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INTRODUCTION
For estimation of population characteristics (mainly totals, means, counts) in business statistics surveys, 
the Czech Statistical Office (CZSO) has been recently exploring a new approach, in which all data for 
units that are out of the sample are imputed based on predictions by regression, instead of estimating the 
population characteristics through weighting. The all-data imputation is based on the superpopulation 
model (i.e. Cassel et al., 1977, chapter 4). Compared to classical survey methodology (i.e. Hájek, 1960, 
1981 or Cochran, 1977), the data are treated as realizations of an infinite population, some of which we 
know through the survey and some we want to estimate.

Traditional methods, on the other hand, work with the population at hand. All data are treated as 
fixed constants and the randomness of estimates then comes in form of sample inclusion indicators. The 
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population totals are then estimated by weighting methods, such as the Horwitz-Thompson estimator 
or the ratio estimator. We show that some of the estimates coincide or are very similar. 

The drawback of the superpopulation approach subsists in the fact that it relies heavily on the choice of 
the regression model and appropriate auxiliary variables. However, the all-data imputation allows to group 
the data and report the results in any desirable way, because we have a predicted value available for each unit 
in the population.

It is desirable to assess the quality of the obtained estimators by computing their variance, mean square error 
or the coefficient of variation. Because of the differences between classic and superpopulation modeling, new 
techniques for survey error computation had to be explored. At first, we derive the estimator of the standard 
error computation in simple cases with one auxiliary variable in the regression model. Then, we present exten-
sions of the methods for cases where the population is divided in more strata and where the auxiliary variables 
used for the regression are themselves imputed and form a chain structure, as explored in Raghunathan et al 
(2001). We illustrate the methods on simplified examples from business statistics.

1   THE SUPERPOPULATION REGRESSION MODEL
In the superpopulation approach we treat the data as random realizations of an infinite population with 
some model distribution. Suppose that we have sampled n observations and N − n more values must be 
estimated in order to cover the population of interest. To find appropriate estimates, we have to choose 
a suitable regression model, study the dependence between the variable of interest and the covariates 
on the observed data and use the results to predict the unknown part. First, we consider a simple super-
population model with one regression variable and following assumptions:

•	 	the	data iy  are non-negative random variables with iii exy += β ,

•	 	the	error	terms	 ie  are independent with distribution ),0(~ 2σii ce ,

• ix
 and ic  are known positive constants for all i = 1,..., N,

• β and 2σ  are unknown parameters.

By the notation ),0(~ 2σii ce  we mean that the error terms have zero mean and that their variance 
is equal to 2σic . Note that we do not assume normality of ie .

The following methods rely heavily on these assumptions and therefore deviations from the model 
can make the results inaccurate. The variance scaling constants ic  must be chosen to fit the data well, 
often it is used ii xc =  or 1≡ic . Methods of assessing the model fit are out of the scope of this paper 
(see Anscombe, 1961 or Cook and Weisberg, 1983 among others). 

We observe n realizations of the variable, which we call the sample and denote as sam. There are  
N - n more realized variables, which values we wish to estimate with the knowledge of ix  and ic . Let us 
call this unknown part of the population the imputed part and denote as imp. More accurately we want 
to estimate the sum:

          , (1)

by imputing an estimate for each iy  from the unknown part:
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For space saving reasons we will mark the totals with just ∑
sam

iy  instead of ∑
∈sami

iy  etc. We will further  
 
use the notation ,∑=

sam
isam yY  ∑=

imp
iimp yY  and ∑=

imp
iimp yY ˆˆ , similarly for sums of ix  and ic .

We use classical linear regression model with one covariate and no intercept (the regression line pass-
ing through the origin). The estimator of β  is obtained using weighted least squares and we use it to 
impute the data in the following way:  
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where iw  are appropriately chosen weights (discussed later). Note that for ii xc =:  we get the most com-
monly used weighted ratio:
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     For constant weights and 1:≡ic , we have the classical least-squares estimator: 

