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AbstractAbstractAbstractAbstract � “Discriminating capacity” is defined as a property of a test, measuring device or scholastic exam, which enables us to segregate and 
categorize objects or people according to their measured values. The concept, anticipated by Bloom and derived here from Ferguson’s index of 
classificatory power, is developed upon three bases: the probability of categorizing an object (or person) in its proper measuring interval; the 
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test theory. 
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IntroductionIntroductionIntroductionIntroduction    
A 1-meter measuring stick graduated in cm allows one 
to categorize all possible one-dimensional objects 
according to their lengths in 101 different lots: those 
having less than 0.01 m, those ranging from 0.01 to less 
than 0.02, etc., up to those having 1.00 or more. 
Similarly, a bathroom scale in kilograms, graduated in 
½ kg and ranging up to 150 kg, can separate people or 
objects according to their masses in 301 different 
categories, In how many categories can we allocate 
pupils from their scores in a math exam? How many 
truly different intensity levels can we obtain from a 
psychological scale of suicide propensity? How many 
distinct categories of cognitive ability can produce 
some particular IQ test? 

The “discriminating capacity” of a measuring 
instrument or test is the number of categories used by 
the test or instrument among which it can classify 
objects. For a purely physical instrument, such as the 
measuring stick or bathroom scale, discriminating 
capacity, tentatively noted D′, is easily seen to be : 

 , (1) 

i.e. the quotient of the range (R) of magnitudes covered 
over the unit of measurement (u)1. However, this 

                                                                    
1 More precisely, one should write: D′ = R / u + 1, where  x  
denotes the integer part of x. Thus, for a 1-meter measuring stick in 

0,01 graduation marks, D′ = 1 / 0.01 + 1 = 101. 

simple definition faces two drawbacks. As a first 
problem, in most measuring instruments and objects to 
be measured, the effective range (R) is both indefinite 
and ambiguous: 
� indefinite, because the measuring stick, for instance, 

can be used end to end so that the virtual range is 
infinite and, more to the point, in psychological, 
cognitive or biological phenomena, there are no real, 
i.e. definite, minimum or maximum and 
determination of the range is practically unfeasible; 

� ambiguous, because, for a given value of R, the 
distribution of objects or persons in the target 
population varies across the range, or from one 
category to another, the central zone usually being 
more densely occupied than the left and right tails, 
whereas discriminating capacity should indicate the 
number of effective categories, or the number of 
categories effectively occupied, throughout the 
measuring instrument. 
A second, twofold difficulty pertains to “u”, the unit 

of measurement. It is generally undefined in 
educational and psychological measurement2, and the 
allocation of a person to a particular unit score, e.g. IQ 
= 112, is largely unreliable, on account of a significant 
“measurement error” typical in most of our procedures. 

The arguments outlined above lead us to tackle in a 

                                                                    
2 The measurement unit is only stipulated to 1 (e.g. number of correct 
responses, total count of item scores), as in the raw scores in IQ 
evaluation, in scholastic exams, in personality scales, etc. 
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more realistic manner the concept of discriminating 
capacity, by taking into account the instrument’s 
measurement error, or its reliability (noted ρXX) and by 
stipulating the normal, Gaussian, law as a distribution 
template for population’s scores. With these conditions 
in mind, we define the discriminating capacity of a 
measuring instrument as the number of efficacious 
value intervals or categories, among which a measuring 
instrument having reliability ρXX can allocate a normal 
distributed population of people so that a measured 
person have a probability at least ½ of being put in 
his/her proper interval or category. 

The discriminating capacity, that we shall note D, is 
given by : 

 . (2) 

In the following, we develop and justify the 
mathematical bases of the concept and formula, first 
paying tribute to the authors who earlier have 
addressed the same issue. 

Historical notesHistorical notesHistorical notesHistorical notes    
No published article but one do refer to a concept 
similar to our concept of discriminating capacity: we 
will quote B. S. Bloom’s work later. However, related 
ideas can be found in the earlier literature, particularly 
Ferguson (1949)’s “classificatory power”, on which our 
concept is partly based. 

