(top_node)

! Likelihood calculation

CALL likelihood(original_lags, topphi(1:m), topv)

DEALLOCATE(toplags)

RETURN

END SUBROUTINE make_tree

!***********************************************************************

RECURSIVE SUBROUTINE build_node_tree(lev,this_lags,this_node)

31



INTEGER :: i, lev, this_lags(26)

TYPE (node), POINTER :: this_node

! This routine will create a tree of nodes needed to subset Burg model. The

! level and lags are assigned to each node. Also the MSE of each node is

! initialized to be zero so that later we’ll be able to check which nodes

! have not yet been filled.

! first time thru’ with a fresh node; point to it & make its J and J*

! pointers point nowhere

IF (.NOT. ASSOCIATED(this_node)) THEN

ALLOCATE (this_node)

this_node%level=lev

this_node%lags(1:lev)=this_lags(1:lev)

! the check for an unfilled node will be that its MSE=0

this_node%v=0

NULLIFY (this_node%reg)

NULLIFY (this_node%star)

END IF

! recursive call to routine with J lags; only if level>1

! lev=this_node%level

IF (this_node%level>1) THEN

this_lags(1:lev-1)=this_node%lags(1:lev-1)

CALL build_node_tree(lev-1,this_lags,this_node%reg)

END IF

! recursive call to routine with J* lags; only if level>1

! lev=this_node%level

IF (this_node%level>1) THEN

this_lags(1:lev-1)=(/(this_node%lags(lev) &

-this_node%lags(lev-i), i=1,lev-1)/)

CALL build_node_tree(lev-1,this_lags,this_node%star)

END IF

RETURN

END SUBROUTINE build_node_tree

!***********************************************************************

32



RECURSIVE SUBROUTINE fill_tree(this_node)

INTEGER :: i

TYPE (node), POINTER :: this_node

! Here we fill in the coeffts and MSE for each node

IF (this_node%level>1) THEN

CALL fill_tree(this_node%reg)

! if reg node has not been filled, then fill it!

IF (this_node%reg%v==0) THEN

CALL fill_node(this_node%reg)

END IF

CALL fill_tree(this_node%star)

! if star node has not been filled, then fill it!

IF (this_node%star%v==0) THEN

CALL fill_node(this_node%star)

END IF

END IF

! now that whole tree is filled, we can fill top node

IF (this_node%level==m) THEN

CALL fill_node(this_node)

END IF

RETURN

END SUBROUTINE fill_tree

!***********************************************************************

SUBROUTINE fill_node(this_node)

INTEGER :: i, km, lev, sum_range(2)

DOUBLE PRECISION, ALLOCATABLE :: eps_J(:),eps_Js(:),eta_J(:),eta_Js(:)

DOUBLE PRECISION :: v_J, v_Js, phi_K, phi_Ks, top, sum_en

DOUBLE PRECISION :: phi_J(26), phi_Js(26), sum_e, sum_n

TYPE (node), POINTER :: this_node

! This is the routine where the real work of building the coeffts, MSEs,

! epsilons and etas is done

33



! initialize the precursors before applying algo to this node

lev=this_node%level

km=this_node%lags(lev)

ALLOCATE (eps_J(1:n+km),eps_Js(1:n+km),eta_J(1-km:n),eta_Js(1-km:n))

IF (lev==1) THEN

eps_J =0.0

eps_Js=0.0

eta_J =0.0

eta_Js=0.0

eps_J (1:n)=x(1:n)

eps_Js(1:n)=x(1:n)

eta_J (1:n)=x(1:n)

eta_Js(1:n)=x(1:n)

v_J =SUM(x**2)/n

v_Js =v_J

ELSE !we’re at a higher level, so use reg and star node info

phi_J (1:lev-1)=this_node%reg%phi (1:lev-1)

phi_Js(1:lev-1)=this_node%star%phi(1:lev-1)

eps_J (1:n+km)=this_node%reg%eps (1:n+km)

eps_Js (1:n+km)=this_node%star%eps(1:n+km)

eta_J (1-km:n)=this_node%reg%eta (1-km:n)

eta_Js (1-km:n)=this_node%star%eta(1-km:n)

v_J =this_node%reg%v

v_Js =this_node%star%v

END IF

! Initial conditions set, now apply algo to this node

! First the reflection coefficients

IF (method==1) THEN ! YuWa

sum_range=(/1,n+km/)

top=0

DO i=1,n+km

top=top+(eps_J(i)*eta_Js(i-km))

END DO

phi_K =top/(n*v_Js)

phi_Ks=top/(n*v_J)

ELSE ! Burg type

sum_range=(/1+km,n/)

! First get sum of squares and cross squares for eps and eta:

34



sum_e=0; sum_n=0; sum_en=0

DO i=km+1,n

sum_en=sum_en + eps_J(i)*eta_Js(i-km)

sum_e=sum_e + eps_J(i)**2

sum_n=sum_n + eta_Js(i-km)**2

END DO

! Now calculate reflection coefficients depending on the method:

SELECT CASE (method)

CASE (2) ! Burg

phi_K =v_J*(v_J+v_Js)*sum_en/(sum_n*v_J**2 + sum_e*v_Js**2)

phi_Ks=v_Js*(v_J+v_Js)*sum_en/(sum_n*v_J**2 + sum_e*v_Js**2)

CASE (3) ! Morf

phi_K =SQRT(v_J/(v_Js*sum_e*sum_n))*sum_en

phi_Ks=SQRT(v_Js/(v_J*sum_e*sum_n))*sum_en

CASE (4) ! Nutt

phi_K =2.0*v_J*sum_en/(v_Js*sum_e+v_J*sum_n)

phi_Ks=v_Js*phi_K/v_J

END SELECT

END IF

! Continue with remaining recursions - identical for all algo’s

this_node%phi(lev)=phi_K

IF (lev > 1) THEN

DO i=1,lev-1

this_node%phi(i)=phi_J(i)-phi_K*phi_Js(lev-i)

END DO

END IF

this_node%v=(1-phi_Ks*phi_K)*v_J

! The eta’s & epsilon’s for posterity:

DO i=sum_range(1),sum_range(2)

this_node%eps(i) =eps_J(i)-phi_K*eta_Js(i-km)

this_node%eta(i-km)=eta_J(i-km)-phi_K*eps_Js(i)

END DO

DEALLOCATE (eps_J,eps_Js,eta_J,eta_Js)

RETURN

END SUBROUTINE fill_node

35



!***********************************************************************

RECURSIVE SUBROUTINE print_node_tree(this_node)

INTEGER :: i

TYPE (node), POINTER :: this_node

! Here we print the info in the top node - can also make it print all nodes

! by removing the inmost IF THEN loop

IF (ASSOCIATED(this_node)) THEN

CALL print_node_tree(this_node%reg)

IF (this_node%level==m) THEN

PRINT*,"***************************************************"

PRINT*,"The estimated subset ",stamp," AR coefficients are:"

DO i=1,this_node%level

PRINT 10, this_node%lags(i), this_node%phi(i)

10 FORMAT(" Phi(",I2,"): ",F9.5)

END DO

PRINT*,"***************************************************"