           and 2: ii xc =  gives the mean ratio ∑=
sam i

i

x
y

n
1β̂ . It depends on each case, which ic  fits  

the data best.
     We can easily verify regardless of the choice of ic  and iw , that:
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Example
In Figure 1 we see sample data (n = 30) from one particular stratum of the annual structural busi-
ness survey. We model the dependency of the revenue from the sales of own products and services  
( iy ) on the turnover given in the VAT declaration 
( ix ), both given in CZK 1 000. We fitted regres-
sion line using 1:≡ic  (dashed) ii xc =:  (full) 
and 2: ii xc =  (dash dot). If the distribution of 

ie  was Gaussian, we could roughly approximate 
95% – confidence bands for the predicted data as 
( ),ˆ2ˆ,ˆ2ˆ σβσβ iiii cxcx +−  these are marked in 
gray. The estimated coefficients β̂ , their standard 
deviations βσ̂  and the constants σ̂  are shown in 
Table 1.
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Figure 1 Modeling the dependency of the revenue from the sales of own products and 

services on the turnover given in the VAT declaration, using different variance 
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0.864 0.879 0.923

19 295 53.11  0.143

0.029 0.03 0.026

Table 1 Estimated regression parameters 
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Source: Simulation – own construction, Czech Statistical Office 
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Turnover from the VAT declaration
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Source: Czech Statistical Office, data modified to maintain confidentiality 

Figure 1 Modeling the dependency of the revenue from the sales of own products and services on the turnover 
                  given in the VAT declaration, using different variance scaling constants ic  – estimated regression lines  
                  with approximate 95% – confidence bands for the data

Note that the estimated parameters and therefore also the regression lines are quite similar. Estima-
tors with ii xc =:  and 2: ii xc =  are less sensitive to observations with higher covariate values. The stand-
ard deviation parameters σ̂  differ, because in each case they have a different meaning. The standard 
deviation of the parameter estimates is again similar in each case. The observations seem to have an 
increasing deviation from the regression line with higher ix , which suggests that ii xc =:  or 2: ii xc =  
are better choices for the variance scaling than 1:=ic .

2 VARIANCE ESTIMATION WITH SIMPLE REGRESSION IMPUTATIONS
Let us derive the formula for the error of Ŷ . Because of the superpopulation model, the variables iy  

which we estimate are random variables instead of constants. Therefore we cannot use the common formula:
            .

 
(7)   .)ˆˆ(ˆvar 2YEYEY −=
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In fact, we are interested in the mean square error of the difference of the real and estimated (pre-
dicted) values of the random variables:
 (8)
                                     ,

given the realization of the sample data. We should write                           , but we leave the condition  
out for space saving reasons. This is the main difference from the usual theoretical methods in survey 
sampling, where all data are taken as constants and the randomness is included in the models in form of 
inclusion indicators. If we take iy  as realizations of random variables from the superpopulation model, 
we can derive the formulas for the variance also in more complex situations.

For the imputed data we have:
  (9)

therefore 
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. For the mse we then get:
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We see, that the estimate of mse consists of the model parameter estimates on the sample part and of 
the sums of auxiliary variables on the imputed part of the data.

It is clear that the more data is in the imputed part, the higher is the mean square error. On the oth-
er hand, the more sampled data we have, the more accurately we can estimate β̂  and therefore 2

βσ  is

smaller in the most cases. For example if the weights are constant, then 2
2

2

/
1 σσ β ∑

=

sam
ii cx

 is  
a non-increasing function of n.

Example (continued)
In the stratum from the example given in the last section, the revenue from the sales of own products and 
services was 886 693 3=samY . Suppose we have 50 non-sampled units in the observed stratum. We want 
to impute the data with the help of known turnover from VAT declaration, for which 817 317 6=impX . 
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We use the same ic  and the estimated regression parameters from above. In Table 2 we see the auxiliary 
totals impc , estimated totals β̂ˆ

impsam XYY += , the mean square error 222 ˆˆˆˆ σσ β impimp cXYesm +=
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Table 2 Estimated characteristics 

ci :=1 ci :=xi ci :=x2
i

9 154 548 9 247 872 9 527 206

cimp 50 6.31 x 109 1.79 x 1012

MSE 5.26 x 109 5.42 x 109 6.39 x 109  

CV 2.51% 2.52% 2.65%

Note: Ŷ  – estimated total, MSE – mean square error, CV – coefficient of variation,  ic  – variance scaling, impc  –  total of  ic
 