In their treatise “Métrologie générale” (1966), 
Bassière and Gaignebet refer only verbally to an 
instrument’s information capacity, defined as the 
number of different states it can take and transmit. 
“Information capacity of an instrument depends both 
on its resolution power and its response time which 
limits the number of measurements per time unit” (pp. 
140-141). Mention of time, or of an information rate 
per time unit, connotes the concept of “channel 
capacity” in information theory (e.g. see Ralston & 
Reilley, 1983), albeit in our context it stirs up a notional 
mix-up. 

In other respects, specialists of psychological and 
educational measurements have since long ago 
acknowledged the effect of the success rates of items on 
the spread or variance of the test’s scores, hence its 
discriminating capacity. This precise issue, which 
regards the analysis and selection of items to be 
included in a simple, one-dimensional scale with the 
aim of producing a fair distribution of total scores, 
appears for instance in Davis (1951) and Anastasi 

(1997); we may summarize it as follows. If the inter-
correlations among items are null or weak, one must 
select those items having a median success level, e.g. a 
level of ½ for dichotomous items. On the opposite, if 
items are highly (and positively) correlated, thus 
discriminating the same examinees, one should choose 
an array of items with well spread, stepped-up 
difficulty levels. Although they are highly relevant to 
our purpose, these considerations on item selection and 
test construction take place logically before, or under, 
the concept of discriminating capacity, a macroscopic 
property of the measuring instrument. 

The term “discriminating power” comes up in some 
classical textbooks on psychometrics, in a quite 
specialized meaning, referring to an item’s effectiveness 
in discriminating the “best” from the “worst” 
respondents, according to the measured attribute 
(Henrysson, 1971). This property of an item is 
translated in a number of different indices, such as the 
so-called “homogeneity index”, the biserial correlation 
coefficient (between the item and the total score), etc. 
(see also Guilford, 1954). It also appears in item 
response theory (Hambleton, Swaminathan & Rogers, 
1991) in the guise of parameter “a”, the multiplicative 
component of the item response function. 

Ferguson’s 1949 paper, “On the theory of test 
discrimination”, suggests to consider and quantify the 
minute spread of scores produced by a test or of data 
from any measuring instrument; Ferguson proposes 
also a “discrimination coefficient” (see also Guilford, 
1954). He argues that, if n examinees’ scores are 
scattered across k value categories, with f1, f2, …, fk 
scores per category, the resultant discriminations equal 
the number of paired non-null differences among 
examinees allowed by the test. This number, computed 
as: 

 , (3) 

thus reflects the instrument’s effectiveness to 
discriminate the measured individuals or objects one 
from the other. This number can be obtained more 
simply by: 

 . (4)  

Quantity Nd depends basically on three factors : the 
total number (n) of measurements, the number (k) of 
different values (or measurement categories) available, 
and the distribution of individual scores among value 
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categories (f1, f2, …). Holding n constant, the 
discriminating power may grow with k, but it revolves 
essentially around the distribution of frequencies fj. 
Indeed, the sole adjunction of one or more value 
categories, above k, will not induce additional 
discriminations except if these new categories are 
effectively occupied. Moreover, the maximum number 
of discriminations allowed with a k-category system 
occurs when the categories are evenly occupied, i.e. 
when f1 = f2 = … = fk. This maximum number is, 
approximately: 

  (5) 

Ferguson’s (1949) “discrimination coefficient”, or index 
of classificatory power, is then the quotient of the 
effective number of discriminations allowed by the test 
(Nd) on the virtual maximum number (max Nd), i.e.: 

 . (6) 

Thurlow, in a long article published later (in 1950), 
claims co-authorship of Ferguson’s concept. 
Interestingly, Thurlow puts in the notion of “stable 
discriminations”, that is, differences that keep on re-
test, by contrast to unstable or reverting 
discriminations. He links up this notion to the test or 
instrument’s reliability. However, Thurlow does not 
pursue this idea further. 
Bloom’s proposal. Finally, in a paper published in 1942, 
Bloom propounded his concept of discriminating 
capacity, without lending it a name, and gave the 
formula: 

