
Informatica Economică vol. 16, no. 3/2012 59

Integrated Methodology for Software Reliability Analysis

Marian Pompiliu CRISTESCU1, Laurenţiu CIOVICĂ2, Liviu CIOVICĂ3
1, 3”Lucian Blaga” University of Sibiu, Romania

2Academy of Economic Studies, Bucharest, Romania
marian.cristescu@ulbsibiu.ro, laurentiu.ciovica@gmail.com, liviu.ciovica@gmail.com

The most used techniques to ensure safety and reliability of the systems are applied together
as a whole, and in most cases, the software components are usually overlooked or to little an-
alyzed. The present paper describes the applicability of fault trees analysis software system,
analysis defined as Software Fault Tree Analysis (SFTA), fault trees are evaluated using bi-
nary decision diagrams, all of these being integrated and used with help from Java library re-
liability.
Keywords: Software Reliability, Binary Decision Diagram, Fault Trees, Combinatorial Mod-
els, Analytical Techniques

Introduction
Safety critical software systems refer to

those systems blackouts that may cause cata-
strophic consequences, implying human and
substantial material losses [10]. A variety of
techniques is available and used to ensure
safety and reliability to the system. Some of
those include: HAZOP method (Hazard and
Operability Analysis), which deals with risk
study and system operability; fault tree anal-
ysis (FTA), used to analyze potential danger
causes and FME(C)A technique (Failure
Modes Effects (and Criticality) Analysis),
used to check the proper system functionali-
ty.
Most of the techniques mentioned before, are
applied together as a whole, and in most cas-
es, the software components are usual over-
looked or very little analyzed.
This paper describes an integrated framework
for software reliability analysis using the fol-
lowing analyses and modeling techniques:
- software fault tree analysis (SFTA);
- binary decision diagram;
- Java technology for reliability.
In use of this analysis framework are fal-
lowed these steps:
- it starts from a structural/functional anal-

ysis of the software system, in order to
determine software’s failure mechanisms
(failures), based on which the fault tree is
constructed. The program is seen from a
structural point of view, taking in consid-

eration his components and the relations
between them;

- after the structural - functional analysis is
made, the primary events group (primary
defects) and the group of critical events
(failures) are identified, with the help of
which the fault tree is built;

- using the resulted tree, different computa-
tion operations are made, such us tree
minimization, through known methods,
to ease the implementation process using
the Java language;

- for the automated decision binary dia-
gram generation an open source Java li-
brary is used, called JReliability (Java-
based Reliability Library), library devel-
oped for modeling and analyzing the reli-
ability of complex systems using BDD.
Thus the most of the research was made
on hardware systems in this paper the au-
thors extends the library utility towards
software systems;

- at last, after the BDD generation a quanti-
tative analysis is made in order to evalu-
ate the reliability indicators put at dispos-
al by the JReliability, through the analytic
results and through graphic representa-
tions.

First are presented the techniques used until
the present and well researched in the field’s
literature: software fall tree analysis, SFTA
and binary decision diagrams, BDD.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27138736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

60 Informatica Economică vol. 16, no. 3/2012

2 Combinatorial Models
Combinatorial models represents a structured
approach of systems, forming a class of reli-
ability models in which the causes of soft-
ware failure can be expressed in terms of
combinations of software components (mod-
ules) faults (failures) [4]. Combinatorial
models include models with graphs used in
network reliability analysis, fault trees and
reliability block diagrams. These models do
not require the fulfillment of constant failure
rate assumption and have been successfully
applied for reliability analysis of mechanical
and electrical systems. In particular, failure
trees were implemented also for reliability
software analysis.
An alternative to SFTA [1] (a traditional ap-
proach of models with solutions based on
minimal cuts) uses the so called binary deci-
sion diagrams (BDD) [2]. Binary decision di-
agram were used initial as a checking tech-
nique in electric circuit theory, but recently
were adapted to resolve a failure tree model
for quantitative and qualitative reliability
analysis [12]. Because it seems that there is
no connection between the number of mod-
ules (components) from a system and the di-
mension of the appropriate BDD, the BDD
based solutions can offer efficient solutions
techniques for big systems.

2.1. Failure Trees
An often used technique proven to be effi-
cient for the software reliability analysis is
the software failure tree analysis (SFTA).
This technique borrows the failure trees con-
cept (FTA) from the hardware field.
FTA technique represents a deductive ap-
proach, having the system failure mechanism
as a base [17]. FTA starts with an unwanted
event, such as “obtaining unauthorized ac-
cess on a server”, and then determines (de-
ducts) its causes using a backward systematic
process, step by step. To determine the caus-
es, a failure tree is built as a logical represen-
tation of events and the relations between
them, which are necessary and sufficient to
detect the unwanted event, called the top tree
event (top event).

