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Abstract. This article explores a method for distinguishing cus on one of this major image processing methodology: the
entangled coherent structures embedded in geophysical inwavelet analysisfumar and Foufoula-Georgiot997, Tor-
ages. The original image is decomposed in a series of j-scaleence and Compd 998.
images using multiresolution decomposition. To improve the We use wavelet analysis for exploring seismic images
image processing analysis each j-image is divided in I-spaciatomposed by two entangled patterns: the ground roll and the
regions generating set of (j, l)-regions. At each (j, l)-region actual geologic information. In land based seismic data the
we apply a continuous wavelet transform to evaluatethe ground roll shows a peculiar characteristic: it is the main
spectrum of energyE,, has two maxima in the original data. source of noise that contaminates the actual geologic infor-
Otherwise, at each scalg, hast typically one peak. The lo- mation, but it is at the same time a coherent structure. The
calization of the peaks changes according to the (j, I)-regionground roll is a surface wave (Rayleigh dispersive wave) with
The intensity of the peaks is linked with the presence of co-low frequency and low phase and group velocities. In geo-
herent structures, or patterns, at the respective (j, I)-regionphysical image-processing, the ground roll is an undesirable
The method is successfully applied to distinguish, in scaleinformation that need to be cleanediltnaz, 2003. Our
and region, the ground roll noise from the relevant geologicmethod allows a good visualization (in scale) of the two pat-
information in the signal. terns immersed in the image. In this way, the method is use-
ful to separate information from these two patterns (or co-
herent structures) despite the fact that the patterns have not a
clear contour and they are spread all over the image.

We develop a method to distinguish mixed structures im-

Seismic image filtering and processing is a very prolific areaMersed in aimage. The method is based in the multiresolu-
in geophysicsYilmaz, 2003. Every year, new methods and tion analysis and the energy spectrum, at each j-scale, ob-
new approaches in old techniques come into pBW('IJI- tained out of it. We diVide, for imprOVing the resolution,
nine, 200§ Leite et al, 2008 Liu, 1999. Wavelet analysis ~€ach j-image inl-slices generating thus, a set of (j, l)-regions.
(Welford and Zhang2004 Corso et al.2003 Chakraborty ~ Then, we decompose each (j, I)-regiomifvoices using a

and Okaya 1995, Karhunen-L@ve transform Mlontagne ~ continuous wavelet transformation. The normalized square
and Vasconcelg2006ab; Lu, 2009, Empirical Mode De- of the components of these wavelet coefficients is called the
composition Huang et al.1999, Neural Networks Tselen- ~ €nergy spectrum. We identify in the energy spectrum along
tis et al, 2007) are just a few techniques used to clean and€ach j-image and regions the presence of an eventual coher-

improve visualization of seismic data. In this paper we fo- €nt structure. In this way, the coherent structures, mixed in
the original image, are splitted in scales and voices according

to the regions. Although we are mainly concern on seismic
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problems where one seeks to detect (and eventually removeyheren=1, 2, ... is the index of data array. So, the function
mixed coherent structures embedded in a complex patterrf () can be approximated by

(Bernacchia and NaveaR008 Pifiuela et al.2007).

We work out our method on the seismic image shown in
Fig. 1. This seismic section corresponds to record 25 of Yil-
maz's book Yilmaz, 2003, available at Center for Wave
Phenomena and Colorado School of Mines (2607The
ground roll appears in this seismic image as a fan-like struc
ture with downward oblique straight lines. On the other hand
the geologic information is mainly carried in the almost hor-

izontal lines (actually flat hyperbolas) of the image. The pa-

per is organized as follows. In the next section we presen

in some detail the wavelet background of the article, fix the

mathematical notation and expose the methodology in detai

Then, we apply our method to a specific situation: seismic
data contaminated with ground roll noise. Finally, we presentp

our main conclusions and point future research work.

2 Mathematical background and methodology
2.1 Wavelet analysis and multiresolution

Much of what has been published on wavelets is of grea
mathematical complexityDaubechies1992 Mallat, 1998

and thus it can not be easily applied by geophysicists. Here

we present, in a simple form, the minimal required mathe
matical concepts in order to understand the main ideas.
wavelet is defined as a functiof(r)eL2(R) (square inte-
grable functions) with a zero mean, localized in both time
and frequency. By dilating and translating this wavelét),
we produce a family of wavelets:

1
WM,X (t) = —slﬁ

)

whereu, seR. Hereu is a location parameter andis the

t—u
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N

Apave dimensionm xn, wheren is dimension of f and

@) =YY DWTs(j, )y u(0). @

j n
The discrete wavelet transform measures the contribution to
f[t] of scale 2 at locationn2/. These conditions are fairly
broad and cover a wide range of situations. This features
allows the study of a given signal at different scales. Ac-
tually, this kind of analysis, known as BATIRESOLUTION
ANALYSIS (or Multiscale Analysis), study and represents at
Eifferent resolutions (or scales) the signal being analized. In
act, the multiresolution analysis gives in an efficient way an
algorithm for going from one scale to another. In order to add
more resolutiorGrossmann et a(1989 suggested decom-
ose the signal choosing the parametets/, with a=2%/",
wherev indicates the number of voices {oices by scale)
per octave (interval2/, 2/*1) andu=nuo2’//* with ug=1
andn integer. Using this decomposition we glet
Ui a0 =272y @ —n) ()
where j and n are integer. Such decomposition us-
ing a multivoice frame enables us to cover the range of
tscales in smaller steps, giving a more continuous pic-
ture. For example, with=4 we obtain discrete scales at
(s=1,21/4,21/2 23/4 2 25/4 28/2 21/4 4 ). In agree-

ment with the notation above, the coefficients DWT, n)

m=j*v. We define thavavelet energy spectruaf f as
E, = [DWT;(, m].

n

This idea is developed to characterize properties of seismic
data.

(6)

2.2 Methodology

The seismic image is formed by an array %, Ny), where

dilation parameter or scale. The Continuous Wavelet Transyy, is the number of elements in the horizontal (the number

form of a functionf (1), CW Ty (u, s), is defined as the inner
product of the family of waveletg, ;(z) with f(¢). Thisis
given by

+00

CWT(u, ) = (£, Yhu.s) = / FOE . @

wherey* denotes the conjugate @f, ;. In order to imple-
ment the wavelet transform on sampled signals we need t
discretize the parametegsands. The most common choice
is s=2/ andu=n2’ with j-, n-integers. For a discrete data
array, f[t], the Discrete Wavelet Transform DWTj, n) is

done by:
1
— ds,
27 v ( >

Lavailale at:http://www.cwp.mines.edu/software.html
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of traces in geophysics) ard, the elements in vertical (the
number of samples per trace); usuaMWy>>N,. We sum-
marize our image processing methodology in three parts: (i)
Multiresolution decomposition of the original image in a set
of j-images, (ii) Slicing of each j-images in a set of |-regions
(or slices), (iii) continuous wavelet analysis at each slice to
generate the energy spectrum at the (j, I)-slice. Next we detalil
(t)he methodology:

1. Multiresolution analysis The original image is pro-
jected into its several scales using a discrete wavelet
transform. As a result the multiresolution analysis gen-
erates a set of Nscale-images. The numbay; is re-
lated to the size of the signa¥, such thatN; is the
smallest integer that satisfieg, <2"i. A detail analy-
sis of decomposition of data in different scales is found
in Mallat (1998. The decomposition process of the data
shown in Fig.1 is visualized, for some scales, in FR&).

www.nonlin-processes-geophys.net/16/211/2009/
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Distance from geophones ent structures: the ground roll and the hyperbolic-like geo-
0 20 40 60 80 logic layers. Following the enumerated steps of the previous
section, we detail the technical information concerning the
application of the method:

! 1. Multiresolution analysis We use Daubechies discrete
4 Region 1 transformation in order to obtain the image at each
] scale. The size of the data 4,=2100, N, =89 which

generatgi=11 scales in the vertical axis.
Region 2
Tg e s S Hi; * 2. Slicing of the image We choose to slice Fidl, after
0 1000 R ‘%‘;;‘g}? ;':f{; _ several tests, =5 sections. Indeed, largémdoes not
E lenin Sl }zf;}) g f‘z‘- 4 Region 3 add new information to the analysis, conversely, smaller
= 28 PR [, is not enough to explore the localized characteristics
égﬁ ﬁ Region 4 of the coherent structures.
e i ; ‘ j ! & Y? : . 3. Energy spectrumWe use the Gaussian wavelet (a con-
i il } i gg Region 5 tinuous wavelet basis) to construct the energy spectrum,
3,}( o it B % j‘ﬁ with 8 voices. We have also tried the Morlet basis, but
il ! ?}, %2} the results were not satisfactory.
2000 I

Figure2 shows a sequence of four scale-images generated
by multiresolution analysis using the discrete wavelet trans-

Fig. 1. Original data displaying the ground roll noise as the fan-like form. Figure 2a—d correspond to scalgs3, 4,5, 6 respec-
structure at the center of the figure. This seismic image correspondévely. We identify in this figure the hyperbolic lines at a and
to record 25 in Yilmaz's book. The lines shown on the picture de- b, on the other hand, the ground roll structure is visible at d.
limit the regions used in the method described in the text. Let us take a closer look at Fig. 2c, it consists of a mix of

hyperbolic lines and ground roll patterns. We remark that the
mixed image correspond to scgleb, in the next paragraphs