– over the imputed   

      part.
Source: Simulation – own construction, primary data: Czech Statistical Office
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3. VARIANCE COMPUTATION FOR MORE COMPLEX CASES 

By using the superpopulation model, we get closer to linear regression theory and therefore 

we can derive the variance of the population estimators in various situations where using the 

classic survey sampling methodology can be overly complicated. 
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We want to compute the mean square error of the prediction of the random variables Y  estimated  
by Ŷ . With the help of conditional variance decomposition we get:
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The second term may be estimated by plugging yβ̂  and Xesm ˆˆ into the formula. The estimation of the 
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When we work with a chain structure having more levels, the first term )ˆ|ˆ(ˆ XYesm  and yβ̂  remain 
the same, because they are conditional estimates given their auxiliary variable. The second term may 
be obtained through another chain estimation, so we are getting a recurrent formula, which leads so 
far until it reaches an auxiliary variable which is known for all units (i.e. administrative data sources).

3.2  Stratification level shifts – covariance computation
The CZSO works with the stratification approach, where the surveyed enterprises are divided into strata 
depending on the number of employees, type of economic activity, region etc. The stratification has more 
levels, going from relatively small groups to larger ones. In each stratum, the regression parameters are 
estimated separately. When it is not possible to obtain the estimates in given stratum, mainly because 
of a low number of responding units, we use the estimates in the corresponding superior stratum at a 
higher stratification level.

Let us consider the non-chained regression from section 2. Let m  be a small stratum where the esti-
mates for mβ  and 2

mσ  could not be obtained. Let S  be its superior stratum (one or more levels higher), 
with enough units to compute the estimates:
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for the variance of the estimate of the sum mY  we impute iSi xy β̂ˆ =  and we get:

 (23)

The estimate for 2
Sβ

σ  is obtained from the superior stratum S , 2
mσ  is completely unknown and can-

not be estimated from m , therefore we use the estimate for 2
Sσ  instead.
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Suppose we now have one stratum S in a higher level, which consists of two substrata: one too small  
(m ) and one good (d ), where it is possible to estimate dβ  and 2

dσ . We want to obtain the variance for the 
sum Y for the whole S. Using the above given formulas and the independence assumption for ie , we get:

 (24)

The covariance is computed in the following way:

 (25)

The variables iy  belonging to m  and d  are mutually independent, therefore it is enough to take the 
sum only through d  in the first term of the covariance. Denote as SB  and dB  the sums we have taken 
out of the parentheses in the denominator:

 (26)
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If we estimate the parameter 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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 the sampled part of the stratum m1 etc. If m1 

is a good stratum, then 
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If we estimate the parameter 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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3.3 Stratification level shifts – chained imputations 

We generalize now the methods used for stratification level shifts for the cases, when the data 
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x , which are obtained through 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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3.3 Stratification level shifts – chained imputations 
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. The same for m2. Suppose that the strati-
fication structure is well ordered, in the way that each substratum is contained in exactly one superior 
stratum. Denote 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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3.3 Stratification level shifts – chained imputations 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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3.3 Stratification level shifts – chained imputations 

We generalize now the methods used for stratification level shifts for the cases, when the data 
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. Because of the well-ordered stratifica-
tion, sam

dS  is necessarily either the smaller of the sets 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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3.3 Stratification level shifts – chained imputations 

We generalize now the methods used for stratification level shifts for the cases, when the data 
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If we estimate the parameter 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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3.3 Stratification level shifts – chained imputations 

We generalize now the methods used for stratification level shifts for the cases, when the data 
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 or an empty set if the strata do not 
overlap. For the covariance we get:

 
(27)

It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and Mm ,...,1=  
small strata we get:

 (28)
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for the variance of the estimate of the sum 
m

Y  we impute 
iSi

xy β
ˆ

ˆ =  and we get: 

 

.)(var
ˆˆ

var

var
ˆ

var
ˆ

222

mimp

m

imp

m

impS

m

imp

m

imp

m

impm

cXYX

YYYmse

S

σσβ
β

+=+=

+=

 

(23)

The estimate for 
2
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σ  is obtained from the superior stratum S , 
2

m

σ  is completely 

unknown and cannot be estimated from m , therefore we use the estimate for 
2

S
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The covariance is computed in the following way: 
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The variables 
i

y  belonging to m  and d  are mutually independent, therefore it is 

enough to take the sum only through d  in the first term of the covariance. Denote as 
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known constants iz . In terms of model parameters we have 
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If we estimate the parameter 
2

d
β

σ  from the good stratum d , we get the whole variance. 