Failure tree represents a qualitative model
which provides a useful set of information
about the causes which led to the manifesta-
tions of the unwanted event - called the criti-
cal event. Also, the tree can be quantitative
evaluated to offer useful information about
the probability of the top tree event to be
produced, as well as the defects’ importance
and the interdependence between them, mod-
eled in the failure tree.
Itself the failure tree represents a graphic
model of various parallel and sequential fail-
ures combinations, combinations which lead
towards the manifestations of the predefined
unwanted event. The defects can be events
assigned to hardware components failures,
human errors, software errors or any other
event which can lead to the manifestation of
the critical event. Thus, the tree describes the
logical interdependency between the primary
events (failures) resulting in the production
of the top tree event.
It is important to understand that a failure
tree is not a model which describes all possi-
ble system failures or all possible causes of
its failure. A tree is built around a critical
event depending on its particular failure
mechanism, and the tree will contain only
those events (failures) which contribute on
making the tree top event possible. More,
those defects are not exhaustive; they cover
only the failures evaluated to be realistic by
the analysts.
Also, it is also know that a fault tree is not by
itself a quantitative model, but represents a
qualitative model which can be evaluated
even from a quantitative point of view.
The result of the failure tree is a binary event,
i.e. either towards success or towards failure.
The graphic model of the tree is compound
from an entities’ complex called “gates”
which serve to allow or to deny the logic path
towards the top event. The gates point to the
necessary relations for producing a “superi-
or” event. The symbol of a gate indicates the
relation type between the input methods nec-
essary for producing the output event.
In Figure 1 is represented an example of fail-
ure tree.

Informatica Economică vol. 16, no. 3/2012 61

Fig. 1. Simplified example of failure tree

2.1.1 Software failure tree analysis (SFTA)
Software failure tree analysis technique rep-
resents a method of identification and docu-
mentation of inferior level software events
which allows to an event on a superior level
(root node) to manifest. If the root event is a
critic one, the FTA technique helps the re-
quests’ defining process, describing the ways
in which the system can reach that uncertain
state [8].
To analyze the software reliability using the
SFTA technique, first we must define the
unwanted event as a root event. All the root
events define the set of root events. Each root
event has its own failure tree. Using logic re-
lations between program modules we can an-
alyze which modules or complex events
(middle events) can cause the manifestation
of the root event. The complex events analy-
sis is continued until a stopping condition it
reached, more exactly on a primary (failed)
event. So, based on this analysis it can be
represented the software failure tree.
A set of cuts represents a group of primary
events (failures) whose manifestations lead to
the falling of the system [11]. A set of cuts is
called a minimal set of cuts only when they
cannot be reduced and can cause the system
failure. The minimal set of cuts provides a
minimal set of successful events required to
satisfy the root node. To obtain a set of min-

imal cuts, we use an algorithm “top-down”,
more precise the Fussell - Vesely algorithm
[3]:
1) Down from the root event, events are

listed taking in consideration the various
logical relationships between them.

2) If the gate underneath the root node is an
OR logical gate, input events are showed
on different rows. Even if it is a logical
gate the input events are showed on a
single row.

3) Taking in consideration the complex

event, , it is also treated as a root event
(same as the step 1) and the step 2 is re-
peated until the primary (failure) event it
is reached.

4) Finally, a few sets of events are obtained
representing all the cutting sets for the
failure tree.

5) To obtain the minimal cut set from all
those cuts obtained on 4th step the next
operations are made: first of all the cuts
are arranged depending of their number
of events where every cut is been viewed
as a product of primary events. Then the
fallowing relations are used to absorb the
redundant cuts. Finally, the minimal cut
set it’s obtained.

Figure 2 shows the graph for obtaining all the
minimal cuts form the failure tree from figure
1. Minimal cut set is composed from {A,B}
and {A,C}

Fig. 2. Minimal Cuts Generation

It’s been also showed that the SFTA tech-
nique can be realized on different levels and
steps of the software developing process. The
highest analyze level it’s represented by the
functional description. On the lowest level of

iG

A A A+ =

A A B A+ ⋅ =
A A A⋅ =

G1 {A, G2}

{A, B}

{A, C}

A faulty

B faulty C faulty

D faulty

B or C faulty

G1

A G2

B C

62 Informatica Economică vol. 16, no. 3/2012

investigation, the SFTA technique analyzes
the source code of the program. In this paper,
it is used the SFTA methodology on the
functional modules level, in order to analyze
the reliability relations and the intrinsic’ re-
quests of the system modules.
In this paper, taking in consideration a soft-
ware system, the modules (components) are
viewed as primary events, and the root node
is associated with the system failure event.
Then, resorting to SFTA technique, we can
find out which are the important modules to
which a higher reliability and security can be
allocated, being more likely to lead the sys-
tem to failure, if they are unreliable.

