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Abstract. This article explores a method for distinguishing
entangled coherent structures embedded in geophysical im-
ages. The original image is decomposed in a series of j-scale-
images using multiresolution decomposition. To improve the
image processing analysis each j-image is divided in l-spacial
regions generating set of (j, l)-regions. At each (j, l)-region
we apply a continuous wavelet transform to evaluateEν , the
spectrum of energy.Eν has two maxima in the original data.
Otherwise, at each scaleEν hast typically one peak. The lo-
calization of the peaks changes according to the (j, l)-region.
The intensity of the peaks is linked with the presence of co-
herent structures, or patterns, at the respective (j, l)-region.
The method is successfully applied to distinguish, in scale
and region, the ground roll noise from the relevant geologic
information in the signal.

1 Introduction

Seismic image filtering and processing is a very prolific area
in geophysics (Yilmaz, 2003). Every year, new methods and
new approaches in old techniques come into play (Drouji-
nine, 2006; Leite et al., 2008; Liu, 1999). Wavelet analysis
(Welford and Zhang, 2004; Corso et al., 2003; Chakraborty
and Okaya, 1995), Karhunen-Lòeve transform (Montagne
and Vasconcelos, 2006a,b; Lu, 2002), Empirical Mode De-
composition (Huang et al., 1999), Neural Networks (Tselen-
tis et al., 2007) are just a few techniques used to clean and
improve visualization of seismic data. In this paper we fo-

Correspondence to:R. Montagne
(montagne@df.ufrpe.br)

cus on one of this major image processing methodology: the
wavelet analysis (Kumar and Foufoula-Georgiou, 1997; Tor-
rence and Compo, 1998).

We use wavelet analysis for exploring seismic images
composed by two entangled patterns: the ground roll and the
actual geologic information. In land based seismic data the
ground roll shows a peculiar characteristic: it is the main
source of noise that contaminates the actual geologic infor-
mation, but it is at the same time a coherent structure. The
ground roll is a surface wave (Rayleigh dispersive wave) with
low frequency and low phase and group velocities. In geo-
physical image-processing, the ground roll is an undesirable
information that need to be cleaned (Yilmaz, 2003). Our
method allows a good visualization (in scale) of the two pat-
terns immersed in the image. In this way, the method is use-
ful to separate information from these two patterns (or co-
herent structures) despite the fact that the patterns have not a
clear contour and they are spread all over the image.

We develop a method to distinguish mixed structures im-
mersed in a image. The method is based in the multiresolu-
tion analysis and the energy spectrum, at each j-scale, ob-
tained out of it. We divide, for improving the resolution,
each j-image in l-slices generating thus, a set of (j, l)-regions.
Then, we decompose each (j, l)-region inν-voices using a
continuous wavelet transformation. The normalized square
of the components of these wavelet coefficients is called the
energy spectrum. We identify in the energy spectrum along
each j-image and regions the presence of an eventual coher-
ent structure. In this way, the coherent structures, mixed in
the original image, are splitted in scales and voices according
to the regions. Although we are mainly concern on seismic
images we emphasize that our method is applicable to other
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problems where one seeks to detect (and eventually remove)
mixed coherent structures embedded in a complex pattern
(Bernacchia and Naveau, 2008; Piñuela et al., 2007).

We work out our method on the seismic image shown in
Fig. 1. This seismic section corresponds to record 25 of Yil-
maz’s book (Yilmaz, 2003), available at Center for Wave
Phenomena and Colorado School of Mines (2007)1. The
ground roll appears in this seismic image as a fan–like struc-
ture with downward oblique straight lines. On the other hand,
the geologic information is mainly carried in the almost hor-
izontal lines (actually flat hyperbolas) of the image. The pa-
per is organized as follows. In the next section we present
in some detail the wavelet background of the article, fix the
mathematical notation and expose the methodology in detail.
Then, we apply our method to a specific situation: seismic
data contaminated with ground roll noise. Finally, we present
our main conclusions and point future research work.