In a similar way, the covariance of estimates for any two strata can be obtained. Take 
1

m  and 

2

m , for which the estimates are taken from the strata 
1

m

S  and 
2

m

S . Denote 
sam

m
1

 the sampled 

part of the stratum 
1

m  etc. If 
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m  is a good stratum, then 
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1
= , otherwise 
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The same for 
2

m . Suppose that the stratification structure is well ordered, in the way that each 

substratum is contained in exactly one superior stratum. Denote 
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m
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d

SSS
21

∩=  and 
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∪= . Because of the well-ordered stratification, 
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S  is necessarily either the 

smaller of the sets 
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m
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1

 and 
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 or an empty set if the strata do not overlap. For the 

covariance we get: 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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3.3 Stratification level shifts – chained imputations 

We generalize now the methods used for stratification level shifts for the cases, when the data 

i

y  are imputed with help of estimated auxiliary variables 
i
x , which are obtained through 

regression with respect to known constants 
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z . In terms of model parameters we have 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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We generalize now the methods used for stratification level shifts for the cases, when the data 
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. 
Let S  be a large stratum consisting of substrata m  (small) and d  (good). Then the mean square error 
can be decomposed as:

 (29)

Both mse of sums just in strata d  and m  can be estimated through methods given in section (3.1):
  (30)
 (31)

The covariances are derived with help of conditional covariance decomposition:

 (32)

The estimation of the mean of the first term with respect to X  would be rather difficult, we substitute 
it with the estimate with the help of X̂ :
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The estimation of the mean of the first term with respect to X  would be rather 

difficult, we substitute it with the estimate with the help of Xˆ : 
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the second covariance term may be estimated as: 
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Similarly as for the mean square errors, we now also have a recurrent formula for the 

covariances. If 
i
z  would have an auxiliary variable which must be estimated, the estimate of 

the second term will be chained until it leads to constant covariates. 

It can be also shown, that the formula will work also when in the strata m  or d  are 

some values 
i

y  imputed, but corresponding values 
i
x  are observed in the sample. 

The covariance estimation for more than two strata can be generalized in a similar way 

as in the case with no chain structure. 

 

4. REMARKS 

 

4.1 Special cases 

The above described techniques are quite general. Often we work simply with 
ii

xc =: . The 

population estimate is then: 

 and the first term of the sum can be computed given the estimates ix̂ :

                                                                  , (34)

the second covariance term may be estimated as:
 (35)

Similarly as for the mean square errors, we now also have a recurrent formula for the covariances. If 
iz  would have an auxiliary variable which must be estimated, the estimate of the second term will be 

chained until it leads to constant covariates.
It can be also shown, that the formula will work also when in the strata m  or d  are some values iy  

imputed, but corresponding values ix  are observed in the sample.
The covariance estimation for more than two strata can be generalized in a similar way as in the case 

with no chain structure.

4  REMARKS
4.1  Special cases
The above described techniques are quite general. Often we work simply with ii xc =: . The population 
estimate is then:

                                                 , (36)

which is an analogy to the ratio estimator from the classic survey methodology (i.e. Levy and Leme-
show, 1999),
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The mean square error then reduces to:

 (38)
 

10 

 

 

./

var//var

/,/cov

2222

222

d

sam

samsam

samsam

S

dd

imp

m

imp

d

diii

dS

d

imp

m

imp

d

iiii

dS

d

imp

m

imp

d

iiii

dS

d

imp

m

imp

d

iiii

d

iiii

dS

d

imp

m

imp

B

B

XXcxw

BB

XX

ycxw

BB

XX

cyxw

BB

XX

cyxwcyxw

BB

XX

β
σσ ==

==

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

∑

∑∑

∑∑

 

(26)

If we estimate the parameter 
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It cat be further shown, that for a larger stratum S  consisting of Dd ,...,1=  good and 

Mm ,...,1=  small strata we get: 
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3.3 Stratification level shifts – chained imputations 

