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Abstract 

Determining the significance of slope differences is a common requirement in studies of self-thinning, 

ontogeny and sexual dimorphism, among others. This has long been carried out testing for the overlap of the 

bootstrapped 95% confidence intervals of the slopes. However, the numerical random re-sampling with 

repetition favours the occurrence of re-combinations yielding largely diverging slopes, widening the 

confidence intervals and thus increasing the chances of overlooking significant differences. To overcome this 

problem a permutation test simulating the null hypothesis of no differences between slopes is proposed. This 

new methodology, when applied both to artificial and factual data, showed an enhanced ability to differentiate 

slopes. 
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1 Introduction 

Linear regression is the simplest, most common method to systematize the relation between pair-wised 

variables. It estimates expected values for the dependent variable y given fixed values for the independent 

variable x. However, usually causality cannot be assumed and therefore it is incorrect to treat a variable as 

dependent from another independent one. Even when causality can be assumed, the standard linear regression 

(i.e, model I linear regression) assumes x is measured in the absence of error. When such is not the case, most 

likely the standard linear regression is inadequate (but see Smith, 2009, and Legendre, 2013). Major axis 

regression (MA) emerged as an alternative for the oblique simultaneous regression of x and y. It was fallible 

when variables were expressed in different units and/or subject to different scales. This was solved with 

reduced major axis regression (RMA), where the variables are first standardized to zero mean and unit 

variance before the MA protocol is applied. RMA became the reference methodology as was the case of the 
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self-thinning rule, originally from plant demography and later extended to macro-algae (Creed, 1995; Flores-

Moya et al 1997; Scrosati, 1997, 2005; Scrosati and DeWreede, 1997; Creed et al., 1998; Steen and Scrosati, 

2004; Rivera and Scrosati, 2008) and animals (Hughes and Griffiths, 1988; Rincón and Lobón-Cerviá, 2002; 

Keeley, 2003). It states the log densities of individuals and their log biomass are negatively correlated 

provided the population is crowded enough for competition effects to take place (Yoda et al., 1963; White and 

Harper, 1970; Weller, 1987; Scrosati, 1997, 2005). In other words self-thinning is the process of concurrent 

increase in population biomass and decrease in density as some individuals die due to intra-specific 

competition. A question emerges about determining whether slopes taken from distinct populations are 

significantly different. These would reflect populations subject to different environments and degrees of 

competitive stress (Yoda et al., 1963; Lonsdale and Watkinson, 1982; Weller, 1987; Morris, 1996; Scrosati 

and DeWreede, 1997; Creed et al., 1998; Keeley, 2003; Morris, 2003; Steen and Scrosati, 2004). In biometrics, 

slopes estimated from RMA (or model II regression) are often used in studies on ontogeny (Schott et al., 2011) 

and sexual dimorphism (Fairbairn, 1997; Anderson, 2012). Slope differences may be found between species of 

the same family (Leigh and Shea, 1995) or populations of the same species exhibiting different behaviours 

(Buffa et al., 2001). Within the same species different degrees of sexual dimorphism may be found in body 

measurements subject to the independent action of natural selection (Masterson and Hartwig, 1998). The 

significances of slope differentiation were first determined by parametric tests relying in the normality of data 

and thus obliging further data manipulation (see Sokal and Rohlf, 1981). More recently slope differentiation 

became commonly estimated by bootstrapping both populations, determining their slope confidence intervals 

and their overlap. Similar bootstrap and Jackknife procedures have also been used to estimate significances of 

metrics taken from PCA (Stauffer et al., 1985; Jackson, 1993; Peres-Neto et al., 2003; Peres-Neto et al. 2005; 

Zhang, 2011). Yet, with bootstrap there is never the statement or the simulation of a null hypothesis against 

which the original data may be tested. This is fundamental to the estimation of significances of metrics and can 

only be obtained from permutation tests, another group of Monte Carlo statistics (also known as randomization 

tests) developed with that precise objective (Manly, 1991; Dijksterhuis and Heiser, 1995; Anderson and 

Legendre, 1999; Peres-Neto et al., 2005; Vieira, 2012; Legendre, 2013). As for Bootstrap and Jackknife 

methods, these were developed with the objective of estimating confidence intervals and not significances 

(Efron and Tibshirani, 1986; Manly, 1991; Lebart, 2006). 