PRINT*, stamp," WN variance estimate : ",this_node%v

! Store results for likelihood calcs

topphi(1:m)=this_node%phi(1:m)

topv=this_node%v

END IF

CALL print_node_tree(this_node%star)

IF (this_node%level<m) DEALLOCATE (this_node)

END IF

RETURN

END SUBROUTINE print_node_tree

!***********************************************************************

SUBROUTINE likelihood(lag, phi, s2)

! First computes ACVF of a subset AR model with m coeffts (phi) and lags

! (lag), and sigma^2=s2, into acvf, lags 0 to n-1 acvf(0:n-1). Then it gets

! -2 log Likelihood for the vector of obs x:

! -2log L = n*log(2*pi*s2) + sum(log(r(j))) + resid_ss/s2

! using the innnovations algorithm

INTEGER :: i, j, k, km, t

INTEGER :: lag(m), lags(m+1)

36



DOUBLE PRECISION :: phi(m), phis(m+1), acvf(0:2*lag(m)), Ka(n,n)

DOUBLE PRECISION :: A(lag(m)+1, lag(m)+1), b(lag(m)+1)

DOUBLE PRECISION :: s, s2, pi, resid_ss, xh(n), loglike_wn, loglike_ss

DOUBLE PRECISION :: cond_like, th(1:n-1,0:n-1), r(0:n-1), aicc

km=lag(m)

pi=3.141592654

lags(1) =0

lags(2:m+1)=lag

phis(1) =-1.0

phis(2:m+1)=phi

b=0.0

b(1)=s2

! Solve system A*acvf(0:km) = b, to get acvf(0:km)

DO i=1,km+1

A(i,:)=0.0

END DO

DO k=0,km

DO j=0,m

A(k+1, ABS(k-lags(j+1))+1) = A(k+1, ABS(k-lags(j+1))+1) - phis(j+1)

END DO

END DO

CALL DLSARG(1+km, A, 1+km, b, 1, acvf(0:km))

! Now get acvf(km+1:2*km) via recursions

DO k=km+1, 2*km

acvf(k)=0.0

DO j=1,m

acvf(k)=acvf(k)+phi(j)*acvf(k-lag(j))

END DO

END DO

! Form K(.,.) as in (5.3.5)

DO i=1,n

Ka(i,:)=0.0

END DO

DO i=1,n

DO j=1,n

IF (i<=km .AND. j<=km) Ka(i,j)=acvf(abs(i-j))/s2

IF (min(i,j)<=km .AND. km<max(i,j) .AND. max(i,j)<=2*km) THEN

37



s=0

DO k=1,m

s=s+phi(k)*acvf(abs(lag(k)-abs(i-j)))

END DO

Ka(i,j)=(acvf(abs(i-j))-s)/s2

END IF

IF (min(i,j)>km .AND. i==j) Ka(i,j)=1.0

END DO

END DO

! Form (5.2.16) recursions

th(:,0)=1.0

r(0)=Ka(1,1)

DO i=1,n-1

DO k=0,i-1

s=0

DO j=0,k-1

s=s+th(k,k-j)*th(i,i-j)*r(j)

END DO

th(i,i-k)=(Ka(i+1,k+1)-s)/r(k)

END DO

s=0

DO j=0,i-1

s=s+r(j)*th(i,i-j)**2

END DO

r(i)=Ka(i+1,i+1)-s

END DO

! Build 1-step predictors (xh’s), and get the resid_ss

xh(1)=0.0

DO k=1,n-1

IF (k < km) THEN

xh(k+1)=0.0

DO j=1,k

xh(k+1)=xh(k+1)+th(k,j)*(x(k+1-j)-xh(k+1-j))

END DO

ELSE ! k >= km

xh(k+1)=0.0

DO j=1,m

xh(k+1)=xh(k+1)+phi(j)*x(k+1-lag(j))

38



END DO

END IF

END DO

s=0

resid_ss=0

DO j=1,n

IF (r(j-1)<=0) THEN

PRINT*, "### NON-CAUSAL MODEL ###"

RETURN

END IF

s=s+log(r(j-1))

resid_ss=resid_ss+(x(j)-xh(j))**2/r(j-1)

END DO

! calculate cond. likelihood

! -2 log CL = (n-km)*log(s2)+(1/s2)sum_{km+1}^n (x_t-phi_k1*x_{t-k1}-...

! -phi_km*x_{t-km})^2

cond_like=0

DO t=km+1,n

cond_like=cond_like+DOT_PRODUCT(phi,(/(x(t-lag(j)), j=1,m)/))

END DO

cond_like=(n-m)*log(s2)+cond_like/s2

! Finally: -2log Likelihood=loglike: wn means use WN variance estimate:

! SS means use RSS/n variance estimate

loglike_wn = n*log(2.0*pi*s2) + s + resid_ss/s2

loglike_ss = n*log(2.0*pi*resid_ss/n) + s + FLOAT(n)

PRINT *,"RSS/n WN variance estimate: ", resid_ss/n

PRINT*,"-2 Log Like (",stamp,") :",loglike_wn

PRINT*,"-2 Log Like (RSS/n):",loglike_ss

aicc=loglike_ss+2.0*n*(m+1)/FLOAT(n-m-2)

PRINT*,"AICC (RSS/n): ", aicc

! PRINT*, " s ",s

! PRINT *,"-2 Log Cond Like (YW WN): ", cond_like

PRINT*,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"

RETURN

END SUBROUTINE likelihood

END MODULE tree

39



!***********************************************************************

!***********************************************************************

PROGRAM bdt

! Author: A. Trindade, www.stat.ufl.edu/~trindade/

! This program subset models AR(p)’s using Burg type recursions

! with subset size <=26, km<100, and a max of 10,000 observations.

! For details refer to the paper: "Implementing Modified Burg Algorithms

! in Multivariate Subset Autoregression", by the author.

USE tree

INTEGER :: i, mc

INTEGER, ALLOCATABLE, DIMENSION (:) :: toplags

DOUBLE PRECISION :: y(10000), mean

CHARACTER :: h*24

PRINT*, "%%%%%%%%%%%%%%%% Univariate SAR Modeling Program %%%%%%%%%%%%%%%"

! read in the time series

20 write(*,*)

write(*,22)

22 format(5x,’File name of time series for modelling: ’,$)

23 h=’ ’

read(*,*) h

IF (h==’a ’) h=’lynx10.tsm’

open(3,file=h,status=’old’,err=20)

i=1

25 read(3,*,end=30) y(i)

i=i+1

if (i.eq.10002) then

write(*,6665)

6665 format(3x,’DATA TRUNCATED AFTER FIRST 10000 OBSERVATIONS.’)

i=i-1

goto 30

endif

goto 25

30 n=i-1

close(3)

40



! now mean-correct the obs

mean=SUM(y)/n

ALLOCATE (x(n))

x=(/(y(i),i=1,n)/)

PRINT*, "Do you wish to mean-correct the observations (1=yes, 0=no)?"

READ*, mc

IF (mc==1) x=(/(y(i)-mean,i=1,n)/)

PRINT*, "There are ",n," observations."