 , (7) 

where σX and ρXX are the test’s standard deviation and 
reliability coefficient respectively. In his words, “This 
ratio indicates the number of categories which may be 
obtained from this range of test scores so that the 
chances of a point in one category overlapping with the 
corresponding point in the next category is about one in 
one thousand.” (p. 521). Bloom also gives, for 
illustration, the case of a normal distribution of scores, 
where “the range of scores on a test is six times the 
standard deviation” (p. 521), simplifying the above 
formula to . This article of Bloom (1942) 
anticipated Laurencelle (1997)’s own proposal3. 

                                                                    
3 At the time of publication (1997), the author was not aware of 

Bloom’s unnamed concept is indeed, by its 
description and planned utilization, a “capacity”, 
referring to the number of value categories, or set 
cardinality of values, conveyed by the test. However, 
Bloom’s 1942 paper evades three significant issues, on 
top of not deriving explicitly his proposed formula. He 
does not link his “number of categories” with the idea of 
discriminating among examinees, as Ferguson (1949) 
does. He does not explain how he obtains his 
probability statement (“one in one thousand”) nor how 
this probability links with the other parameters of his 
formula. Finally, he supposes known the “range of 
scores” from a test: is it a virtual range, i.e. from the 
absolute minimum to the absolute maximum possible 
score, an empirical range derived from actual 
measurements, etc.? And, in his given example, he puts 
the range of a normal distribution as 6 times its 
standard deviation, an unjustified assertion. 

Development of the concept of discriminating capacityDevelopment of the concept of discriminating capacityDevelopment of the concept of discriminating capacityDevelopment of the concept of discriminating capacity    
Our concept of discriminating capacity is essentially 
based on Ferguson’s index of classificatory power. 
However, we generalized Ferguson’s concept, which 
referred to a frequency distribution, to apply it to any 
probability distribution of value intervals and then 
invert it in order to determine the corresponding 
number k* of efficacious intervals or value categories. 
Furthermore, discriminating capacity is also based on 
the measuring instrument’s reliability, embodied by its 
reliability coefficient ρXX, through the specification of a 
probability (noted γ) of categorizing each measured 
object in its proper category or interval. The stages of 
our development of the concept appear in the following 
paragraphs. 
Correct categorization of a person, or object. Let’s 
suppose a measurement context wherein some 
attribute is measured in a person or an object, through 
a measuring device or test. The test, applied to the 
person, renders a measure, Xi; the unit of measurement 
is not specified, and the test’s reliability coefficient ρXX 
is known. 

For a given object or person i, the precise 
magnitude, or true value Ti, exists4, and each 
measurement Xi is a valid estimate of it. In fact, Xi may 
deviate more or less from Ti depending on whether the 

                                                                                                                
Bloom’s 1942 paper nor of any other reference to it, whether direct or 
indirect. 
4 A constructive definition of Ti is [ΣXi,o] / no → Ti when no → ∞, object 
i being repeatedly measured on an indefinite number of occasions o 
(Lord & Novick, 1968 ; Laurencelle, 1998). 
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test’s precision, or reliability, is low or high. The greater 
the value interval encompassing Ti , the higher the 
probability that Xi lies within its limits. Let L be the 
length of this interval and γ, the probability of the said 
interval containing Xi, we have: 

 . (8) 