Matlab (Mathworks) based software was developed to allow for the use of randomization tests to estimate 

the significance of the difference between two slopes. Both bootstrap and permutation based methods are 

available. These were tested and their results compared. We used artificially generated bivariate datasets and 

two empirical datasets: one of the frond and biomass densities of the seaweed Laminaria digitata (Huds.) 

Lamouroux and the other on the biometrics of the lobster Nephrops norvegicus (Linnaeus, 1758). As calculus 

may turn out to be computationally intensive, it is also provided a parallel processing version of the software. 

However, this requires the ‘parallel processing toolbox’ only available in Matlab R2011a and later releases.   

 

2 Methods 

2.1 Slope estimation 

The bivariate data sets had m observations divided between g groups. The slope was estimated for each group 

using RMA and compared to every other slope. The RMA is the geometric mean of the two regression 

coefficients, that is, of y regressed upon x and vice versa. However, the slope of x regressed on y must be 

inversed (1/bxy) due to the axes transposition. The RMA becomes then in its simplest form |b|=sy/sx, where sx 

and sy are the standard deviations of x and y, respectively. The slope sign is that of the Pearson correlation 

coefficient r. 
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2.2 The permutation tests 

Permutations tests with PCA permuted variables independently breaking their correlations (Dijksterhuis and 

Heiser, 1995; Peres-Neto et al., 2005; Zhang, 2011; Vieira, 2012). However, these tests were developed to 

estimate the significances of the PCA itself, which implied a null hypothesis of no correlations between 

variables. Permutations tests have been applied to multiple regression to estimate the significance of the 

correlation of Y with the Xn predictor variables (Zhang, 2011). It requires keeping the correlations within 

independent variables while breaking their correlations with the dependent variable (Ferrarini, 2011). In the 

present case the permutations redistributed the observations randomly through the full dataset keeping the 

correlations between the two variables, i.e: it was a redistribution of the original (x, y) pairs as it was only 

intended to test the differences between groups and not the correlation between the two variables. The original 

difference between two slopes was estimated for each possible combination of two groups. The original dataset 

was randomly permuted along its full length. This procedure simulated the null hypothesis that all groups came 

from the same population. The slopes were re-estimated as well as the slope differences. When the random 

permutations procedure was repeated n times the probability density functions (pdf) for the slope differences 

among groups under the null hypothesis were obtained. The n was usually around 10000 iterations. In order to 

estimate their significances, the original slope differences were compared to their pdf under the null hypothesis. 

It was found the permutation method could not be applied to the original x and y variables. Randomly 

permuting elements between two populations with distinct centroids produces a systematic bias in slope 

estimation. This was illustrated comparing the self-thinning of kelp in replicate 1 of 2000 plants/m2 and 

replicate 4 of 5186 plants/m2 densities (Appendix A). The solution was standardizing the variables to each 

population’s mean, thus forcing the centroids to coincide in the origin of the coordinate system (Appendix B). 

2.3 The bootstrap tests 

Each group was bootstrapped and its new slope estimated. This means all observations were taken out from 

their groups and then re-sampled back with repetition into their original groups. When this was done n times 

probability density functions (pdf) of the slope values for the groups were obtained. However, these pdf did 

not correspond to any null hypothesis but rather to estimates of the error around the original values. The n was 

usually around 10000 iterations. The significances of the differences between groups were given by the 

overlap of their confidence intervals. Two slopes were significantly different at α level only if their 1-α 

confidence intervals did not overlap (Sokal and Rohlf, 1981). 

2.4 The data 

An artificial data set was created specifically to determine the probability of type 2 error (false negatives), 

which occurs due to bias from the sampling and bias from the numerical method. It implied comparing two 

factually distinct slopes from two distinct populations, each with 1000 (x, y) pairs. Variable x was randomly 

distributed from 1 to 5. Variable y1 = a + bx + er1, variable y2 = a + (b+∆b)x + er2, a = 10, b = 1, ∆b = 0.5 and 

eri was randomly selected from a normal distribution with zero mean and sy standard deviation. One sample 

sized n was randomly selected from each population, their slopes estimated, the randomization methods 

applied as described in sections 2.2 and 2.3, and decided whether to consider them different (true positive) or 

equal (false negative). By repeating this procedure 1000 times it was obtained an estimate of the probability of 

type 2 error. This probability was estimated for samples sized 4 to 48 with standard deviations from 0.1 to 1. 