PRINT*,"First obs is ",x(1)," last is ",x(n)

! Enter how many lags will be modeled

PRINT*, "Enter the number of lags to be modeled (<27):"

READ*, m

ALLOCATE (toplags(m))

! read in the lags

PRINT*, "Enter the lags:"

READ*, (toplags(i), i=1,m)

! PRINT*,"The lags are: ", (toplags(i), i=1,m)

! Enter the method

PRINT*, "Enter the method for obtaining the reflection coefficients:"

PRINT*, "Yule-Walker (1), Burg (2), Vieira-Morf (3), Nuttall-Strand (4):"

READ*, method

SELECT CASE (method)

CASE (1); stamp="YuWa"

CASE (2); stamp="Burg"

CASE (3); stamp="Morf"

CASE (4); stamp="Nutt"

CASE DEFAULT

PRINT*,"Method not in range: ", method

STOP

END SELECT

CALL make_tree(toplags)

END PROGRAM bdt

41



C.2 Code for BDT2.F90

MODULE tree

TYPE vector

DOUBLE PRECISION :: vec(2)

END TYPE vector

TYPE matrix

DOUBLE PRECISION :: mat(2,2)

END TYPE matrix

! Here we define the data type NODE which will contain

TYPE node

INTEGER :: level ! level in tree: top=m, bottom=1

INTEGER :: lags(26) ! lags for node are stored here

TYPE (matrix) :: A(26) ! forward coefficients for node

TYPE (matrix) :: B(26) ! backward coefficients for node

TYPE (matrix) :: vf, vb ! forward and backward MSEs

TYPE (vector) :: eps(1:10100) ! the epsilons for the node

TYPE (vector) :: eta(-99:10000)! the etas for the node

TYPE (node), POINTER :: reg, star ! pointers to the regular and

END TYPE node ! starred subnodes one level down

! These will contain the end results

TYPE (matrix) :: topA(1:26), topvf

! Other globals

INTEGER :: n, m, method

INTEGER, ALLOCATABLE :: orig_lags(:)

TYPE (vector), ALLOCATABLE :: x(:)

CHARACTER :: stamp*4

CONTAINS

SUBROUTINE make_tree(toplags, truevf)

INTEGER :: toplags(m)

TYPE (node), POINTER :: top_node

DOUBLE PRECISION :: truevf(3)

EXTERNAL DEVLRG

42



NULLIFY (top_node) !associates top_node so we can use it

ALLOCATE(orig_lags(m))

orig_lags=toplags

! now build the tree of node lags

CALL build_node_tree(m,toplags,top_node)

! now fill the tree, i.e. get coeffts and MSE’s of each node

CALL fill_tree(top_node)

! node tree built, so print it

CALL print_node_tree(top_node)

! undo node tree so that we don’t run out of memory for next runs

! CALL undo_node_tree(top_node)

! Causal check - program will terminate if noncausal solution.

CALL Causal_Check

! Likelihood calculations (exact or approx)

! CALL likelihood("YW WN")

CALL approx_likelihoods(truevf)

RETURN

END SUBROUTINE make_tree

!***********************************************************************

RECURSIVE SUBROUTINE build_node_tree(lev,this_lags,this_node)

INTEGER :: i, lev, this_lags(26)

TYPE (node), POINTER :: this_node

! This routine will create a tree of nodes needed to subset Burg model. The

! level and lags are assigned to each node. Also the MSE of each node is

! initialized to be zero so that later we’ll be able to check which nodes

! have not yet been filled.

! first time thru’ with a fresh node; point to it & make its J and J*

! pointers point nowhere

43



IF (.NOT. ASSOCIATED(this_node)) THEN

ALLOCATE (this_node)

this_node%level=lev

this_node%lags(1:lev)=this_lags(1:lev)

! the check for an unfilled node will be the (1,1) entry of vf=0

this_node%vf%mat(1,1)=0

NULLIFY (this_node%reg)

NULLIFY (this_node%star)

END IF

! recursive call to routine with J lags; only if level>1

lev=this_node%level

IF (lev>1) THEN

this_lags(1:lev-1)=this_node%lags(1:lev-1)

CALL build_node_tree(lev-1,this_lags,this_node%reg)

END IF

! recursive call to routine with J* lags; only if level>1

lev=this_node%level

IF (lev>1) THEN

this_lags(1:lev-1)=(/(this_node%lags(lev) &

-this_node%lags(lev-i), i=1,lev-1)/)

CALL build_node_tree(lev-1,this_lags,this_node%star)

END IF

RETURN

END SUBROUTINE build_node_tree

!***********************************************************************

RECURSIVE SUBROUTINE fill_tree(this_node)

INTEGER :: i

TYPE (node), POINTER :: this_node

! Here we fill in the coeffts and MSE for each node

IF (this_node%level>1) THEN

CALL fill_tree(this_node%reg)

! if reg node has not been filled, then fill it!

IF (this_node%reg%vf%mat(1,1)==0) THEN

44



CALL fill_node(this_node%reg)

END IF

CALL fill_tree(this_node%star)

! if star node has not been filled, then fill it!

IF (this_node%star%vf%mat(1,1)==0) THEN

CALL fill_node(this_node%star)

END IF

END IF

! now that whole tree is filled, we can fill top node

IF (this_node%level==m) THEN

CALL fill_node(this_node)

END IF

RETURN

END SUBROUTINE fill_tree

!***********************************************************************

SUBROUTINE fill_node(this_node)

INTEGER :: i, j, t, km, lev, range(2)

TYPE (vector), ALLOCATABLE :: eps_J(:),eps_Js(:),eta_J(:),eta_Js(:)

DOUBLE PRECISION, DIMENSION(2,2) :: vf_J, vf_Js, A_K, B_Ks, sen, see, Id

DOUBLE PRECISION, DIMENSION(2,2) :: vfinv, vfsinv, B, A_Ks, B_K,vb_J,vb_Js

DOUBLE PRECISION, DIMENSION(2,2) :: vbinv, vbsinv, snn, R, see2, snn2

DOUBLE PRECISION, DIMENSION(2,2) :: U2, V2, AA, CC, tV

DOUBLE PRECISION, DIMENSION(4,4) :: term1, term1_left, term1_right, A

TYPE (matrix) :: A_J(26), B_Js(26), A_Js(26), B_J(26)

TYPE (node), POINTER :: this_node

! This is the routine where the real work of building the coeffts, MSEs,

! epsilons and etas is done

! initialize the precursors before applying algo to this node

lev=this_node%level

km=this_node%lags(lev)

ALLOCATE(eps_J(1:n+km),eps_Js(1:n+km),eta_J(1-km:n),eta_Js(1-km:n))

IF (lev==1) THEN

45



DO t=n+1,n+km

eps_J(t)%vec =0; eps_Js(t)%vec=0

END DO

DO t=1-km,0

eta_J(t)%vec =0; eta_Js(t)%vec=0

END DO

eps_J (1:n)=x(1:n)

eps_Js(1:n)=x(1:n)

eta_J (1:n)=x(1:n)

eta_Js(1:n)=x(1:n)