Probability γ that an object be classified within its 
proper interval, i.e. in the immediate vicinity of its true 
value Ti, is a direct function of L, the interval length. In 
the limit, L = 0 would crush to zero the probability that 
Xi be in the vicinity of Ti : indeed, it would be fanciful to 
think that, with an instrument having an infinitely 
divisible scale, the measured value Xi be equal to the 
true Ti unto its last decimal digit. In order to numeri-
cally categorize a measured object with some degree of 
plausibility, one needs that the probability of a correct 
categorization be established and sufficient, which 
entails in turn the determination of a sufficient interval 
length. 
Determining a sufficient interval length. The difference 
between the observed Xi and hypothesized true Ti value 
is usually dubbed “measurement error” and noted ε 
(Lord & Novick, 1968 ; Laurencelle, 1998). Postulated 
to be a random variable, the expected value of ε if 0, its 
variance σε2, and its distribution symmetrical. It is 
expressly for this difference ε between estimate and 
true value that the normal random model of 
distribution was reinvented by Gauss in 1809 (Stigler, 
1986). Thus, we may legitimately relate the ε variable 
to the normal (or Gaussian) model and tag its 
distribution as ε ~ N(0, σε2). In this context, the 
measurement of object i at occasion o is expressed in 
the model: 

  (9) 

Moreover, denoting a standard normal variable by Z, i.e. 
Z ~ N(0, 1), we can rewrite (8) more explicitly, as: 

  (10) 

Fixing probability γ to some predetermined value, we 
may invert (10) and find the interval length L needed 
so that an observed Xi measurement be rightly 
categorized with probability at least γ. This inversion is 
simply: 

 ; (11) 

in the above expression, z[½(1+γ)] is the 100×½(1+γ) 
percentile of the standard normal distribution. 

Finally, we can transform the obtained sufficient 
interval length L to a standard scale, with mean 0 and 
variance 1, by dividing both parts of equation (11) by 
the instrument’s standard deviation σX. As the 
reliability coefficient ρXX is equally defined by: 

 , (12) 

quantity σε may be written as σX . Thus, the 
standardized sufficient interval length, λ(γ), becomes: 

 . (13) 

With a measurement scale X categorized, or cut up, in 
value intervals of common length λ(γ)×σX, the Xi 
measurement of some object would be assigned to its 
proper category or interval with probability γ or better. 

The next question to answer is how many such 
sufficient intervals does a measurement scale contain. 
The number of intervals in a probability distribution 
and the efficacious intervals. Let’s take up an ideal 
measurement process, rendering an X variable with 
perfect reliability (ρXX = 1) and having in some 
population a given probability distribution f(X) with 
distribution function . The 
probability that X be exactly equal to some value x is 
null, by definition. On the other hand, the probability 
that X falls in some value interval, for example pa,b = 
Pr{ X ∈ (a, b) }, b > a, is easily computed as: 

 ; (14) 

this probability can be calculated for every interval in X. 
Now, Ferguson’s measure of discrimination or 

classificatory power, more precisely his Nd quantity (4), 
is calculated from the actual frequencies of 
observations in the various intervals of values, rather 
than from their probabilities. Let’s imagine a data 
sample of size n, the n observations Xi being distributed 
with respective frequency fj in interval j. For the jth 
interval, the expected value jf̂ , or the average of fj 
across all possible samples of size n in the population, 
we have : 

 . (15) 
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With k value intervals, Ferguson’s expression (4) 
becomes, asymptotically and for an hypothetical sample 
of size n : 

  (16) 

As sample size n is arbitrary and constant “2” of no 
import, we may simplify formula (16) so that: 

 , (17)  

this quantity Ck being proportional (instead of equal) to 
the number of discriminations allowed by the 
probability distribution for the actual set of value 
intervals. Following Ferguson (1949) and Thurlow 
(1950), it is easy to show that the maximum number of 
discriminations, the maximum possible value of (17), 
occurs when all probabilities are equal5, i.e. when pj = 
1/k for every j, this maximum being : 

  . (18) 

Thus, the maximum number of discriminations is 
obtained when all frequencies or, equivalently, all 
probabilities, are set equal: we shall designate such 
intervals having equal probabilities “efficacious 
intervals”, and denote the number of efficacious 
intervals of a measuring system by k*. The following 
rule enables us to find k* in a given situation. Let Ck 
defined by (17), the number of discriminations allowed 
by a measuring system with frequency distribution { fj }. 
Then, equalling Ck = max Ck* and inverting (18), we get: 

