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ABSTRACT. Combining experimental and computational method for determination of the singular and the non-
singular stress terms along the front of the 3D surface crack is proposed. Evaluation of the terms is based on 
comprehensive comparison between deformation responses (for measurement points on the surface) obtained 
experimentally and from numerical solutions of the corresponding boundary problem of solid mechanics. The 
proposed approach allows carrying out an adequate and a comprehensive assessment of stress fields in the 
vicinity of the surface crack front. 
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INTRODUCTION 
 

ne of the main trends in the development of methods for assessing of strength and lifetime of damaged 
structures, working under extreme loading conditions, is the application of fracture mechanics and, in particular, 
the methods for an analysis of the crack initiation process in the engineering structure. In this case, it is very 

important to estimate the singular and the non-singular stress terms in the Williams series solution along the crack front. It 
should be noted that these stress terms are dependent on crack and body configurations as well as loading conditions (e.g., 
[1, 2]).  At the same time, operational loading conditions of engineering components can strongly differ from design 
conditions due to crack- or notch-like defects, assembly and residual stress, etc.  
To solve this problem, combining experimental and computational method can be employed for estimating operational 
loading conditions, the singular and the non-singular stress terms along the 3D surface crack front. The present paper 
deals with the approach which is based on comprehensive comparison between deformation responses (for measurement 
points on the surface of the engineering components) obtained experimentally and from numerical solutions of the 
corresponding boundary problem of solid mechanics. As a result, loading conditions, distribution of the singular (KI, KII) 
and the non-singular (Txx, Tzz) terms along the surface crack front can be estimated. 
  
 
STATEMENT OF THE PROBLEM 
 

he object of research and numerical simulation (by means of FEM) is an elastic half-space with a semi-elliptical 
crack (length 2a, depth b) orthogonal to the surface. Homogeneous tensile stresses σx, σy are applied in two 
orthogonal directions. Displacement fields on the surface for certain specimen configuration can be measured by 

electronic speckle interferometry (ESI) or computed by numerical experiment. It is necessary to estimate the stress 
intensity factor and the T-stress terms along the crack front by means of an analysis of these displacement fields. The 
problem can be solved by two steps. Firstly, the parameters b, σx, σy should be estimated by the following procedure [3]: 
 generation of the experimental data (ei*) for the displacement fields; 
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 creation so-called “response bank” which is mathematical analog of the FE model of the half-space with the surface 
crack. It allows calculating the values of the displacements in measurement points (ei) corresponding to ei* in case 
arbitrary values of the searching parameters (b, σx, σy); 

 solution of a minimization problem. Variation of the searching parameters is carrying out for achievement of the 
minimum of objective function which describes a discrepancy between ei* and ei; 

 assessment of ei*-scatter effect on determination accuracy of the searching parameters at different conditions of 
experimental measurements and minimization problem solution. 

The second step is connected with calculation of stress fields in the vicinity of the crack front at the parameters b, σx, σy 
which are defined by the first step. As results, distribution of the singular (KI, KII) and the non-singular (Txx, Tzz) terms 
along the crack front are calculated.  
  
 
NUMERICAL SIMULATION 
 

he proposed method is realized in the case of a numerical experiment. Generation of the original data for the 
displacement fields is performed by numerical simulation of the probe hole in the vicinity of the surface crack.  
The finite element model of the elastic half-space under biaxial loading (Fig. 1a) is built in ANSYS software 

environment in the form of a prismatic body of finite dimensions, including the surface crack and volume of the probe 
hole (Fig. 1b). It should be noted that standard ANSYS procedure does not allow building a crack in this area, because its 
front is located over several volumes. Therefore, special multipurpose macros are created to build the planar crack with 
arbitrarily 3D-orientation and front geometry along which grid of singular elements is constructed in finite element model. 
Loading conditions are the following: σx = 100 MPa, σy = 200 MPa. The following sizes are also used in numerical 
simulation: the length of semi-elliptical crack 2a =20 mm and the depth b =(2/3)a = 6.67 mm, the diameter and depth of 
the probe hole d = t = 2 mm.  
 

 
Figure 1: The elastic half-space with a semi-elliptical crack and a probe hole (a) and finite element model of the output crack on the 
surface (b). 
 

 
 

                                    (a)                                                             (b)                                                                (c) 
 

Figure 2: The displacement field u, v, w (a, b, c, respectively) due to the to the formation of the hole in the vicinity of the surface crack 
tip. 
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The computed fields of tangential (u, v) and normal (w) displacement (Fig. 2), analogues of which in practice can be 
measured using the ESI, are obtained from the solution of the direct problem including calculation of stress and strain 
states due to the formation of  the hole in the vicinity of the surface crack tip (Fig. 1a). 
Further, the displacement fields u, v, w are used as the original experimental data to compute the strain response ei* at 
corresponding points of the body under external load. The resulting array ei* is employed for the calculation of parameters 
Pj = {b, σx, σy} by minimization of the objective function I(ei*,ei) comparing experimental and numerical data. The details 
of the above-mentioned procedure are given in Ref. [3]. 
  