DO i=1,2

DO j=1,2

vf_J(i,j)=DOT_PRODUCT(x%vec(i),x%vec(j))/n

END DO

END DO

vf_Js =vf_J

vb_Js =vf_J

vb_J =vf_J

ELSE !we’re at a higher level, so use reg and star node info

A_J (1:lev-1) =this_node%reg%A(1:lev-1)

A_Js(1:lev-1) =this_node%star%A(1:lev-1)

B_Js(1:lev-1) =this_node%star%B(1:lev-1)

B_J (1:lev-1) =this_node%reg%B(1:lev-1)

eps_J (1:n+km) =this_node%reg%eps(1:n+km)

eps_Js(1:n+km) =this_node%star%eps(1:n+km)

eta_J (1-km:n) =this_node%reg%eta(1-km:n)

eta_Js(1-km:n) =this_node%star%eta(1-km:n)

vf_J =this_node%reg%vf%mat

vf_Js =this_node%star%vf%mat

vb_Js =this_node%star%vb%mat

vb_J =this_node%reg%vb%mat

END IF

! Initial conditions set, now apply algo to this node

! First build A_K(km) -------------------------------

range=(/1,n+km/)

IF (method>1) range=(/1+km,n/)

DO i=1,2

see(i,:)=(/0.0D+00,0.0D+00/)

sen(i,:)=(/0.0D+00,0.0D+00/)

46



snn(i,:)=(/0.0D+00,0.0D+00/)

END DO

DO t=range(1),range(2)

DO i=1,2

DO j=1,2

see(i,j)=see(i,j)+eps_J(t)%vec(i)*eps_J(t)%vec(j)

sen(i,j)=sen(i,j)+eps_J(t)%vec(i)*eta_Js(t-km)%vec(j)

snn(i,j)=snn(i,j)+eta_Js(t-km)%vec(i)*eta_Js(t-km)%vec(j)

END DO

END DO

END DO

! form I

Id(1,:)=(/1.0D+00,0.0D+00/)

Id(2,:)=(/0.0D+00,1.0D+00/)

! get the inverse of vf_J, put into vfinv

CALL DLINRG(2,vf_J,2,vfinv,2)

SELECT CASE (method)

CASE (1)

! get the inverse of vb_Js, put into vbsinv

CALL DLINRG(2,vb_Js,2,vbsinv,2)

! finally, get A_K(km) & B_Ks(km)

A_K =MATMUL(sen, vbsinv)/FLOAT(n)

B_Ks=MATMUL(TRANSPOSE(sen), vfinv)/FLOAT(n)

CASE (2)

B=sen+MATMUL(MATMUL(vfinv,sen),vb_Js)

CALL KRON(2,snn,Id,term1_left)

CALL KRON(2,MATMUL(vb_Js,vb_Js),MATMUL(MATMUL(vfinv,see),vfinv), &

& term1_right)

term1=term1_left+term1_right

CALL DLINRG(4,term1,4,A,4)

! finally, build elements of A_K piecemeal

DO i=1,2

A_K(i,1)=A(i,1)*B(1,1)+A(i,2)*B(2,1)+A(i,3)*B(1,2)+A(i,4)*B(2,2)

END DO

DO i=3,4

A_K(i-2,2)=A(i,1)*B(1,1)+A(i,2)*B(2,1)+A(i,3)*B(1,2)+A(i,4)*B(2,2)

END DO

! Finished building A_K -------------- now get B_Ks from it

B_Ks=MATMUL(MATMUL(vb_Js,TRANSPOSE(A_K)),vfinv)

CASE(3)

47



CALL Matrix_Power(vf_J, 5.0D-1, U2)

CALL Matrix_Power(vb_Js, -5.0D-1, V2)

CALL Matrix_Power(see, -5.0D-1, see2)

CALL Matrix_Power(snn, -5.0D-1, snn2)

R=MATMUL(MATMUL(see2,sen),snn2)

A_K=MATMUL(MATMUL(U2,R),V2)

B_Ks=MATMUL(MATMUL(vb_Js,TRANSPOSE(A_K)),vfinv)

CASE(4)

CALL DLINRG(2,vb_Js,2,V2,2) ! V2=(V_J*)^-1

U2=vfinv ! U2=(U_J)^-1

B=MATMUL(snn,V2)

AA=MATMUL(see,U2)

CALL KRON(2,Id,AA,term1_left)

CALL KRON(2,B,Id,term1_right)

term1=term1_left+term1_right

CALL DLINRG(4,term1,4,A,4)

CC=2.0*sen

! Now vec(R) = A . vec(CC)

B=CC

! finally, build elements of R piecemeal

DO i=1,2

R(i,1)=A(i,1)*B(1,1)+A(i,2)*B(2,1)+A(i,3)*B(1,2)+A(i,4)*B(2,2)

END DO

DO i=3,4

R(i-2,2)=A(i,1)*B(1,1)+A(i,2)*B(2,1)+A(i,3)*B(1,2)+A(i,4)*B(2,2)

END DO

! Finished building R -------------- now get A_K & B_Ks from it

A_K=MATMUL(R,V2)

B_Ks=MATMUL(MATMUL(vb_Js,TRANSPOSE(A_K)),vfinv)

END SELECT

! now get A_Ks, just swap star and nostar

DO i=1,2

see(i,:)=(/0.0D+00,0.0D+00/)

sen(i,:)=(/0.0D+00,0.0D+00/)

snn(i,:)=(/0.0D+00,0.0D+00/)

END DO

DO t=range(1),range(2)

DO i=1,2

DO j=1,2

48



see(i,j)=see(i,j)+eps_Js(t)%vec(i)*eps_Js(t)%vec(j)

sen(i,j)=sen(i,j)+eps_Js(t)%vec(i)*eta_J(t-km)%vec(j)

snn(i,j)=snn(i,j)+eta_J(t-km)%vec(i)*eta_J(t-km)%vec(j)

END DO

END DO

END DO

! get the inverse of vf_Js, put into vfsinv

CALL DLINRG(2,vf_Js,2,vfsinv,2)

SELECT CASE (method)

CASE (1)

! get the inverse of vb_J, put into vbinv

CALL DLINRG(2,vb_J,2,vbinv,2)

! finally, get A_Ks(km) & B_K(km)

A_Ks=MATMUL(sen, vbinv)/FLOAT(n)

B_K =MATMUL(TRANSPOSE(sen), vfsinv)/FLOAT(n)

CASE (2)

B=sen+MATMUL(MATMUL(vfsinv,sen),vb_J)

CALL KRON(2,snn,Id,term1_left)

CALL KRON(2,MATMUL(vb_J,vb_J),MATMUL(MATMUL(vfsinv,see),vfsinv), &

& term1_right)

term1=term1_left+term1_right

CALL DLINRG(4,term1,4,A,4)

! finally, build elements of A_Ks piecemeal

DO i=1,2

A_Ks(i,1)=A(i,1)*B(1,1)+A(i,2)*B(2,1)+A(i,3)*B(1,2)+A(i,4)*B(2,2)

END DO

DO i=3,4

A_Ks(i-2,2)=A(i,1)*B(1,1)+A(i,2)*B(2,1)+A(i,3)*B(1,2)+A(i,4)*B(2,2)

END DO

! Finished building A_Ks ---------------

! now get B_K from it

B_K=MATMUL(MATMUL(vb_J,TRANSPOSE(A_Ks)),vfsinv)