 ; (19) 

index k* indicates the number of efficacious intervals, 
i.e. virtual value intervals with equal probability 
content such that they produce the actual number of 
discriminations allowed by the measuring system. In 
other words, if our system were cut up in k* value 
intervals, each with an occupancy value proportional to 
1/k*, it would permit Ck discriminations among objects, 

                                                                    
5 A simple demonstration of this theorem is the following. Let var(pj), 

the variance among the pj’s, and k×var(pj) = Σ pj2 – [Σ pj]2/k. Because 

Σ pj = 1, we have k×var(pj) + 1/k = Σ pj2. Now, by definition of 

variance, var(pj) ≥ 0. The minimum value of Σ pj2 corresponds to 
var(pj) =0 ; with all pj values equal and their sum adding to 1, we 
have pj = 1/k for every j. 

Ck being the observed parameter. 
It is important to note that the calculation of k* 

depends only marginally on the number k of original 
intervals in the measuring system: this number k may 
even keep undetermined. We may then rewrite 
definitions (17) and (19) by generalizing them so that 
they apply to unbounded measuring systems, having an 
indeterminate number of intervals: such is the normal 
probability distribution, which extends to both infinites. 
The generalized definitions are simply: 

  (17′) 

and: 

  (19′) 

The number of efficacious intervals with correct 
categorization. The preceding discussion, on the 
number k* of efficacious intervals, revolved around an 
ideal measuring system, in which reliability is perfect 
and there is no “measurement error”. In such a system, 
the value intervals can be subdivided ad libitum and be 
made indefinitely fine, and the categorized objects will 
still be correctly placed. However, actual measurements 
are very rarely “pure”, and the reliability value (ρXX) 
which characterizes them is generally less than 1. 

Consequently, in order that the measured values Xi 
taken from a test or measuring system with reliability 
ρXX give rise to trustworthy categorizations, one must 
take into account the measurement error in each case. 
We have shown earlier that it is feasible to fix an 
interval length, LX(γ) = λ(γ)×σX, such that the 
probability of categorizing a measured object in its 
proper interval is at least γ. We may then segment in 
one way or another the X axis into a sequence of 
bordering value intervals of length LX(γ). Taking up the 
hypothetical distribution already mentioned, we can 
find with (14) the probability of occurrence in each 
interval j, then compute (17′) and finally (19′) ; this last 
calculation gives us index k*, the number of efficacious 
intervals typical of this measuring system, co-
determined by the prescribed γ parameter (the 
probability of correct categorizations) and the system’s 
reliability coefficient ρXX. 
Normal probability model and “discriminating 
capacity”. The ideas and formulas outlined above allow 
the determination of k* for each specific measuring 
process, based on its reliability ρXX, the distribution of 
values in the “population”, whether empirical or 
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theoretical, and for a given probability γ of right 
categorization. Yet, in order to arrive at a sharper and 
better framed concept, we shall put forward two major 
simplifications, one on the distribution of X, and the 
other on the γ parameter. 

In the first place, it is handy, and often justifiable, to 
posit a reference model for the distribution of values X 
in some population, such a model substituting for the 
real, usually unknown, distribution and somewhat 
“idealizing” it. We refer of course to the normal 
probability model, which we shall adopt and which is 
generally used in the psychometric domain and 
elsewhere and is taken to represent the distribution of 
psychological, biological and other quantities. 