2 Mathematical background and methodology

2.1 Wavelet analysis and multiresolution

Much of what has been published on wavelets is of great
mathematical complexity (Daubechies, 1992; Mallat, 1998)
and thus it can not be easily applied by geophysicists. Here,
we present, in a simple form, the minimal required mathe-
matical concepts in order to understand the main ideas. A
wavelet is defined as a functionψ(t)∈L2(R) (square inte-
grable functions) with a zero mean, localized in both time
and frequency. By dilating and translating this waveletψ(t),
we produce a family of wavelets:

ψu, s(t) =
1

√
s
ψ

(
t − u

s

)
, (1)

whereu, s∈R. Hereu is a location parameter ands is the
dilation parameter or scale. The Continuous Wavelet Trans-
form of a functionf (t),CWTf (u, s), is defined as the inner
product of the family of waveletsψu, s(t) with f (t). This is
given by

CWTf (u, s) = 〈f, ψu, s〉 =

∫
+∞

−∞

f (t)ψ∗
u, sdt. (2)

whereψ∗ denotes the conjugate ofψu, s . In order to imple-
ment the wavelet transform on sampled signals we need to
discretize the parametersu ands. The most common choice
is s=2j andu=n2j with j-, n-integers. For a discrete data
array,f [t], the Discrete Wavelet Transform DWTf (j, n) is
done by:

DWTf (j, n) =

∫
+∞

−∞

f [t]
1

√
2j
ψ

(
t − n2j

2j

)
dt, (3)

1availale at:http://www.cwp.mines.edu/software.html

wheren=1, 2, . . . is the index of data array. So, the function
f (t) can be approximated by

f (t) =

∑
j

∑
n

DWTf (j, n)ψj, n(t). (4)

The discrete wavelet transform measures the contribution to
f [t] of scale 2j at locationn2j . These conditions are fairly
broad and cover a wide range of situations. This features
allows the study of a given signal at different scales. Ac-
tually, this kind of analysis, known as MULTIRESOLUTION

ANALYSIS (or Multiscale Analysis), study and represents at
different resolutions (or scales) the signal being analized. In
fact, the multiresolution analysis gives in an efficient way an
algorithm for going from one scale to another. In order to add
more resolutionGrossmann et al.(1989) suggested decom-
pose the signal choosing the parameterss=aj , with a=21/ν ,
whereν indicates the number of voices (ν voices by scale)
per octave (interval[2j , 2j+1

]) andu=nu02j/ν with u0=1
andn integer. Using this decomposition we getψ

ψνj, n(t) = 2−j/2νψ(2−j/ν t − n) (5)

where j and n are integer. Such decomposition us-
ing a multivoice frame enables us to cover the range of
scales in smaller steps, giving a more continuous pic-
ture. For example, withν=4 we obtain discrete scales at
(s=1,21/4,21/2,23/4,2,25/4,23/2,27/4,4, . . .). In agree-
ment with the notation above, the coefficients DWTf (j, n)

have dimensionm×n, where n is dimension off and
m=j∗ν. We define thewavelet energy spectrumof f as

Eν =

∑
n

[
DWTf (ν, n)

]2
. (6)

This idea is developed to characterize properties of seismic
data.

2.2 Methodology

The seismic image is formed by an array of(Nx, Ny), where
Nx is the number of elements in the horizontal (the number
of traces in geophysics) andNy the elements in vertical (the
number of samples per trace); usuallyNy�Nx . We sum-
marize our image processing methodology in three parts: (i)
Multiresolution decomposition of the original image in a set
of j-images, (ii) Slicing of each j-images in a set of l-regions
(or slices), (iii) continuous wavelet analysis at each slice to
generate the energy spectrum at the (j, l)-slice. Next we detail
the methodology:

1. Multiresolution analysis. The original image is pro-
jected into its several scales using a discrete wavelet
transform. As a result the multiresolution analysis gen-
erates a set of Nj-scale-images. The numberNj is re-
lated to the size of the signalNy such thatNj is the
smallest integer that satisfiesNy<2Nj . A detail analy-
sis of decomposition of data in different scales is found
in Mallat (1998). The decomposition process of the data
shown in Fig.1 is visualized, for some scales, in Fig.2.
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Fig. 1. Original data displaying the ground roll noise as the fan-like
structure at the center of the figure. This seismic image corresponds
to record 25 in Yilmaz’s book. The lines shown on the picture de-
limit the regions used in the method described in the text.