CASE(3)

CALL Matrix_Power(vf_Js, 5.0D-1, U2)

CALL Matrix_Power(vb_J, -5.0D-1, V2)

CALL Matrix_Power(see, -5.0D-1, see2)

CALL Matrix_Power(snn, -5.0D-1, snn2)

R=MATMUL(MATMUL(see2,sen),snn2)

A_Ks=MATMUL(MATMUL(U2,R),V2)

B_K=MATMUL(MATMUL(vb_J,TRANSPOSE(A_Ks)),vfsinv)

49



CASE(4)

CALL DLINRG(2,vb_J,2,V2,2) ! V2=(V_J)^-1

U2=vfsinv ! U2=(U_J*)^-1

B=MATMUL(snn,V2)

AA=MATMUL(see,U2)

CALL KRON(2,Id,AA,term1_left)

CALL KRON(2,B,Id,term1_right)

term1=term1_left+term1_right

CALL DLINRG(4,term1,4,A,4)

CC=2.0*sen

! Now vec(R) = A . vec(CC)

B=CC

! finally, build elements of R piecemeal

DO i=1,2

R(i,1)=A(i,1)*B(1,1)+A(i,2)*B(2,1)+A(i,3)*B(1,2)+A(i,4)*B(2,2)

END DO

DO i=3,4

R(i-2,2)=A(i,1)*B(1,1)+A(i,2)*B(2,1)+A(i,3)*B(1,2)+A(i,4)*B(2,2)

END DO

! Finished building R -------------- now get A_Ks & B_K from it

A_Ks=MATMUL(R,V2)

B_K=MATMUL(MATMUL(vb_J,TRANSPOSE(A_Ks)),vfsinv)

END SELECT

! assign A_K and B_K to correct node place

this_node%A(lev)%mat=A_K

this_node%B(lev)%mat=B_K

! Now do eqtns 1.16 and 1.18

IF (lev > 1) THEN

DO i=1,lev-1

this_node%A(i)%mat=A_J(i)%mat-MATMUL(A_K,B_Js(lev-i)%mat)

this_node%B(i)%mat=B_J(i)%mat-MATMUL(B_K,A_Js(lev-i)%mat)

END DO

END IF

! set MSE’s, eqtns 1.19 and 1.20

this_node%vf%mat=MATMUL((Id-MATMUL(A_K,B_Ks)),vf_J)

this_node%vb%mat=MATMUL((Id-MATMUL(B_K,A_Ks)),vb_J)

50



! Set epsilons and etas

DO i=range(1),range(2)

this_node%eps(i)%vec =eps_J(i)%vec-MATMUL(A_K,eta_Js(i-km)%vec)

this_node%eta(i-km)%vec=eta_J(i-km)%vec-MATMUL(B_K,eps_Js(i)%vec)

END DO

DEALLOCATE(eps_J, eps_Js ,eta_J ,eta_Js)

RETURN

END SUBROUTINE fill_node

!***********************************************************************

RECURSIVE SUBROUTINE print_node_tree(this_node)

INTEGER :: i, km, t, j

TYPE (node), POINTER :: this_node

! Here we print the info in the top node - can also make it print all nodes

! by removing the inmost IF THEN loop

IF (ASSOCIATED(this_node)) THEN

CALL print_node_tree(this_node%reg)

IF (this_node%level==m) THEN

PRINT*,"***************************************************"

PRINT*,"Estimated subset ",stamp," coefficient matrices:"

DO i=1,this_node%level

PRINT*,"Phi(", this_node%lags(i),"):"

CALL DWRRRL(’’,2,2,this_node%A(i)%mat,2,0, &

’(F20.6)’,’NONE’,’NONE’)

END DO

PRINT*," "

PRINT*,"***************************************************"

PRINT*,"Estimated ",stamp," (forward) WN covariance matrix:"

CALL DWRRRL(’’,2,2,this_node%vf%mat,2,0,’(F20.6)’,’NONE’,’NONE’)

PRINT*," "

! Store results for likelihood calcs

topA(1:m)=this_node%A(1:m)

topvf=this_node%vf

END IF

51



CALL print_node_tree(this_node%star)

IF (this_node%level<m) DEALLOCATE (this_node)

END IF

RETURN

END SUBROUTINE print_node_tree

!***********************************************************************

SUBROUTINE Matrix_Power(A, pow, B)

! Raises (2 by 2) matrix A to a real power pow, result into matrix B.

INTEGER :: ipath, irank

DOUBLE PRECISION :: pow, tol, A(2,2), B(2,2), D(2,2), U(2,2), V(2,2), eig(2)

ipath=11

tol=1.0D-10

CALL DLSVRR(2, 2, A, 2, ipath, tol, irank, eig, U, 2, V, 2)

D=0.0

D(1,1)=eig(1)**ABS(pow); D(2,2)=eig(2)**ABS(pow)

B=MATMUL(MATMUL(U,D),TRANSPOSE(V))

IF (pow<0) CALL DLINRG(2,B,2,B,2)

RETURN

END SUBROUTINE Matrix_Power

!***********************************************************************

SUBROUTINE KRON (d,A,B,C)

! computes the Kronecker product of square matrices A and B (dim=d),

! puts into C (dim=d^2)

INTEGER :: d, i, j, k, l, row, col

DOUBLE PRECISION :: A(d,d), B(d,d), C(d**2,d**2)

DO i=1,d

DO k=1,d

row=d*(i-1)+k

DO j=1,d

52



DO l=1,d

col=d*(j-1)+l

C(row,col)=A(i,j)*B(k,l)

END DO

END DO

END DO

END DO

RETURN

END SUBROUTINE KRON

!***********************************************************************

SUBROUTINE Causal_Check

! Checks for causality of obtained solution. If noncausal, program will

! terminate without likelihood computations.

INTEGER :: i, j, k, t, km

INTEGER :: lag(m)

TYPE (matrix) :: phi(m)

DOUBLE PRECISION, ALLOCATABLE :: A(:,:)

COMPLEX (KIND=8), ALLOCATABLE :: eig(:)

! kind=8 above specifies that eig’s entries be double precision (LIB only).

LOGICAL :: causal

lag=orig_lags

phi=topA(1:m)

km=lag(m)

ALLOCATE (A(2*km,2*km), eig(2*km))

! Build the matrix A ie. can write a VAR(p) as a VAR(1).

A=0

DO i=1,2*km

IF (i<3) THEN

DO j=1,m

A(i,2*lag(j)-1)=phi(j)%mat(i,1)

A(i,2*lag(j)) =phi(j)%mat(i,2)

END DO

ELSE ! i=>3

A(i,i-2)=1.0

53



END IF

END DO

! For the Phi’s to be causal, simply check that all 2*km eigenvalues

! of A are < 1 in absolute value.

CALL DEVLRG(2*km, A, 2*km, eig)

causal=.TRUE.

DO i=1,2*km

IF (ABS(eig(i)) >= 1.0) THEN !solution non-causal

causal=.FALSE.

EXIT

END IF

END DO

IF (causal) THEN !if solution causal, return control to main prog.