We generalize now the methods used for stratification level shifts for the cases, when the data 
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Both mse of sums just in strata d  and m  can be estimated through methods given in 

section (3.1):  
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The covariances are derived with help of conditional covariance decomposition: 
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The estimation of the mean of the first term with respect to X  would be rather 

difficult, we substitute it with the estimate with the help of Xˆ : 
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v[ôc

d
x

S

x

dd

imp

m

impmd
y

B

B

XXXYY
β

σ= , 

(34)

the second covariance term may be estimated as: 
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Similarly as for the mean square errors, we now also have a recurrent formula for the 

covariances. If 
i
z  would have an auxiliary variable which must be estimated, the estimate of 

the second term will be chained until it leads to constant covariates. 

It can be also shown, that the formula will work also when in the strata m  or d  are 

some values 
i

y  imputed, but corresponding values 
i
x  are observed in the sample. 

The covariance estimation for more than two strata can be generalized in a similar way 

as in the case with no chain structure. 
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The above described techniques are quite general. Often we work simply with 
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The estimation of the mean of the first term with respect to X  would be rather 

difficult, we substitute it with the estimate with the help of Xˆ : 
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the second covariance term may be estimated as: 
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Similarly as for the mean square errors, we now also have a recurrent formula for the 

covariances. If 
i
z  would have an auxiliary variable which must be estimated, the estimate of 

the second term will be chained until it leads to constant covariates. 
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The estimation of the mean of the first term with respect to X  would be rather 
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v[ôc)

ˆ
,

ˆ
v(ôc
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When the weights are constant, we get:

                                                                      , 
(39)

which is equal to the ratio estimator. For the error we get:
 

(40) 

If no auxiliary information is available, we may use 1≡ix , which means that we impute just the sam-
ple mean for each unit. We obtain:

 (41)

which is the commonly used formula for simple random sampling variance.

4.2  Choosing the weights
For getting the population estimates, we use imputations with help of the superpopulation model, rather 
than the commonly used weighting techniques. The weights are used in the estimates β̂  and, therefore, 
they have a different meaning.

If we observe just one stratum alone with no relation to others, it would be appropriate to use con-
stant weights (which may simply be equal to one for that case, because the constants in the numerator 
and denominator of β̂  cancel out).

If we apply some outlier-detection methods to identify observations that may not fit the model (see 
e.g. Grubbs, 1969 or Barnett and Lewis, 1994), we can simply put 0:=kw  for that units, meaning that 
they will not influence the parameter estimates in any way.

In the case when we need to use higher level stratification to obtain the estimates, the weights can be 
chosen in a way that they reflect the proportion of sampled units in each sub-strata, i.e. kkk nNw /:=  
for sub-stratum k  with kn  from kN  units sampled. Therefore the data from the greater strata influence 
the estimates more than the data from the smaller strata. However, this approach is rather simplified. The 
proportion of sampled units can be much lower in the studied small stratum than in the neighbouring 
strata, resulting in overly high weights. Also the dependency of the studied and auxiliary variables may 
differ between the strata. These considerations open an entire field of Small Area Estimation, which has 
been extensively studied for example by Rao (2003).
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We estimate the target variable as β̂ˆ
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Then the mean square error of the estimate is:

         ,   (43)

and the results from section 3 can be generalized similarly. Note that in this way we could include also 
the intercept term.

Difficulties can arise when the matrix 

14 

 

and the results from section 3 can be generalized similarly. Note that in this way we could 

include also the intercept term. 

Difficulties can arise when the matrix CXX

T

 is singular or under-determined, which 

can be the case when there is a linear dependency between the regression variables. It is then 

impossible to compute the inverse 
1

)(
−

CXX

T

, therefore for estimating β
ˆ

r

 one must either 

omit one or more of the covariates or use some pseudo-inverse matrix 
−

)( CXX

T

, such as the 

Moore-Penrose pseudo-inverse matrix (Penrose, 1955). 

 

5. EXAMPLES 

Mean square error estimation by the means of the superpopulation model as shown here has 

been adapted by the CZSO for business statistics. Larger surveys often have a very detailed 

stratification structure, with many small strata consisting of only a few units. Also a 

sequential approach is used, when the most important variables are estimated first and with 

their help the other ones are imputed, building a chain structure. We show here examples of 

mean square error and coefficient of variation estimation. 