 
ACCURACY OF THE RESULTS 
 

he objective function I(ei*,ei) reached the minimum magnitude at the following condition Pj = Pj *. The objective 
function I is taken as root-mean square norm (IRMS) or maximum norm (Imax) reflecting the divergence between 
calculated ei and experimental ei* data. The procedure of searching the minimum of the objective function is based 

on simplex method for function minimization [4] which is widely used in practice. 
To analyze the stability of the solution and to assess the sensitivity of the procedure to the error of the experimental data, 
series of numerical experiments were carried out to determine the parameters Pj under various conditions of experimental 
measurements and solution of the minimization problem. Variation of the experimental error (δe), the number of 

measurement points (N), and the area of their location (described by normalized radius vector r / ρ , where ρ is radius of 

the hole) is used to estimate the accuracy of the obtained results.  
Some numerical results for the expectation and variation of the normalized parameters 

* * *
x x x y y yb b / b , / , /         are summarized in Tab. 1. It can be seen that the proposed method gives very high 

accuracy. 
 

 Conditions Expectation Variation 

№ r / ρ  N δ, % I b  x y b  x  y  
1 [2; 3] 

[2; 3] 
55 
55 
55 
55 

10 
10 
10 
10 

IRMS 1.013 0.998 0.988 0.081 0.036 0.049 
2 Imax 1.010 0.996 0.988 0.109 0.061 0.067 
3 [1; 2] 

[1; 2] 
IRMS 1.049 0.994 0.982 0.216 0.091 0.116 

4 Imax 1.075 0.989 0.975 0.262 0.093 0.128 
5 [2; 3] 

[2; 3] 
[2; 3] 
[2; 3] 

110 
110 
110 

10 IRMS 1.003 0.992 0.992 0.051 0.023 0.030 
6 20 

20 
IRMS 1.030 0.970 0.959 0.124 0.055 0.071 

7 Imax 1.054 0.093 0.932 0.097 0.040 0.055 
8 60 20 IRMS 0.996 0.978 0.078 0.081 0.048 0.054 

 

Table 1: The influence of the experimental error on the values of the unknown parameters (numerical example). 
 
 
CALCULATION OF THE STRESS INTENSITY FACTORS AND THE T-STRESSES 
 

he final step of a comprehensive analysis is estimation of the distribution of the singular (KI, KII) and the non-
singular (Txx, Tzz) terms along the crack front on a basis of the calculated parameters b, σx, σy. The first and the 
second terms in a series expansion of the three-dimensional elastic stress components can be presented as follows 

[5]: 
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Here, K is the elastic stress intensity factor, r and  are the polar coordinates in plane x0y, zz  is the strain in the z-

direction, E and ν are the Young modulus and Poisson’s ratio, respectively. The terms xxT and zzT are the amplitudes of 
the second order terms in the three-dimensional series expansion of the crack-front stress field in the x- and z-directions, 
respectively.  
The stress intensity factor is calculated in a number of points (at variable values of r a / 20 ) using the following equation 
 

  I xx 0 xx xx
r

K 2 | | |
2     
               (2a) 

 

  II xx xx
r

K | |
8    
             (2b) 

 

The obtained values of the stress intensity factor are extrapolated to the point r=0. To evaluate the distribution of the 
stress intensity factors along the crack front, this procedure is used for a number of orthogonal to the front of the crack 
plane (x0y). Their location is characterized by local coordinate s along the front which starts from the center of the crack 
front and finishes at the point located on the body surface. 
The magnitude of the T-stress terms is defined through stress components for the points on the crack surface as follows 
 

 xx xx xx
1

T
2      
             (3a) 

 

 zz zz zz
1

T
2      
             (3b) 

 

The determination of the non-singular Txx- and Tzz-stress is similar to the calculation procedure for the stress intensity 
factor including extrapolation to the point r=0. 
The distribution of the singular (KI, KII) and the non-singular (Txx, Tzz) terms along the crack front (in the absence of the 
probe hole) is shown in Fig. 3. The stress intensity factor KII is negligible as it is expected for the surface crack and 
loading conditions under consideration. It can be also seen that the non-singular terms are significantly changed along the 
surface crack front. In contrast to the Txx-stress, the Tzz-stress approaches the maximum value at the center of the crack 
front. 
 
 
CONCLUSIONS 
 

t was shown that combining experimental and computational method can be employed for estimating operational 
loading conditions, the singular and the non-singular stress terms in a series expansion of the three-dimensional 
elastic stress components along the surface crack front. The proposed method is based on comprehensive 

comparison between deformation responses (for measurement points on the surface of the engineering components) 
obtained experimentally and from numerical solution of the corresponding boundary problem of solid mechanics. The 
distribution of the singular (KI, KII) and the non-singular (Txx, Tzz) terms along the surface crack front is computed. 
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Figure 3: The distribution of the stress intensity factors (a) and the non-singular stresses (b) along the crack front. 
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