2.1.2 Using the SFTA technique for soft-
ware reliability allocation [7]
It is consider P as being the maxim failure
probability accepted and the software system
is composed from n modules: m1, m2, …., mn.

Using the SFTA technique will obtain a
number x of minimal cuts, after which the
fallowing algorithm is applied.
Algorithm 1: if a minimal cut contain a
number of i modules, then the probability of
failure of each module from the cut it’s been
given by the relation:

i

m x

P
P

j

/1







≤ , (j = 1,2, ... ,n) (1)

If there are intersections in the minimal cut

set, the failure probabilities can have k

different values, noted with .
Case in which can define

jmP = min(kyyy ,...,, 21) (2)

It must be mentioned that the algorithm use
the geometric mean, in a certain way [7], the
process being a reversed one regarding the
classical analysis of system unavailability us-
ing SFTA [9,pp 619 - 627]. Using the classic
method, by giving the failure probabilities to
each module (data gather in the testing step),
we can find out the failure probability of the
entire system. The methodology used here,

represents the reversed method [7]: knowing
the reliability’ request of the software sys-
tem, from the planning or designing phase,
the reliability of each module it’s been inves-
tigated and determined, along with interde-
pendency between modules.
According to the present algorithm, the prob-
abilities are obtained by applying the

geometric mean which can have unimportant
small errors. So, we can offer, to software
engineers, a comprehensive understanding
regarding the structure of the software sys-
tem and the reliability request of each mod-
ule; information which can help to determine
the most important modules (key modules),
allocating a higher reliability to the last ones.

Example 1:
For the practical explanation of the algo-
rithm, the failure tree from Fig. 3 is exam-
ined for a software system made from six
module m1, m2, …, m6 .

Fig. 3. An example of failure tree

The requirement is that the probability of the

system failure to be . In which way
the reliability must be allocated for each
module?
Using Fussel-Veseley [3] algorithm, all the
cuts are first obtained in Fig. 4, for the tree
from fig. 3. So, the generated cuts are:

, ,

 and

jmP

1 2, ,..., ky y y

jmP

0,03P ≤

1 3{ }K m= 2 1 2{ , }K m m=

3 3 4 5{ , , }K m m m= 4 4 5 6{ , , }K m m m=

Informatica Economică vol. 16, no. 3/2012 63

But, , with other

words it’s subset from , finally ob-

taining the minimal cuts: , ,

.

Fig. 4. Generating the minimal cuts for the tree from Figure 3

Then, appling the 1st relation, the fallowing
results are obtained:

(3)

(4)

(5)

In other words, the maximum failure proba-
bility of each module is:

(0.1, 0.1, 0.01, 0.215, 0.215, 0.215)

So that the reliability of modules must be

(0.9, 0.9, 0.99, 0.785, 0.785, 0.785).

Based on the minimal cut definition and the
analysis made above can reach an important
conclusion: if the number of modules from a
cut is low, then for those modules the highest
reliability must be allocated.
In example 1, because the number of mod-
ules from the minimal cut set follows the re-
lation K1 < K2 < K3, the fallowing conclu-
sion is asserted: m3 is the key module, mean-
ing that is the most important component
from the system, thus must receive the most

reliability, and the m4, m5, m6 modules can
receive a lower reliability than m3.

2.2 Binary decision diagrams
The concept of binary decision diagram
(BDD) was used, in the beginning, in the de-
sign and verification of VSSI (very large
scale integration), as being an efficient meth-
od for the manipulation of Boolean expres-
sions [14,9]. Bryant [2] and other researchers
showed that, in most cases, the BDD tech-
nique use less memory to represent large
Boolean expressions, instead of the common
representation.
The binary decision diagrams are based on
the Shannon decomposition, which makes
the reliability evaluation to be accomplished
very easy from the BDD form. A series of re-
searchers successfully used this method in
the reliability analysis of the failure trees [11,
15, 15 and 7].
The methodology presented in this papers it’s
based on the analysis of failure trees using
binary decision diagram. Besides the tech-
nique already presented in the field’s litera-
ture, the technique presented in this paper
goes one step further, integrating this tech-
nology with the Java advanced programming
techniques and technologies, used to auto-
mate the generation of failure trees and the
generation of some reliability graphic indica-
tors.