2. Slicing of the image. Each j-image is sliced in l-sections
for increasing the power of the method, before con-
structing the energy spectrum. In fact, the analyzed co-
herent structures are not equally distributed over the full
image. As the j-image is sliced the energy spectrum cor-
responding to the underlying coherent structures at each
specific region is emphasized. The numberl of slices is
empirically determined according toNy and the nature
of the data.

3. Energy spectrum. For each (j, l)-region the signal is de-
composed using a continuous wavelet transformation.
The energy spectrum is the normalized square of the
components of the wavelet transformation. The coher-
ent structures underlying the image are visualized at
this step of the method. Typically a coherent structure
shows a bump-like signature in the energy spectrum,
that means, at each scale the information of the structure
is concentrated in a defined set of voices. To summa-
rize, the energy spectrum splits the coherent structures
into scales and voices.

3 Results and discussion

We apply our methodology for the seismic section shown in
Fig. 1. The seismic data has naturally two entangled coher-

ent structures: the ground roll and the hyperbolic-like geo-
logic layers. Following the enumerated steps of the previous
section, we detail the technical information concerning the
application of the method:

1. Multiresolution analysis. We use Daubechies discrete
transformation in order to obtain the image at each
scale. The size of the data isNy=2100,Nx=89 which
generatej=11 scales in the vertical axis.

2. Slicing of the image. We choose to slice Fig.1, after
several tests, inl=5 sections. Indeed, largerl does not
add new information to the analysis, conversely, smaller
l, is not enough to explore the localized characteristics
of the coherent structures.

3. Energy spectrum.We use the Gaussian wavelet (a con-
tinuous wavelet basis) to construct the energy spectrum,
with 8 voices. We have also tried the Morlet basis, but
the results were not satisfactory.

Figure2 shows a sequence of four scale-images generated
by multiresolution analysis using the discrete wavelet trans-
form. Figure 2a–d correspond to scalesj=3, 4, 5, 6 respec-
tively. We identify in this figure the hyperbolic lines at a and
b, on the other hand, the ground roll structure is visible at d.
Let us take a closer look at Fig. 2c, it consists of a mix of
hyperbolic lines and ground roll patterns. We remark that the
mixed image correspond to scalej=5, in the next paragraphs
we return to this point.

Figure3 shows a sequence of six energy spectra, the hor-
izontal axis corresponds to the voicem and the vertical to
the associated energyEν . Each plot shows five curves cor-
responding to the five slices of the j-images. The slices are
taken in a similar way as indicated in Fig.1. Typically, the
peaks in the energy spectrum representation correspond to
the coherent patterns of the image. In Fig.3a we show the
spectra of the 5-slices of the original data. Figure3b–f cor-
respond to scalesj=3, 4, 5, 6, 7, respectively. A closer look
at Fig.3a reveals that the maxima of the curves are around
voices 15–20 or 25–40 (low versus high voices) depending
on the region which produces it. The two peaks shaped
curves are due to the presence of an entangled arrangement
of patterns: the ground roll (high voices) and the geologic
layers (low voices). In fact, at Fig. 3a, regions 2 and 3, that
have a well defined geological layers show the peak at low
voices. Otherwise, regions 4 and 5, that have strong ground
roll presence show the peak at high voices. The bimodal
curves correspond to regions 2 and 3, where entangled pat-
terns are visible.

To explore the contents of Fig.3 we use the following no-
tation. We denote the position of a peak at scalej aspj . We
also use the indexh for peaks corresponding to the hyper-
bolic lines and indexg for ground roll peaks.