 

5.1 Revenue from sales of own products and services 

First, suppose we want to estimate the aggregate revenue from sales of own products and 

services in one particular two-digit NACE stratum using the annual structural business 

statistics survey data from year 2010. The population of enterprises was divided into sampling 

substrata by size class (1-9, 10-19, 20-49 employees according to the business register) and by 

three-digit NACE (in this case there are three subgroups, say 1-3). We estimate the regression 

coefficients for each of the groups separately. If there are less than 15 responding enterprises 

in one group, we use there the coefficient β
ˆ

computed over the whole corresponding size 

class group. As the auxiliary variable 
i
x , the total turnover from tax declaration was taken. 

We take again the variance scaling as 1≡
i

c , 
ii

xc =  and 
2

ii

xc = and compare the results. An 

outlier detection technique based on assessing the influence of each observation on the 

estimate β
ˆ

was used. 

In the Table 3, we see the number of enterprises sampled (sam) and non-sampled or 

non-responding (imp) in respective groups. The sample was designed to pay more attention to 

larger companies. In the higher size classes, all units were sampled and some of them did not 

respond. There are some strata with relatively few sampled units (enterprises of higher size in 

 is singular or under-determined, which can be the case 
when there is a linear dependency between the regression variables. It is then impossible to compute the 
inverse 

14 

 

and the results from section 3 can be generalized similarly. Note that in this way we could 

include also the intercept term. 

Difficulties can arise when the matrix CXX

T

 is singular or under-determined, which 

can be the case when there is a linear dependency between the regression variables. It is then 

impossible to compute the inverse 
1

)(
−

CXX

T

, therefore for estimating β
ˆ

r

 one must either 

omit one or more of the covariates or use some pseudo-inverse matrix 
−

)( CXX

T

, such as the 

Moore-Penrose pseudo-inverse matrix (Penrose, 1955). 

 

5. EXAMPLES 

Mean square error estimation by the means of the superpopulation model as shown here has 

been adapted by the CZSO for business statistics. Larger surveys often have a very detailed 

stratification structure, with many small strata consisting of only a few units. Also a 

sequential approach is used, when the most important variables are estimated first and with 

their help the other ones are imputed, building a chain structure. We show here examples of 

mean square error and coefficient of variation estimation. 

 

5.1 Revenue from sales of own products and services 

First, suppose we want to estimate the aggregate revenue from sales of own products and 

services in one particular two-digit NACE stratum using the annual structural business 

statistics survey data from year 2010. The population of enterprises was divided into sampling 

substrata by size class (1-9, 10-19, 20-49 employees according to the business register) and by 

three-digit NACE (in this case there are three subgroups, say 1-3). We estimate the regression 

coefficients for each of the groups separately. If there are less than 15 responding enterprises 

in one group, we use there the coefficient β
ˆ

computed over the whole corresponding size 

class group. As the auxiliary variable 
i
x , the total turnover from tax declaration was taken. 

We take again the variance scaling as 1≡
i

c , 
ii

xc =  and 
2

ii

xc = and compare the results. An 

outlier detection technique based on assessing the influence of each observation on the 

estimate β
ˆ

was used. 

In the Table 3, we see the number of enterprises sampled (sam) and non-sampled or 

non-responding (imp) in respective groups. The sample was designed to pay more attention to 

larger companies. In the higher size classes, all units were sampled and some of them did not 

respond. There are some strata with relatively few sampled units (enterprises of higher size in 

, therefore for estimating β̂


 one must either omit one or more of the covariates or 
use some pseudo-inverse matrix 

14 

 

and the results from section 3 can be generalized similarly. Note that in this way we could 

include also the intercept term. 

Difficulties can arise when the matrix CXX

T

 is singular or under-determined, which 

can be the case when there is a linear dependency between the regression variables. It is then 

impossible to compute the inverse 
1

)(
−

CXX

T

, therefore for estimating β
ˆ

r

 one must either 

omit one or more of the covariates or use some pseudo-inverse matrix 
−

)( CXX

T

, such as the 

Moore-Penrose pseudo-inverse matrix (Penrose, 1955). 