3 3 3 4 5m m m m m= + ⋅ ⋅

1K 3K

3{ }m 1 2{ , }m m

4 5 6{ , , }m m m

3

1/1

0,01
3m
P

P  ≤ = 
 

1 2

1/2

0,1
3m m
P

P P  = ≤ = 
 

4 5 6

1/3

0,215
3m m m
P

P P P  = = ≤ = 
 

T

{G1}

{G2}

{G3}

{m3}

{m1, m2}

{G4, G5} {m4, m5, G5}

{m3, m4, m5}

{m4, m5, m6}

64 Informatica Economică vol. 16, no. 3/2012

2.2.1 Shannon Decomposition in ITE (If –
Then - Else)
Shannon decomposition theorem (or the de-
veloping theorem) is presented as fallowing:

 is a function that represents a Boolean

expression defined on the X set, and .
According with the theorem, the relation
could be written as:

 (6)

where is evaluated in and get not-

ed with .
Shannon decomposition is behind the use of
binary decision diagram. To precise describe
this theorem, it’s defined as If-Then-Else
(ITE) as fallowing:

 (7)

where and .

A BDD diagram represents a directed acyclic
graph which has the Shannon decomposition
at its base. The graph has a single root node
and two terminal node, noted with 0 and 1,
representing the two constant expresions.
Each complex node is noted with a x boolean
variable and has two exit branches. These
two branches are called 0-branch (else
branch) and 1-branch (then branch). The
node connected with the 1-branch represents

a boolean expresion when , i.e.,
from the equation (6), while any node con-
nected to a 0-branch indicates a Boolean ex-

pressions when x = 0, meaning in
equation 6. In fact, each complex node from
BDD encrypts if-the-else instructions.
An ordered binary decision diagram (OBDD)
fallows the rule thrugh which the variables
(nodes) are ordered, and the chart depth
crossing is done in an ascending order
following the nodes order. An reduced and
ordered binary decision diagram (ROBDD) is
a OBDD diagram in which each node
represents a different boolean expresion.

In practice, ROBDD diagrams are often used.
To be able to generate a ROBDD diagram,
first we must ordonate the variables, and this
order must remain the same during the
diagram generation process. In this paper, we

note with in case in which the

variable is behind the variable, in the or-
dered node list.
Figure 5, describes two examples of ROBDD
diagram generated for two different boolean
expresion.
Appling the equation (7), the ite forms of the
g and h expressions are:

 (8)

 (9)

(a) (b)

Fig. 5. BDD examples for two Boolean ex-

pressions

In practice it’s been shown that the BDD are
generated using rather logical operations on
the variables instead of applying directly the
Shannon development.

2.3 Quantitative Analysis
Quantitative analysis is performed on the bi-
nary decision diagram (BDD) [12] represent-
ing an exact and efficient method allowing us
to determine many reliability characteristics
of a hardware/software system.
Furthermore we will refer to methods which
use the BDD’s containing complex or/and

f

x X∈

1 0x xf x f x f= == ⋅ + ⋅

f x v=

x vf =

1 2 1 2(, ,)f ite x F F x F x F= = ⋅ + ⋅

1 1xF f == 2 0xF f ==

1x = 1xf =

0xf =

i jx x< jx

ix

1 0 1 2(, ,) (, ,)x xg ite x g g ite x G G= == =

1 0 1 2(, ,) (, ,)x xh ite x h h ite x H H= == =

g a c b c= ⋅ + ⋅
h a b c= ⋅ +

a

b

c

0 1

a

b

c

0 1

Informatica Economică vol. 16, no. 3/2012 65

modular events. The analysis purpose [2] is
that to obtain probability of the critic event
and the intensity of unconditioned failure.