We must note that, as regards its discriminating 
capacity, the normal model does not stand out over 
other possible models. Here is how we may 
characterize the “discriminating power” of probability 
model f (where f(x) ≥ 0 for all x and ∫ f(x) dx = 1). For a 
measurement system where ρXX = 1, the value intervals, 
say of length u, may be indefinitely subdivided, so that 
k*(f, u) increases indefinitely. Let’s standardize this 
number by multiplying it by length u, and obtain: 

 . (20) 

Following (19′), the value of k*(f, u) can be estimated 
by: 

 , (21) 

where σ is the distribution model f ’s standard 
deviation, so that: 

  when u → 0 . (22) 

With large values of u, i.e. u / σ ~ O(1), a more precise 
evaluation of k*(f, u) will obtain with: 

 . (23) 

The (asymptotic) value of Kf in the case of the normal 
probability model is  = 3.5449. Student’s t 
distribution with parameter ν = 3 (“degrees of 
freedom”) has 2.5133, and 3.1094 with ν = 5; 
symmetrical Beta β(3,3) distribution gets K = = 
3.7041, whereas the lopsided β(1,5) gets 2.5559. The 
“optimal” uniform distribution, aliased as β(1,1), 
obtains K = 3.4641 ( = ), a value slightly less than 
the normal’s (and one that we may explain away by the 
fact that, in spite of its optimality due to equal density 
intervals, the distribution of doubly bounded, contrarily 
to the normal density). 

The second decision concerns parameter γ, the 
probability of correctly placing a given measurement in 
its proper value category. Two candidate values come 
to mind, γ =  ⅓ and γ = ½. The choice of ⅓ could be 
justified in that there would be an equal chance of a 
datum being categorized in its own category, or in some 
higher-valued or some lower-valued category; on the 
other hand, with this choice, there would be twice more 
chance that the datum be thrown in a category other 
than its own. For γ = ½, the chance of placing the 
datum correctly comes even, the remaining ½ covering 
the bordering intervals on either side. Table 1 indicates 
the layout of probabilities in the vicinity of the proper 
category (labelled “0”), for both values of γ : recall that 
the generating function for the error variable 
responsible for the fluctuation in categorizing is 
stipulated to be the normal probability density. For 
obvious reasons, we chose γ = ½. 

Hence, we submit our concept of discriminating 
capacity Dρ in the explicit parameter setting given by: 

 . (24) 

For some value of ρXX, or equivalently of σε =  in 
a standardized scale X′, the standardized interval length 
λ(½) is obtained with (13). We use this length in 
segmenting the standardized X′ axis, to form the system 
of contiguous intervals such as: 

Table 1Table 1Table 1Table 1 ���� Probabilities for categorizing in the “correct” and in bordering value intervals, for two 
probability levels (γ) (standardized normal error model) 
 

 
-4 -3 -2 -1 Correct 

(0) 
1 2 3 4 

γ = ⅓ .0013 .0143 .0825 .2352 .3333 .2352 .0825 .0143 .0013 
γ = ½ .0000 .0004 .0211 .2285 .5000 .2285 .0211 .0004 .0000 
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  (25) 

Probabilities pj for each interval can then be obtained 
and their squared values summed up to produce index 
C (17′) : summation may start in the middle 0-centered 
interval, then proceed bilaterally, the sum converging 
rapidly as the interval borders reach ±3. Formula (19′) 
then supplies k* = Dρ, the searched for value of 
discriminating capacity. Some illustrative values of Dρ 
are shown in Table 2. 
Modeling the Dρ function. Function Dρ rises but lazily 
for lower values of parameter ρXX, and it takes up speed 
at about ρXX = 0.50, the upper half of ρ (i.e. 0.50 – 1.00) 
being altogether the most interesting for measurement 
specialists. Transformation g(ρXX) = 

XX
1/1 ρ−  

brings about almost perfect collinearity with Dρ, with R2 
≥ 0,9999 for any γ ≥ ⅓. In the instance of our Dρ with γ 
= ½, we obtain (approximately6): 

  . (26) 

An alternate, imitative, function, is given by: 

 ; (27) 

This function correlates highly (R2 > 0,999) with the 
former and it covers the complete range, reaching 
down to ρXX = 0 (with the concomitant D0 = 2), an asset 
not shared by formula (26). 