 

5. EXAMPLES 

Mean square error estimation by the means of the superpopulation model as shown here has 

been adapted by the CZSO for business statistics. Larger surveys often have a very detailed 

stratification structure, with many small strata consisting of only a few units. Also a 

sequential approach is used, when the most important variables are estimated first and with 

their help the other ones are imputed, building a chain structure. We show here examples of 

mean square error and coefficient of variation estimation. 

 

5.1 Revenue from sales of own products and services 

First, suppose we want to estimate the aggregate revenue from sales of own products and 

services in one particular two-digit NACE stratum using the annual structural business 

statistics survey data from year 2010. The population of enterprises was divided into sampling 

substrata by size class (1-9, 10-19, 20-49 employees according to the business register) and by 

three-digit NACE (in this case there are three subgroups, say 1-3). We estimate the regression 

coefficients for each of the groups separately. If there are less than 15 responding enterprises 

in one group, we use there the coefficient β
ˆ

computed over the whole corresponding size 

class group. As the auxiliary variable 
i
x , the total turnover from tax declaration was taken. 

We take again the variance scaling as 1≡
i

c , 
ii

xc =  and 
2

ii

xc = and compare the results. An 

outlier detection technique based on assessing the influence of each observation on the 

estimate β
ˆ

was used. 

In the Table 3, we see the number of enterprises sampled (sam) and non-sampled or 

non-responding (imp) in respective groups. The sample was designed to pay more attention to 

larger companies. In the higher size classes, all units were sampled and some of them did not 

respond. There are some strata with relatively few sampled units (enterprises of higher size in 

, such as the Moore-Penrose pseudo-inverse matrix (Penrose,  
1955).

5  ExAMPLES
Mean square error estimation by the means of the superpopulation model as shown here has been adapt-
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with many small strata consisting of only a few units. Also a sequential approach is used, when the most 
important variables are estimated first and with their help the other ones are imputed, building a chain 
structure. We show here examples of mean square error and coefficient of variation estimation.

5.1  Revenue from sales of own products and services
First, suppose we want to estimate the aggregate revenue from sales of own products and services in one 
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Table 3  The number of enterprises in the sampling strata

Note: Sam – sampled part, Imp – imputed part.
Source: Czech Statistical Office

NACE3

1 2 3

Sam Imp Sam Imp Sam Imp

Size class

0–9 20 38 86 110 42 82

10–19 4 1 35 4 14 0

20–49 10 0 25 1 12 1



2012

67

49 (1)STATISTIKA

The regression coefficient estimates would not be reliable, if taken in these strata separately. Therefore 
we compute estimates for each whole size class so that the coefficients in smaller NACE groups 1 and 3 
are obtained using information also from the group 2. Fortunately, there are no units to estimate in two 
of the small strata and the other two small strata have both just one non-responding unit.

We estimated Ŷ , corresponding 
esmˆ  and coefficients of variation first 

for the whole population and then for 
regional division in which enterprises 
were divided into three groups by place 
of residence: i) those residing in the 
capital city of Prague, ii) in the rest 
of Bohemia and iii) in Moravia. The 
number of sampled and non-sampled 
enterprises in each region can be seen 
in Table 4 in parentheses (Prague, Bo-
hemia, Moravia).

Table 4  The number of enterprises in the imputation groups

NACE3

1 2 3 Total

Sam Imp Sam Imp Sam Imp Sam Imp

Size class

0–9 (2,11,7) (6,22,10) (6,61,19) (11,52,47) (2,28,12) (20,35,27) (10,100,38) (37,109,84)

10–19 (1,2,1) (0,0,1) (2,21,12) (1,0,3) (2,9,3) 0 (5,32,16) (1,0,4)

20–49 (0,7,3) 0 (1,16,8) (0,1,0) (1,9,2) (1,0,0) (2,32,13) (1,1,0)

Total (3,20,11) (6,22,11) (9,98,39) (12,53,50) (5,46,17) (21,35,27) (17,164,67) (39,110,88)

Note: Sam – sampled part, Imp – imputed part.
Source: Czech Statistical Office

Table 6  Revenue from sales of own products and services – regions

Note: Ŷ  – estimated total, MSE – mean square error, CV – coefficient of variation, ic
 
– variance scaling.