2.3.1 System Unavailability
The probability of the critical events mani-
festation, noted with Qsys it’s obtained
through the sum of probabilities obtained on
disjoint branches from crossing the primary
BDD diagram. An algorithm of depth cross-
ing (depth first) can effectively perform this
calculation; in paper [15] an elaborate de-
scription of this method is presented.
To make this calculation we need to know
the unavailability of each coded event. For
this, the probability of complex events and of
modular ones must be obtained from the pri-
mary events data obtained experimental.
The determination of unavailability complex
events is straightforward, these events being
a combination of two component events. The
calculation depends on how events are com-
bined, under a “AND” logic gate or under a
“OR” gate, thus, if xc is a complex event and
its constituent events are x1 and x2 , then fal-
lowing will exists:

logic gate “AND” : (10)

logic gate “OR”: (11)

where: qc is the probability of achieving the
complex event, and q1 and q2 are the proba-
bilities of realization of x1 and x2 events.
The probabilities of complex events are cal-
culated according to their construction, mak-
ing the process more efficient.
The calculation of modular events probabili-
ties it’s made by determining the probabili-
ties of the “top tree event” manifestation for
each separate module. Also, in this case
depth crossing algorithm is used. Thereby,
first the unavailability of those modules must

be evaluated, which encrypts only the prima-
ry and complex events.
After the probabilities of the complex events
were obtained along with those of the modu-
lar ones, the system unavailability can be
easily determined.

2.3.2 Unconditioned Failure Intensity of
the System
Unconditioned failure intensity of the system
(called the system failure frequency) Wsys(t),
is defined as the probability with which the
critic event (root node) manifest itself at the t
moment and it’s calculate using the fallowing
relation:

(12)

where Gi(q(t)) it’s the critically function (or
the risk function associated to each failure
node) for each component, and wi(t) repre-
sents the unconditioned failure intensity of
one component.
Explicitly, the risk function is defined as the
system probability to be in a critical state, in
relation with the component i and, so, failure
of this component would make the system to
pass from a functionality state to a failure
one. So, it’s result the relation:

(13)

where: Q(1i,q(t))is the probability of system
failure with qi(t)=1, and Q(0i,q(t)) is the
probability of system failure with qi(t)=0.
An efficient method for calculating criticality
takes in consideration the probability of dia-
gram branches before and after the respective
nodes, leading to the fallowing expression:

(14)

where: - is the branch probability
which leaves from the root node towards the

xi node, - the path probability on

branch ‘1’ of the node xi towards terminal
node 1,

1 2cq q q= ⋅

1 2 1 2cq q q q q= + − ⋅

()() () ()sys i i
i

w t G q t w t= ⋅

() () ()() 1 , () 0 , ()i i iG q t Q q t Q q t= −

() () () ()1 0() () () ()
i i ii x x x

n

G q t pr q t po q t po q t = ⋅ − 

()()
ixpr q t

()1 ()
ixpo q t

66 Informatica Economică vol. 16, no. 3/2012

 - the path probability on branch
‘0’ of node xi towards the terminal node 1,
and

 - all nodes corresponding to variable xi
from DDB.
For a single BDD, which codes only the pri-
mary events is necessary a single crossing of

diagram in order to calculate ,

and for each node, from where it can
be obtained the risk function of each primary
event, leading to the unconditioned failure in-
tensity evaluation of the system.
However, this method doesn’t take in consid-
eration the modular and complex events. It is
possible the calculation of Wsys taking in con-
sideration only the primary events coded in
the primary diagram, but this presumes the
knowledge of both the risk of modular and
complex events and the intensities of uncon-
ditioned failures. Even if these are not hard to
gather, they represent some values which
don’t present any utility in the performed
analysis. Rather than those the risk functions
of the primary events will be calculated
which will be used together with their un-
conditioned failures intensities to determine
Wsys .
These risk functions of primary events, from
the primary BDD diagram, can be also calcu-
lated while obtaining the path probabilities
for the primary diagram nodes.

3 Using Java Language in Software Relia-
bility Analysis
Within the methodology for integration of
more reliability techniques in a global
framework it’s been included a Java library,
with the help of which it can be generated a
binary decision diagram (BDD) and different

reliability indicators can be evaluated for a
considered software system
JReliability represents a library written in Ja-
va programming language which has as pur-
pose the reliability evaluation of a system
and have been developed in the Hard-
ware/Software Co-Design Department of the
Computer Science Faculty from Erlangen-
Nuremberg University from Germany, [18].
The library is adapted (but not limited to)
modeling and analysis based on BDD of
complex systems, such us network integrated
systems. Till now various materials have
been published at internationals conferences,
researches based on analysis and modeling
for this library [4, 9, 11].
This paper extends the JReliability library
utilization in order to analyze the system
software reliability.
JReliability library is based on previous de-
veloped libraries, such as: JavaBDD - a Java
library for binary decision diagram manipula-
tion; Ptolemy Plot (java library for plotters).
JReliability allows gathering reliability indi-
cators, such as MTTF, or mission time (MT)
of complex systems which are used using
Boolean functions, efficient represented
through binary decision diagrams.
The library is very extensible so various spe-
cial evaluators for gathering others reliability
indicators can be included along with design-
ing other system representation.
More, JReliability offers a graphic user inter-
face (GUI) to visualize the obtained reliabil-
ity indicators, also the possibility to view the
Boolean representation of the system (the
BDD), using DOT graphic language. Figure
6 presents the result of reliability evaluation
for the failure – tolerant structure of TMR
(Triple-Modular-Redundancy) type.