2. Slicing of the imageEach j-image is sliced in I-sections  we return to this point.

. Energy spectrumrFor each (j, I)-region the signal is de-

for increasing the power of the method, before con-  Figure3 shows a sequence of six energy spectra, the hor-
structing the energy spectrum. In fact, the analyzed cozontal axis corresponds to the voieeand the vertical to
herent structures are not equa”y distributed over the fu“the associated energyv_ Each p|0t shows five curves cor-
image. As the j-image is sliced the energy spectrum coryesponding to the five slices of the j-images. The slices are
responding to the underlying coherent structures at eacligken in a similar way as indicated in Figy. Typically, the
specific region is emphasized. The numbefslicesis  peaks in the energy spectrum representation correspond to
empirically determined according #, and the nature  the coherent patterns of the image. In F3g.we show the

of the data. spectra of the 5-slices of the original data. Figpef cor-
respond to scaleg=3, 4,5, 6, 7, respectively. A closer look

at Fig. 3a reveals that the maxima of the curves are around

i(;mposed using ta coqtlrltlf]ous Wav$letdtransforma]:u?hnVoices 15-20 or 25-40 (low versus high voices) depending
€ energy spectrum 1S the normaiized square of In&,, e region which produces it. The two peaks shaped
components of the wavelet transformation. The coher-

t struct derlving the | isualized tcurves are due to the presence of an entangled arrangement
ent structures underlying th€ image are visualized al,g patterns: the ground roll (high voices) and the geologic
this step of the method. Typically a coherent structure

h b like sianat i th ‘ layers (low voices). In fact, at Fig. 3a, regions 2 and 3, that
Shows a bump-iike signature in the energy Spectiumy, o 4 \vell defined geological layers show the peak at low

Soices. Otherwise, regions 4 and 5, that have strong ground
Toll presence show the peak at high voices. The bimodal
Turves correspond to regions 2 and 3, where entangled pat-
terns are visible.

To explore the contents of Fi§.we use the following no-
tation. We denote the position of a peak at sgades p/. We

is concentrated in a defined set of voices. To summa
rize, the energy spectrum splits the coherent structure
into scales and voices.

3 Results and discussion also use the indek for peaks corresponding to the hyper-

bolic lines and indey for ground roll peaks.

We apply our methodology for the seismic section shown in  Let us take a closer look at the sequence of BiyVe start
Fig. 1. The seismic data has naturally two entangled coherwith low scales (high frequencies). For scale 3 (Rig) the

www.nonlin-processes-geophys.net/16/211/2009/ Nonlin. Processes Geophys., 28,722069
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Fig. 2. Seismic images after multiresolution transformation for scalap;

mainly the hyperbolic lines and imag@) the ground roll. Imagéc) shows an entangled arrangement of the two patterns.

28 in Fig. 3c and d, respectively. We

S—
h

13 andp

alized atp}}

peaks corresponding to hyperbolic lines ar@%tG. As can

be seen in this figure, all the peaks are at the same positioremark that Fig3d shows a entanglement of coherent pat-

for the 5 regions. The hyperbolic pattern peaks are also visuterns. Indeed, at this scale not only the hyperbolic lines struc-
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Fig. 3. Energy spectra for several j-images. The different curves in each graphic are to energy spectrum of eadh)ydgamiginal data,

(b) j=3,(c) j=4,(d) j=5, (e) j=6 and(f) j=7. The peaks in the energy spectra are due to the coherent patterns of the images.
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ture is visible, but also the ground roll pattern. The groundspacial information of the seismic image. Because we do not
roll structure is visualized at high scales (low frequencies).work directly on a bidimensional data we can not use more
The ground roll peaks are shown in Fig.3d, e and f at posi-sophisticated basis like anisotropic Morlet basis or biorthog-
tionSpE:ZO,p,";> =40 andp,f = 80. The reader may well ask onal basis lleupauer and Powel2005 Allaei et al, 2008.
why the positions of the peaks due to the ground roll increasél'he success of the splitting patterns in a one dimensional data
by a factor of two as the scale is increased. According to deencourage us to improve the method to perform the wavelet
composition analysis, the frequency is scaled by a factor otransform on two dimensional data. A natural basis in two di-
2, while going from scalg to j+1 that means, the position mensional data is the anisotropic Morlet which was specially
of a peak at scalg, p/, follows the equationp/+1=2 p/. designed to deal with heterogeneous geologic images.
Remember that, Fig.3d corresponds to a special case, at As a final remark we point out that our method will prove
this scale the peaks of the five regions are not all at the sameseful to design intelligent coherent pattern filtering. Let us
position. In fact, depending on the region, the ground roll suppose that we are interested in cleaning the ground roll and
or the hyperbolic lines pattern is the dominant pattern. Thispreserve the hyperbolic lines. In this case we should keep
fact is reflected in the position of the energy mode peaks. Foscales 1, 2, 3, 4 and the medium and low voices of the scale 5.
region 1 the ground roll is more visible and for regions 4 and The scales 6 and 7, as well the high voices of scale 5 should
5 the peaks are at the same position. At regions 2 and 3 thbe erased. We are working at present, on a coherent pattern
two patterns are very mixed and the peak is situated at afilter that automatically decompose the signal, identify the
intermediate position between the previous ones. In the nexpatterns, and erase the inconvenient patterns.

section we summarize the information concerning this set OfAcknowIedgementsFinanciaI support from the Brazilian agen-
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