DEALLOCATE (A, eig)

RETURN

ELSE !solution non-causal, prog. will terminate.

PRINT*,"%%% NON-CAUSAL SOLUTION. PROGRAM WILL TERMINATE. %%%"

PRINT*,"****************************************************"

DEALLOCATE (A, eig)

STOP

END IF

END SUBROUTINE Causal_Check

!***********************************************************************

SUBROUTINE likelihood(what)

! Exact likelihood calculation: very, very slow...

! First computes ACVF of a 2d subset AR model with m coeffts (phi) and lags

! (lag), sigma^2=s2, into G(1-2km),...,G(-1),G(0),G(1),...,G(km-1).

! Then it gets -2 log Likelihood for the vector of obs x: eqtn (11.5.5)

! in Yellow book, using the multivariate innnovations algorithm.

INTEGER :: i, j, k, t, km, drow

INTEGER :: lag(m)

TYPE (vector) :: xh(n)

TYPE (matrix) :: phi(m), s2, V(0:n-1), Vi(0:n-1)

TYPE (matrix) :: Ka(n,n), Th(n-1,n-1)

54



DOUBLE PRECISION :: Z2(2,2), Tp(2,2), SumLogDetV, Term3, Like, temph(2)

DOUBLE PRECISION :: tempv(2), DetV

TYPE (matrix), ALLOCATABLE :: G(:)

DOUBLE PRECISION, ALLOCATABLE :: A(:,:), B(:,:), C(:,:), D(:,:)

CHARACTER :: what*7

lag=orig_lags

phi=topA(1:m)

s2=topvf

km=lag(m)

pi=3.141592654

Z2=0.0

ALLOCATE (G(1-2*km:km-1),A(2*km,2*km),B(4*km**2,4*km**2), &

C(4*km**2,4*km**2),D(4*km**2,4*km**2))

! Begin --- building the covariances Gamma(h)

! Build the matrix A

A=0

DO i=1,2*km

IF (i<3) THEN

DO j=1,m

A(i,2*lag(j)-1)=phi(j)%mat(i,1)

A(i,2*lag(j)) =phi(j)%mat(i,2)

END DO

ELSE ! i=>3

A(i,i-2)=1.0

END IF

END DO

! B=A kronecker A

CALL KRON(2*km,A,A,B)

! Form C = I - B

C=-B

DO i=1,4*km**2

C(i,i)=1.0-B(i,i)

END DO

! D = inv(C)

CALL DLINRG(4*km**2, C, 4*km**2, D, 4*km**2)

! vec G_y(0) = D vec(s2). This forms G(1-km),...,G(-1),G(0),G(1),...,G(km-1)

DO k=0,km-1

DO i=1,2

55



DO j=1,2

drow=2*k+i+2*(j-1)*km

G(-k)%mat(i,j)=D(drow,1)*s2%mat(1,1)+D(drow,2*km+2)*s2%mat(2,2) &

+(D(drow,2)+D(drow,2*km+1))*s2%mat(1,2)

END DO

END DO

G(k)%mat=TRANSPOSE(G(-k)%mat)

END DO

! Now compute G(-km),...,G(-(2km-1))

DO k=km,2*km-1

G(-k)%mat=0

DO j=1,m

G(-k)%mat=G(-k)%mat+MATMUL(G(lag(j)-k)%mat,TRANSPOSE(phi(j)%mat))

END DO

END DO

! print

! DO k=1-2*km,2*km-1

! PRINT*,"Gamma(",k,"):"

! CALL DWRRRL(’’,2,2, G(k)%mat,2, 0,’(W20.6)’,’NONE’,’NONE’)

! END DO

! Begin --- building the K(i,j)’s, recursions (11.4.27)

DO i=1,n

DO j=1,n

Ka(i,j)%mat=Z2

END DO

END DO

DO i=1,n

DO j=i,n

IF (j<=km) Ka(i,j)%mat=G(i-j)%mat

IF (i<=km .AND. km<j .AND. j<=2*km) THEN

Ka(i,j)%mat=G(i-j)%mat

DO k=1,m

Ka(i,j)%mat=Ka(i,j)%mat-MATMUL(G(i-j+lag(k))%mat, &

TRANSPOSE(phi(k)%mat))

END DO

END IF

IF (i==j .AND. i>km) Ka(i,j)%mat=s2%mat

END DO

END DO

56



DO j=1,n

DO i=j+1,n

Ka(i,j)%mat=TRANSPOSE(Ka(j,i)%mat)

END DO

END DO

! Begin --- building the theta(i,j)’s & V’s, recursions (11.4.23)

V(0)%mat=Ka(1,1)%mat

! Store inverses of V, the Vi’s

CALL DLINRG(2, V(0)%mat, 2, Vi(0)%mat, 2)

! Initialize & Keep total of sum of log(det(V))’s

DetV=V(0)%mat(1,1)*V(0)%mat(2,2)-V(0)%mat(2,1)*V(0)%mat(1,2)

SumLogDetV=log(DetV)

DO t=1,n-1

DO k=0,t-1

Tp=0

DO j=0,k-1

Tp=Tp+MATMUL(MATMUL(Th(t,t-j)%mat,V(j)%mat),TRANSPOSE(Th(k,k-j)%mat))

END DO

Th(t,t-k)%mat=MATMUL((Ka(t+1,k+1)%mat-Tp),Vi(k)%mat)

END DO

Tp=0

DO j=0,t-1

Tp=Tp+MATMUL(MATMUL(Th(t,t-j)%mat,V(j)%mat),TRANSPOSE(Th(t,t-j)%mat))

END DO

! Get V’s, their inverses Vi’s, and keep total of sum of log((det(V))’s

V(t)%mat=Ka(t+1,t+1)%mat - Tp

CALL DLINRG(2, V(t)%mat, 2, Vi(t)%mat, 2)

DetV=V(t)%mat(1,1)*V(t)%mat(2,2)-V(t)%mat(2,1)*V(t)%mat(1,2)

SumLogDetV=SumLogDetV+log(DetV)

END DO

! Get the one step predictors xh’s, (11.4.28)

xh(1)%vec=0

Term3=DOT_PRODUCT(x(1)%vec,MATMUL(Vi(0)%mat,x(1)%vec))

DO t=1,n-1

xh(t+1)%vec=0

IF (t<km) THEN

DO j=1,t

xh(t+1)%vec=xh(t+1)%vec+MATMUL(Th(t,j)%mat,x(t+1-j)%vec-xh(t+1-j)%vec)

57



END DO

ELSE ! t=>km

DO j=1,m

xh(t+1)%vec=xh(t+1)%vec+MATMUL(phi(j)%mat,x(t+1-lag(j))%vec)

END DO

END IF

! Keep total of Term3 = sum_{t=1}^n [(x(t)-xh(t))’Vi(t-1)(x(t)-xh(t))]

Term3=Term3+DOT_PRODUCT(x(t+1)%vec-xh(t+1)%vec, &

MATMUL(Vi(t)%mat,x(t+1)%vec-xh(t+1)%vec))

END DO

! Finally: -2 log Likelihood = Like

Like=2.0*n*log(2.0*pi)+SumLogDetV+Term3

DO t=0,km-1

PRINT*,"Gamma(",t,"):"

CALL DWRRRL(’’,2,2,G(t)%mat,2,0,’(F20.6)’,’NONE’,’NONE’)

END DO

PRINT*,"-2 Log Like (",what,") : ", Like

! PRINT*,"AICC (Burg WN): ", Like+4.0*n*(4.0*km+1)/(2.0*(n-1)-4.0*km)

DEALLOCATE (G,A,B,C,D)

RETURN

END SUBROUTINE likelihood

!***********************************************************************

SUBROUTINE approx_likelihoods(truevf)

! Computes approx -2 log likelihood for the algorithm obtained

! Phi’s (topA), and WN variance (topvf).