()0 ()
ixpo q t

n

()
ixpr q 1 ()

ixpo q

0 ()
ixpo q

Informatica Economică vol. 16, no. 3/2012 67

Fig. 6. Analysis of the TMR reliability structure using JReliability

3.1 Operation of JReliability
The idea which underlines the use of JRelia-
bility library is that there is a Model of the
system which describes the system behavior
in the case of failure manifestation, failures
or repairs of the system component. Having
this Model it can generate the overall Relia-
bility Function. In the last step, a set of eval-
uators will obtain reliability indicators, based
on the Model and Reliability Function or, if
possible, only on the Reliability Function.
The principle is schematically described in
Figure 7.

Fig. 7. Functional principle of JReliability

3.2 Reliability Modeling with JReliability
The behavior of a system (failure mecha-
nism) is usually represented by failure trees,

reliability block diagrams (RBD), automated,
Markov chains or Boolean functions. All of
this techniques have in common the fact that
exist, implicitly or explicitly, a data structure
which can observe if the system function
properly, to a certain point, or if is unavaila-
ble, i.e. doesn’t work properly.
JReliability uses a Boolean function to repre-
sent system structural function; function en-
crypted with binary decision diagrams
(BDDs)
To obtain the Reliability Function of the
whole system, it must be known the Reliabil-
ity Function of each component from the sys-
tem. For this purpose, JReliability is using a
data structure called Transformer Function,
which represents mapping of each element
(component) corresponding to his own Reli-
ability Function. JReliability comes with a
wide set of Reliability Function known and
predefined, based on exponential distribu-
tions, Weibull distributions and many others.
Having this knowledge, JReliability structure
can be refined like in the Figure 8.
Note that the BDD which encrypts the Bool-
ean functions combined with the Transform-
er Function represents an approach to obtain
the global Reliability Function. The user can
implement other methods which will lead to
expanding the use of JReliability library.

Model

results

uses

Reliability
Function

Evaluator

68 Informatica Economică vol. 16, no. 3/2012

3.3 Reliability Evaluation
Once the global Reliability Function of the
system has been obtain, it can evaluate dif-
ferent reliability indicators such us: average
lifetime until the failure – MTTF, mission
timing – MT, failure rate, etc., using the so
called Evaluators. An evaluator receive from
input a Reliability Function and evaluate the
wanted indicator either analytic, either by
gathering evidence or simulating.
Some Evaluators requires, also, the access to
Reliability Function of each component from
the system and to structure Boolean functions
of whole system, encrypted in BDD. To
reach this purpose, was developed a special
Reliability Function, called BDD Reliability
Function, which offers the access to Reliabil-
ity Function of each component, and to
whole BDD.

Fig. 8. JReliability extended structure Model
= {BDD, TransformerFunction}

3.4. Binary decision diagrams role in JRe-
liability
The basic model of system behavior, current
in JReliability, is the Boolean function. Data
structure used to efficient encrypt this kind of
functions in JReliability is been given by bi-
nary decision diagrams. An important char-
acteristic of the JReliability library is that it
offers a generic special interface for a series
of BDD libraries, which allows directly using
BDD variables of Java objects to model
components of the real system
BDD allows canonic representation of Bool-
ean functions. BDD represents an acyclic di-

rection graph with root and is made from de-
cision nodes, which corresponds to variables
and two terminal nodes, 0 and 1, which cor-
responds to returned value of Boolean func-
tion. Since each is a binary variable which
can make only 0 and 1 value, each decision
node presents two output ramifications, low
and high, corresponding the case in which
the variable take 0 and 1 values. This process
is presented in fig. 9. Any values attribution
for variables which lead to terminal node 1
corresponds of a functional system, while
any attribution of values for variables which
lead to terminal node 0, corresponding to a
system in a failure state.

Fig. 9. BDD data tip structure example

In this reliability library, each variable corre-
sponds to one component, being represented
by a Java object. Value 0 corresponds to a
failed component and value 1 to a component
in a good state of functionality. Objects
which models the components are directly
connected between them by logic operators,
AND or OR, with which all structure func-
tions is encrypted in a single BDD.