Source: Simulation – own construction, primary data: Czech Statistical Office

Region ci MSE CV

Prague

1 1 133 291 1 102 787 426 2.93%

xi 1 158 584 350 602 637 1.62%

x2
i 1 159 533 1 501 735 362 3.34%

Bohemia

1 7 118 493 1 970 034 661 0.62%

xi 7 179 980 1 124 227 221 0.47%

x2
i 7 202 045 2 714 996 570 0.72%

Moravia

1 3 326 493 1 375 424 879 1.11%

xi 3 360 874 644 562 108 0.76%

x2
i 3 377 496 1 546 626 660 1.16%

Ŷ

Table 5  Revenue from sales of own products and services  
                 – the whole population

Note: Ŷ  – estimated total, MSE – mean square error, CV – coefficient of variation, 
           ic  – variance scaling.
Source: Simulation – own construction, primary data: Czech Statistical Office

ci Ŷ MSE CV

1 11 578 276 5 632 297 044 0.65%

xi 11 699 438 3 255 484 884 0.49%

x2
i 11 739 074 7 428 077 251 0.73%
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The mean square error is computed in each of the regions separately, using the coefficients esti-
mated over the sampling strata and the totals of auxiliary data in the region. Note that because the co-
efficients for small strata are taken from the size-class groups, covariance between estimates has to be 
computed as shown in section 3.2. We can see the results for each type of variance scaling ic  in Tables 5  
and 6.

The estimated totals Ŷ using different ic are similar. The coefficient of variation differs, we can see that 
ii xc =  yields more accurate results than 1≡ic  or 2

ii xc =  in each case. Generally the estimated coef-
ficients of variations are quite low, which is partly because the sampling ratio was high and the sample 
focused on larger and more important enterprises and partly also due to good regression fit.

5.2  Revenue from the lease of land
Suppose we want to estimate the total revenue from the lease of land in the same population and the cor-
responding prediction error. As auxiliary variables ix , for each enterprise we take the predicted values of 
the revenue from the sales of own products and services from above. Thus we have a chain structure and 
therefore it is necessary to use the method described in section 3.2. Because there are some small strata, 
the covariance has to be computed via the chain structure as shown in section 3.3. 

Again, we take the variance scal-
ing as 1≡ic , ii xc =  and 2

ii xc =  
and compare the results.

In Tables 7 and 8 we see that the 
estimated totals are again similar to 
each choice of ic . The coefficient of 
variation of Ŷ  for the whole pop-
ulation is the lowest with 1≡ic . 
Among the regions it is not so clear, 
the mean square error is lowest in 
two cases with 1≡ic  and in one 
case with ii xc = .

Table 7  Revenue from the lease of land – the whole population

Note: Ŷ  – estimated total, MSE – mean square error, CV – coefficient of variation, 
           ic  – variance scaling.
Source: Simulation – own construction, primary data: Czech Statistical Office

ci Ŷ MSE CV

1 31 492 31 291 0.56%

xi 31 629 53 565 0.73%

x2
i 31 751 138 821 1.17%

Region ci MSE CV

Prague

1 15 119 9 898 0.66%

xi 15 139 4 542 0.45%

x2
i 15 153 13 312 0.76%

Bohemia

1 14 981 16 999 0.87%

xi 15 059 38 704 1.31%

x2
i 15 123 68 859 1.74%

Moravia

1 1 393 3 307 4.13%

xi 1 431 4 909 4.89% 

x2
i 1 475 33 480 12.41%

Table 8  Revenue from the lease of land – regions

Ŷ

Note: Ŷ  – estimated total, MSE – mean square error, CV – coefficient of variation,  ic  – variance scaling.
Source: Simulation – own construction, primary data: Czech Statistical Office
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CONCLUSION
The superpopulation regression model and all-data imputation presents an alternative approach to estimate 
the population totals in survey sampling. It is then easier to provide estimates with respect to various group-
ings. We have shown how to compute the mean square error in order to assess the accuracy of the estimators. 
In simple cases, this approach leads to similar estimators as the commonly used formulas for classic simple 
random sampling. However, using the superpopulation model it is easier to derive error estimates in more 
complex cases with sophisticated stratification and chain structure, as we have shown.

Because the superpopulation approach is model-based, the results can be inaccurate if the model as-
sumptions are not met. Further research can concern sensitivity analysis on departures from the assumed 
model, presence of outliers and goodness-of-fit tests. 
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