! Also computes WN variance estimate (RSS/n) starting with topvf WN estimate,

! that minimizes the -2 log likelihood for the algorithm obtained Phi’s.

INTEGER :: i, maxitn

DOUBLE PRECISION :: ff, tzz(3), step, oldff, truevf(3)

DOUBLE PRECISION :: like1, like2, like

! Get likelihood for the WN variance estimate

58



tzz(1)=topvf%mat(1,1); tzz(2)=topvf%mat(2,2); tzz(3)=topvf%mat(1,2)

CALL lad_fun(3, tzz, oldff)

! PRINT*,"AICC (Burg WN): ", ff+4.0*n*(4.0*km+1)/(2.0*(n-1)-4.0*km)

PRINT*,"-2 Log Like (",stamp,"): ", oldff

! Now Get WN estimate that maximizes likelihood, for the algorithm Phi’s.

! This is equivalent to RSS/n in one dimension. First start search with

! topvf estimate from algo

step=0.1

CALL Hooke(3, tzz, step, ff)

DO WHILE (ABS(ff-oldff) > 0.0001)

oldff=ff

step=step/10.0

CALL Hooke(3, tzz, step, ff)

END DO

like1=MIN(ff, oldff)

! then use truevf (if it exists)

IF (truevf(1)>0) THEN

CALL lad_fun(3, truevf, oldff)

step=0.1

CALL Hooke(3, truevf, step, ff)

DO WHILE (ABS(ff-oldff) > 0.0001)

oldff=ff

step=step/10.0

CALL Hooke(3, truevf, step, ff)

END DO

like2=MIN(ff, oldff)

ELSE

like2=1.0D30

END IF

! Now take lowest like as the RSS/n

IF (like1 > like2) THEN

like=like2

tzz=truevf

ELSE ! like1 smaller

like=like1

END IF

PRINT*,"-2 Log Like (RSS/n): ", like

59



! get the RSS/n matrix

topvf%mat(1,1)=tzz(1); topvf%mat(2,2)=tzz(2)

topvf%mat(1,2)=tzz(3); topvf%mat(2,1)=tzz(3)

PRINT*," "

PRINT*,"Estimated RSS/n (forward) WN covariance matrix:"

CALL DWRRRL(’’,2,2,topvf%mat,2,0,’(F20.6)’,’NONE’,’NONE’)

PRINT*,"%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%"

RETURN

END SUBROUTINE approx_likelihoods

!***********************************************************************

SUBROUTINE lad_fun(nn, zz, ff)

! *** Objective function to go with H&J routine ***

! Computes approx -2 log likelihood for the given Phi’s (phi), and the 3

! components of the WN variance (zz). Uses recursions 11.3.12 (YB) to find

! Psi’s. G(h) found by truncated summation h=0,...,l (instead of infty).

INTEGER :: i, j, k, t, km, l, h, nn

INTEGER :: lag(m)

TYPE (matrix) :: phi(m), s2, s2i

DOUBLE PRECISION :: t1, t2, t3, t4, tvec(2), zz(*), ff

DOUBLE PRECISION, ALLOCATABLE :: GK(:,:), GKi(:,:), y(:)

TYPE (matrix), ALLOCATABLE :: G(:), Psi(:), Phy(:)

l=100 ! the truncation for the ACVF’s from the PSi’s

lag=orig_lags

phi=topA(1:m)

km=lag(m)

pi=3.141592654

! Build in constraints for +ve def. WN:

IF ((zz(1)<0).OR.(zz(2)<0).OR.(zz(1)*zz(2)<zz(3)**2)) THEN

ff=1.0D30

RETURN

END IF

! IF (zz(1)<0.0) zz(1)=ABS(zz(1))

60



! IF (zz(2)<0.0) zz(2)=ABS(zz(2))

! IF (zz(1)*zz(2)<zz(3)**2) zz(3)=SQRT(zz(1)*zz(2))/2.0

! Build the WN, s2

s2%mat(1,1)=zz(1); s2%mat(2,2)=zz(2)

s2%mat(2,1)=zz(3); s2%mat(1,2)=zz(3)

ALLOCATE (G(0:km-1), GK(2*km,2*km), Psi(0:km-1+l), Phy(1:km))

ALLOCATE (y(2*km), GKi(2*km,2*km))

! Need to form Phy=0 except at lag(1:m)

DO h=1,km

Phy(h)%mat(1,:)=(/0.0,0.0/); Phy(h)%mat(2,:)=(/0.0,0.0/)

END DO

DO t=1,m

Phy(lag(t))%mat=phi(t)%mat

END DO

! Now get the Psi’s

Psi(0)%mat(1,:)=(/1.0,0.0/); Psi(0)%mat(2,:)=(/0.0,1.0/)

DO j=1,km-1+l

Psi(j)%mat(1,:)=(/0.0,0.0/); Psi(j)%mat(2,:)=(/0.0,0.0/)

DO t=1,MIN(j,km)

Psi(j)%mat=Psi(j)%mat+MATMUL(Phy(t)%mat,Psi(j-t)%mat)

END DO

END DO

! Now compute covariance matrices

DO h=0,km-1

G(h)%mat(1,:)=(/0.0,0.0/); G(h)%mat(2,:)=(/0.0,0.0/)

DO j=0,l

G(h)%mat=G(h)%mat+MATMUL(MATMUL(Psi(h+j)%mat,s2%mat), &

TRANSPOSE(Psi(j)%mat))

END DO

! PRINT*,"Truncated Gamma(",h,"), with l=",l,":"

! CALL DWRRRL(’’,2,2,G(h)%mat,2,0,’(F20.6)’,’NONE’,’NONE’)

END DO

! Form Big covariance matrix GK (symmetric):

DO i=1,km

61



DO j=1,i

DO h=0,1

DO k=0,1

GK(2*i-h,2*j-k)=G(i-j)%mat(2-h,2-k)

GK(2*j-k,2*i-h)=GK(2*i-h,2*j-k)

END DO

END DO

END DO

END DO

! Form term4

t4=0.0

CALL DLINDS(2, s2%mat, 2, s2i%mat, 2)

DO t=1+km,n

tvec=0.0

DO k=1,m

tvec=tvec+MATMUL(phi(k)%mat,x(t-lag(k))%vec)

END DO

tvec=x(t)%vec-tvec

t4=t4+DOT_PRODUCT(tvec,MATMUL(s2i%mat,tvec))

END DO

! Form t3

CALL DLINDS(2*km, GK, 2*km, GKi, 2*km)

DO j=1,km

DO k=0,1

y(2*j-k)=x(j)%vec(2-k)

END DO

END DO

t3=DOT_PRODUCT(y,MATMUL(GKi,y))

! Form t2

t2=(n-km)*LOG(s2%mat(1,1)*s2%mat(2,2)-s2%mat(1,2)**2)

! Form t1

! find det of GK by Choleski decomposing GK->GKi (re-use to save space),

! then det(GK)=(product of diagonal elements of GKi)**2.