4 Conclusions
SFTA technique used for allocation software
reliability is a clear, simple and efficient. IT
can be used not only at the level of system
analysis, but also at modules and subsystem
analysis level.
Because the construction process of failure
tree offers a comprehensive understanding of
the system, it’s been asked from the software
engineer a better control of relations between

Decisional node 1

Decisional node
2

0 1

low

low

high

low

BDD TransformerFunction

ReliabilityFunction

Evaluator

results results

uses

Informatica Economică vol. 16, no. 3/2012 69

the modules, to remove any factor with an
unsafely potential, so the result of reliability
to be more rational.
More, SFTA represents a deductive graphic
method, describing in a clear way the rela-
tions from the system framework, what
makes easy the identification process of key
modules, with the purpose of reliability allo-
cation.
This paper introduces a new integrated
framework for software reliability analysis,
using analysis and modeling techniques:
- software failure tree method, SFTA;
- binary decision diagram, BDD, for the

SFTA analysis;
- Java evaluation techniques for Java relia-

bility, JReliability
With the help of Java library, JReliability, we
could automate the generation of binary deci-
sion diagram for a considered system, after
applying the SFTA technique. The new
methodology is simple, efficient, having a
considerable development factor, limited on-
ly at software engineer knowledge level
which analyzes the systems reliability.
Other analysis and modeling approaches
(Markov model, simulation models) are nec-
essary for the cases in which a system failure
depends even by the order in which the
events (errors) appears, and not only by their
simple combination.

References
[1] K. S. Brace, R. L. Rudell, and R. E. Bry-

ant, “Efficient implementation of a BDD
package,” in DAC ’90: Proceedings of
the 27th ACM/IEEE Design Automation
Conference, New York, NY, USA, 1990,
pp. 40–45.

[2] R. E. Bryant, “Graph-Based Algorithms
for Boolean Function Manipulation,”
IEEE Trans. Comput. IEEE Transac-
tions on Computers, vol. 35, no. 8, pp.
pp. 677-691, Aug. 1986.

[3] M.H. Chen, M. R. Lyu, and W. E.
Wong, “Effect of code coverage on
software reliability measurement,” IEEE
Trans. Rel. IEEE Transactions on Relia-
bility, vol. 50, no. 2, pp. 165-170, 2001;

[4] S. A. Doyle, “Dependability Assessment
Using Binary Decision Diagrams
(BDDs),” in Proceedings of the Twenty-
Fifth International Symposium on Fault-
Tolerant Computing, 1995, p. 249;

[5] M. Glass, M. Lukasiewycz, F. Reimann,
C. Haubelt, and J. Teich, “Symbolic reli-
ability analysis and optimization of ECU
networks,” in Proceedings of the confer-
ence on Design, automation and test in
Europe, Munich, Germany, 2008, pp.
158-163;

[6] M. Glass, M. Lukasiewycz, F. Reimann,
C. Haubelt, and J. Teich, “Symbolic Re-
liability Analysis of Self-healing Net-
worked Embedded Systems,” in Pro-
ceedings of the 27th international con-
ference on Computer Safety, Reliability,
and Security, Newcastle upon Tyne, UK,
2008, pp. 139-152;

[7] X. Jianwen, F. Kokichi, and H. Yan-
xiang, “Fault Tree Analysis of Software
Reliability Allocation,” in Proceedings
of 7th World Multiconference on System-
ics, Cybernetics and Informatics (SCI
2003), Orlando, USA, 2003, vol. Vol-
ume Ⅱ - Computer Science and Engi-
neering, pp. 460-465;

[8] N. G. Leveson, SafeWare: system safety
and computers. MA, USA: Addison-
Wesley, 1995;

[9] M. R. Lyu, Handbook of software relia-
bility engineering. Los Alamitos, Calif.;
New York: IEEE Computer Society
Press; McGraw Hill, 1996;

[10] M. Towhidnejad, L. Shen, and T. B. Hil-
burn, “Application of Software Fault
Tree Analysis to an Airport Ground
Control System,” in Software Engineer-
ing Research and Practice, 2008, pp. 67-
71;

[11] D. Raheja, Assurance technologies:
principles and practices. New York:
McGraw-Hill, 1991;

[12] K. A. Reay and J. D. Andrews, “A fault
tree analysis strategy using binary deci-
sion diagrams,” Reliability engineering
& system safety., vol. 78, no. 1, pp. 45-
56, 2002;