Let us take a closer look at the sequence of Fig.3. We start
with low scales (high frequencies). For scale 3 (Fig.3b) the
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Fig. 2. Seismic images after multiresolution transformation for scales:(a) j=3, (b) j=4, (c) j=5, and(d) j=6. Image(a) and (b) show
mainly the hyperbolic lines and image(d) the ground roll. Image(c) shows an entangled arrangement of the two patterns.

peaks corresponding to hyperbolic lines are atp3
h=6. As can

be seen in this figure, all the peaks are at the same position
for the 5 regions. The hyperbolic pattern peaks are also visu-

alized atp4
h=13 andp5

h=28 in Fig. 3c and d, respectively. We
remark that Fig.3d shows a entanglement of coherent pat-
terns. Indeed, at this scale not only the hyperbolic lines struc-
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Fig. 3. Energy spectra for several j-images. The different curves in each graphic are to energy spectrum of each region.(a) the original data,
(b) j=3, (c) j=4, (d) j=5, (e) j=6 and(f) j=7. The peaks in the energy spectra are due to the coherent patterns of the images.
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ture is visible, but also the ground roll pattern. The ground
roll structure is visualized at high scales (low frequencies).
The ground roll peaks are shown in Fig.3d, e and f at posi-
tionsp5

h=20,p6
h = 40 andp7

h = 80. The reader may well ask
why the positions of the peaks due to the ground roll increase
by a factor of two as the scale is increased. According to de-
composition analysis, the frequency is scaled by a factor of
2, while going from scalej to j+1 that means, the position
of a peak at scalej , pj , follows the equation:pj+1

=2pj .
Remember that, Fig.3d corresponds to a special case, at

this scale the peaks of the five regions are not all at the same
position. In fact, depending on the region, the ground roll
or the hyperbolic lines pattern is the dominant pattern. This
fact is reflected in the position of the energy mode peaks. For
region 1 the ground roll is more visible and for regions 4 and
5 the peaks are at the same position. At regions 2 and 3 the
two patterns are very mixed and the peak is situated at an
intermediate position between the previous ones. In the next
section we summarize the information concerning this set of
figures and conclude the work.

4 Final remarks

In this paper we explored the multiresolution analysis for
identifying mixed coherent structures immersed in an image.
We applied our methodology to seismic data and successfully
splitted in voice and scale the two main coherent patterns: the
ground roll and the geologic layers. Our main pourpose was
to provide an effective method for separating in scales and
voices mixed coherent patterns.

The multiresolution decomposition split an image into
several scales, or frequency ranges. However, coherent pat-
tern may be not restricted to a single scale. Specifically,
in the case we studied, the ground roll pattern is present
at scalesj=5, 6 and 7 and the hyperbolic lines pattern at
j=1, 2, 3, 4 and 5. The scalej=5 is the most stimulating case
as it shares information from the two patterns. The patterns
in this scale are splitted according to voices, hence, differ-
ent patterns correspond to peaks centered at distinct voices
in the energy spectrum. We clearly visualized this character-
istic analyzing separately the regions of the seismic image.
The regions corresponding to strong ground roll presence
(slices 4 and 5) are associated with peaks at the same po-
sition. In contrast, the regions corresponding to hyperbolic
patterns (2 and 3, mainly 3) are related to peaks at a different
position in the energy spectra. The region 3 deserves special
attention, this region exhibit the most entangled mixing of
the two patterns, consequently, the associated energy spec-
trum shows a peak in between the two former cases.

In this manuscript we present a method for splitting seis-
mic patterns using wavelet decomposition. We remark that
we apply the wavelet transform over the data acquired at each
geophone, that means, we transform the data of each trace, an
unidimensional signal. In this way we do not capture the full

spacial information of the seismic image. Because we do not
work directly on a bidimensional data we can not use more
sophisticated basis like anisotropic Morlet basis or biorthog-
onal basis (Neupauer and Powell, 2005; Allaei et al., 2008).
The success of the splitting patterns in a one dimensional data
encourage us to improve the method to perform the wavelet
transform on two dimensional data. A natural basis in two di-
mensional data is the anisotropic Morlet which was specially
designed to deal with heterogeneous geologic images.

As a final remark we point out that our method will prove
useful to design intelligent coherent pattern filtering. Let us
suppose that we are interested in cleaning the ground roll and
preserve the hyperbolic lines. In this case we should keep
scales 1, 2, 3, 4 and the medium and low voices of the scale 5.
The scales 6 and 7, as well the high voices of scale 5 should
be erased. We are working at present, on a coherent pattern
filter that automatically decompose the signal, identify the
patterns, and erase the inconvenient patterns.
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