CALL DLFTDS(2*km,GK,2*km,GKi,2*km)

t1=0.0

DO h=1,2*km

62



t1=t1+LOG(GKi(h,h))

END DO

t1=2*t1

! Now put it all together

ff=2.0*n*log(2.0*pi)+t1+t2+t3+t4

DEALLOCATE (G, GK, GKi, Psi, Phy, y)

RETURN

END SUBROUTINE lad_fun

!*********************************************************************

!subroutine optimization using Hooke and Jeeves

SUBROUTINE Hooke(p,AR,er,fv)

INTEGER p

DOUBLE PRECISION AR(p),er,fv

INTEGER flg,fi,ik,m

DOUBLE PRECISION x1(p),x2(p),c(p),bx(p)

DOUBLE PRECISION ac, min,bmin

intent(inout) :: AR,er

m=p

ac=.4*er

fi=0

ik=0

ij=0

iq=1

x1=AR

3073 do 3075 i=1,m

3075 c(i)=x1(i)

! 3080 if(iq.eq.0)then

! write(*,*) ’ <Computing Gaussian likelihood>’

! endif

call lad_fun(p,c,fv)

min=fv

3085 if(iq.eq.0)goto 3640

63



goto 3600

!

! Exploratory moves

!

3100 do 3105 j=1,m

3105 x2(j)=x1(j)

do 3160 i=1,m

do 3115 j=1,m

3115 c(j)=x2(j)

c(i)=x1(i)+er

call lad_fun(p,c,fv)

3120 if(fv.lt.min) then

min=fv

x2(i)=c(i)

endif

c(i)=x1(i)-er

call lad_fun(p,c,fv)

3130 if(fv.lt.min) then

min=fv

x2(i)=c(i)

endif

3160 continue

flg=1

do 3180 i=1,m

if(x1(i).ne.x2(i))flg=0

3180 continue

if(flg.eq.0)goto 3195

er=er/2

if(er.lt.ac)fi=1

if(ik.eq.0)goto 3285

if(ik.eq.1)goto 3605

goto 3100

3195 if(ik.eq.0)goto 3285

if(ik.eq.1)goto 3605

!

! Pattern moves

!

3200 do 3230 i=1,m

3230 x1(i)=2*x2(i)-x1(i)

do 3260 i=1,m

64



3260 bx(i)=x2(i)

!bvar=var

bmin=min

do 3276 i=1,m

3276 c(i)=x1(i)

call lad_fun(p,c,fv)

3280 min=fv

ik=0

goto 3100

3285 if(fi.eq.1)goto 3615

if(min.ge.bmin)goto 3310

goto 3200

3310 do 3330 i=1,m

3330 x1(i)=bx(i)

!var=bvar

min=bmin

goto 3615

!

! End of moves

!

3600 ik=1

goto 3100

3605 if(fi.eq.1)goto 3640

3610 goto 3200

3615 if(fi.eq.1)goto 3640

goto 3600

3640 continue

!3680 fi=0

! 3687 d=(.5/sqrt(xn))/(5**iii)

3647 continue

if(iq.ne.0)then

min=bmin

4310 do 4330 i=1,p

IF (i .le. p) AR(i)=bx(i)

4330 x1(i)=bx(i)

fv=min

endif

END SUBROUTINE Hooke

65



!***********************************************************************

END MODULE tree

!***********************************************************************

!***********************************************************************

PROGRAM Bdt2

! this program subset models AR(p)’s for 2-dimensional time series, using

! Burg type recursions, with subset size <=26, km<100, and a max of 10000 obs.

USE tree

INTEGER :: i, wn_known, mc

INTEGER, ALLOCATABLE, DIMENSION (:) :: toplags

TYPE (vector) :: y(10000)

CHARACTER :: h*24

DOUBLE PRECISION :: mean1, mean2, truevf(3)

PRINT*, "%%%%%%%%%%%%%%% Bivariate SVAR Modeling Program %%%%%%%%%%%%%%%"

! read in the time series from a data file

20 write(*,*)

write(*,22)

22 format(5x,’Enter file name of time series for modelling: ’,$)

23 h=’ ’

read(*,*) h

IF (h==’a ’) h=’sun2.tsm’

open(3,file=h,status=’old’,err=20)

i=1

25 read(3,*,end=30) y(i)%vec(1), y(i)%vec(2)

i=i+1

if (i.eq.10002) then

write(*,6665)

6665 format(3x,’DATA TRUNCATED AFTER FIRST 10000 OBSERVATIONS.’)

i=i-1

goto 30

endif

goto 25

66



30 n=i-1

close(3)

! now mean-correct the obs

mean1=SUM(y%vec(1))/n

mean2=SUM(y%vec(2))/n

ALLOCATE (x(n))

x%vec(1)=(/(y(i)%vec(1), i=1,n)/)

x%vec(2)=(/(y(i)%vec(2), i=1,n)/)

PRINT*, "Do you wish to mean-correct the observations (1=yes, 0=no)?"

READ*, mc

IF (mc==1) THEN

x%vec(1)=(/(y(i)%vec(1)-mean1, i=1,n)/)

x%vec(2)=(/(y(i)%vec(2)-mean2, i=1,n)/)

END IF

PRINT*, "There are ",n," observations."

WRITE(*,40) x(1), x(n)

40 FORMAT("Firs obs is ",F20.4," last is ",F20.4)

! Enter how many lags will be modeled

PRINT*, "Enter the number of lags to be modeled (<27):"

READ*, m

ALLOCATE (toplags(m))

! read in the lags

PRINT*, "Enter the lags:"

READ*, (toplags(i), i=1,m)

! PRINT*,"The lags are: ", (toplags(i), i=1,m)

! Simulation?

PRINT*, "Is the true white noise covariance matrix known (1=yes, 0=no)?"

READ*, wn_known

IF (wn_known==1) THEN

PRINT*, "Enter Sigma(1,1), Sigma(2,2), Sigma(1,2):"

READ*, (truevf(i), i=1,3)

ELSE

! don’t know true WN, so set truevf(1)=0 as flag for routine approx_likelihoods

truevf(1)=0

END IF

67



! method

PRINT*, "Enter the method for obtaining the reflection coefficients."

PRINT*, "Yule-Walker (1), Burg (2), Vieira-Morf (3), Nuttal-Strand (4):"

READ*, method

SELECT CASE (method)

CASE (1); stamp="YuWa"

CASE (2); stamp="Burg"

CASE (3); stamp="Morf"

CASE (4); stamp="Nutt"

CASE DEFAULT

PRINT*,"Method not in range: ", method

STOP

END SELECT

CALL make_tree(toplags, truevf)

END PROGRAM Bdt2

68