Recalling the equations in (12), we see that another 
expression for our index Dρ is: 

 , (28) 

with Cγ a slope coefficient depending upon γ and 
identifying the regression equation. This form (28) 
echoes in some way our former naïve D′ = R / u 

                                                                    
6 The transformed functions, though they are nearly linear, can be 
minimized on different criteria, thus entailing some arbitrariness in 

the choice of a solution. Let alone the actual calculation of Dρ for some 

specific value of ρ, we retained (for the set of γ values shown above) a 
solution that seemed to minimize the differences between actual and 

predicted values of Dρ, inside the range ρ = [0,50 ; 0,95]. The reader 
may prefer some other solution strategy. 

formula (1), the numerator of which bears on the 
scatter of values on the X axis and the denominator 
mirroring the precision, either structural or statistical, 
of the measuring device. Expression (28) suggests yet 
another, more profound, analogy, now with a test’s 
information function (Baker & Kim, 2004; Hambleton et 
al., 1991): 

 ; (29) 

the expected value of this function (averaged over the θ 
domain) is surely correlated with capacity (28), be it 
only because of the obvious mathematical relatedness 
of the concepts. 

A short exampleA short exampleA short exampleA short example    
As a fictitious example, let’s take an IQ test of 
intellectual or cognitive abilities. Tests of that sort are 
commercially available, their scores distributed usually 
as N(100, 152), and they offer a reliability value around 
ρXX = 0.90. Rewriting (11) equivalently, the interval 
length needed to categorize some measured person in 
its proper interval with probability γ is: 

 . (30) 

With our values of parameters σX, ρXX and γ, we get: 

  (31) 

where z[0.75] ≈ 0.6745. The conventional and arbitrary 
unit of the IQ scale is 1 “point”. Had we re-defined this 
unit (e.g. via conversion tables for standard scores) in 
such a way that it includes 6.40 original “points”, the 
revised IQ scale would allow one to contend that one’s 
measured score is the right one with probability ½. 
Furthermore, the number of efficacious categories 
managed through this measuring instrument is  
D ≈ 2.67 /  ≈ 8.44 (formula 26) or 2 × 

 ≈ 8.72 (formula 27) : thus, it can 
classify the whole population as effectively as if their 
scores were distributed among about 9 equally sized 
categories. 

Table 2Table 2Table 2Table 2    ���� Illustrative values of Dρ (γ = ½) 
 

ρXX : .50 .55 .60 .65 .70 .75 .80 .85 .90 .95 
Dρ : 3.86 4.05 4.28 4.56 4.91 5.35 5.96 6.86 8.37 11.80 
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Concluding remarksConcluding remarksConcluding remarksConcluding remarks    
The ability to segregate and categorize objects or 
people according to their values is a fundamental 
property of measurement. The concept of 
discriminating capacity proposed here, in line with 
Bloom (1942)’s own proposition, puts this property in 
an operational form, also taking into account 
measurement uncertainty and error as it is understood 
in classical test theory. 

Beyond Bloom’s (1942) inceptive, and incomplete, 
theorization, our investigation of the concept led us to 
another interesting concept, characterizing too a 
measurement system: the sufficient interval length, 
L(γ). In the social and biological realms, wherein 
measurements frequently present no accountable or 
substantive measurement unit, quantity L(γ), a sort of 
yardstick for a γ-defined length on the measurement 
axis, could well serve as a substitute. 

Discriminating capacity, as presented here, indicates 
the ability of a measuring instrument to distribute 
objects or people among a set of neatly defined 
categories having quasi equal sizes or capacities. The 
concept, which denotes a property of a continuous-
valued measurement system, could be extended to refer 
to a discrete-valued or closed category system, nominal 
scale or non-numeric descriptive process, such as can 
be found in social investigations and so-called 
qualitative observational studies. This generalization, 
subsuming also that of Ferguson’s classificatory power, 
would give us a first metrological tool bridging the gap 
between discrete- and continuous-valued observational 
systems and, perhaps, help in reconciling measurement 
specialists in the pure vs. social sciences. 
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