70 Informatica Economică vol. 16, no. 3/2012

[13] F. Reimann, M. Glass, M. Lukasiewycz,
J. Keinert, C. Haubelt, and J. Teich,
“Symbolic voter placement for dependa-
bility-aware system synthesis,” in Pro-
ceedings of the 6th IEEE/ACM/IFIP in-
ternational conference on Hard-
ware/Software co-design and system
synthesis, Atlanta, GA, USA, 2008, pp.
237-242;

[14] R. Remenyte and J. D. Andrews, “Quali-
tative Analysis of Complex Modularized
Fault Trees Using Binary Decision Dia-
grams,” Proceedings of the Institution of
Mechanical Engineers, Part O: Journal
of Risk and Reliability, vol. 220, no. 1,
pp. 45-53, 2006;

[15] R. M. Sinnamon and J. D. Andrews,
“Quantitative fault tree analysis using

Binary Decision Diagrams,” JOURNAL
EUROPEEN DES SYSTEMES AUTOM-
ATISES, vol. 30, no. 8, pp. 1051-1072,
1996;

[16] R. M. Sinnamon and J. D. Andrews,
“Improved Accuracy in Quantitative
Fault Tree Analysis,” Quality and relia-
bility engineering international., vol. 13,
no. 5, pp. 285-292, 1997;

[17] W. E. Vesely, J. B. Dugan, and J. Frago-
la, “Fault Tree Handbook with Aero-
space Applications,” Director, p. 218,
2002;

[18] *** JReliability (Java reliability library)
– Web: Available at:
http://jreliability.sourceforge.net/

Marian-Pompiliu CRISTESCU has graduated the Faculty of Planning and
Economic Cybernetics in 1985, he holds a PhD diploma in Economics from
2003, obtained at the Faculty of Cybernetics, Statistic and Economic Infor-
matics from the Academy of Economic Studies in Bucharest. Between 1985
and 1991 he worked as an analyst – programmer at the I.A.C.M Computation
Office in Olt – Slatina and at the Electronic Computation Territorial Center in
Sibiu. In 1991 he joined the university teaching system, going through all di-

dactic positions starting with teaching assistant, lecturer in 2001 and assistant professor since
2008. Presently, he is a full assistant professor in Economic Informatics at the Faculty of
Economic Sciences - “Lucian Blaga” University of Sibiu. He is the author of 8 books and
over 60 scientific articles in the field of software quality, programming environments, data
bases and economic informatics systems. He is equally focused on software development, be-
ing the author or co-author of over 25 programming systems for economic management. He
has received many diplomas to certify his achievements in the scientific research domain. He
has participated as a project director or as a leading team member at 8 research contracts. He
is an active member of the scientific and editing committee for the following magazines and
journals: Economic Informatics, Journal of Applied Quantitative Methods, The Economic
Magazine edited by the Academy of Economic Studies of Moldavia – Chişinău and the „Lu-
cian Blaga” University of Sibiu. He has participated in the scientific committee of over 10 na-
tional and international conferences, for the Informatics section and has coordinated the edit-
ing of 2 volumes with the projects of some international scientific conferences.

Vasile-Laurenţiu CIOVICĂ has graduated the Faculty of Science, in 2008
gaining a Bachelor of Science degree in Information Technology with a the-
sis on Translators and Interpreters for Code Generation and Software Optimi-
zation. In 2010 he gained a Master of Management degree in the field of Cy-
bernetics, Statistics and Economic Informatics with a thesis on Intelligent
Agents. He is currently a PhD student at Academy of Economic Studies in
Bucharest. Between 2006 and 2010 he worked as a programmer at a company

from Sibiu. Since January 2010 he works as an Independent Consultant. He is the author and

Informatica Economică vol. 16, no. 3/2012 71

co-author of more than 12 scientific articles in the field of software quality and optimization,
code generation techniques, collaborative systems, data bases, programming environments
and techniques, mobile platforms and economic informatics systems. Besides the scientific
activity he is also an active software developer, being the author of few applications. Some of
the created applications were presented to different student’s scientific conferences where he
was distinguished with 1 excellence award, 6 first awards, 1 second award and 2 third awards.
His area of interests includes among others: software quality, optimization techniques and al-
gorithms, code generation techniques, economic informatics systems, intelligent and collabo-
rative systems, mobile platforms.

Ion – Liviu CIOVICĂ has graduated the Faculty of Science, in 2009 gaining
a Bachelor of Science degree in Information Technology with a thesis on
“Software application for medical diagnosis assisted by computer”. He is cur-
rently a student at the Faculty of Science master program, field of Cybernet-
ics, Statistics and Economic Informatics.