Another artificial data set was created specifically to determine the probability of detecting false differences 

between slopes i.e., false positives or type 1 error. The procedure was similar to the one above in all except the 

two samples were taken from a single homogeneous population (x, y1). Therefore, any differences obtained 

corresponded to false positives. 

Macrostages of Laminaria digitata were cultivated on 10×15cm plates with initial densities of 10, 20, 30, 
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40 and 80 individuals per plate corresponding to 650, 1334, 2000, 2668 and 5186 individual per m2. Each 

density had four replicates and experiments were carried in culture tanks at Port Erin Marine Laboratory, Isle 

of Man. The density and stand biomass in each plate was accessed for 11 sampling times at approximately 19 

day intervals. Details of methods and results were presented in Creed et al (1998). Here were used replicates 1, 

2 and 3 of density 2000 ind/m2 and replicates 1, 2, 3 and 4 of density 5186 ind/m2, and only the first eight 

sampling times. 

Males of the lobster Nephrops norvegicus were sampled at seven sites from the south coast of Portugal 

(Algarve) in the Atlantic and across the Mediterranean in the Alboran Sea, the Catalan Sea, the Ligurian Sea, 

the Tyrrhenian Sea, the Adriatic Sea and the Gulf of Euboikos (Castro et al., 1998). The relation between the 

carapace standard length and carapace width were used to compare these populations. 

 

3 Results 

The probability of type 1 error was generally around 0.04 to 0.05 for the permutation method and 0.03 for the 

bootstrap method (not shown). The permutation method was more robust against type 2 error than the 

bootstrap method (Fig. 1) identifying real differences between slopes with higher data scatter. However, with 

samples sized four or smaller both methods were incapable of identifying true differences. In order to study 

this particular case two artificial populations of four elements were created where y was a linear combination 

of x (r = 1). One population had a slope of 1 whereas the other had a slope of -1. The permutation method did 

not consider these as significantly different (p=0.5107). Two new artificial populations of five elements were 

created where y was no longer a linear combination of x. Still, x and y were conspicuously correlated (r1 = 

0.8865 and r2 = -0.8982) and slopes were conspicuously different (Fig. 2). Neither method was able to 

differentiate slopes. The permutation method gave p = 0.3233 whereas the bootstrap method entirely 

overlapped the 95% confidence intervals due to the occurrence of odd combinations when resampling very 

small sample sizes. Resampling only units 2, 3 and 4 (starting counting from the left) from population 1 

yielded slopes more negative than the slopes of population 2. Resampling only units 2 and 3 from population 2 

yielded slopes more positive than the slopes of population 1. 

The kelp self-thinning time series of every replicate, plotted in Fig. 3, started in the bottom right and 

evolved to the top left. Replicates 1, 2 and 3 of density 2000 plants/m2 had the steepest self-thinning slopes, 

replicates 1, 2 and 3 of density 5186 plants/m2 had the flattest self-thinning slopes and replicate 4 of density 

5186 plants/m2 had an intermediate self-thinning slope. According to both methods all replicates of 2000 

plants/m2 and replicate 4 of 5186 plants/m2 made a homogeneous group while replicates 1, 2 and 3 of 5186 

plants/m2 made another homogeneous group (Table 1). Slopes tended to be significantly different between 

these two groups. The permutation method showed difficulty differentiating replicate 3 of 2000 plants/m2 from 

replicate 1 of 5186 plants/m2 (p=0.0521). The bootstrap method overlapped the 95% confidence intervals of 

replicate 3 of 2000 plants/m2 with both replicates 1 and 3 of 5186 plants/m2. This was because for the lower 

density time series it was sufficiently easy to obtain particular combinations of points yielding flatter slopes 

while for the higher density time series it was sufficiently easy to obtain particular combinations of points 

yielding stepper slopes. 

The biometrics data was divided into seven groups with 45 to 50 observations each and slopes bPO=0.422, 

bCA=0.433, bLI=0.399, bTY=0.446, bAD=0.573, bGR=0.372 and bAL=0.355. The bootstrap method only recognized 

the bigger slope as significantly different from the two smallest slopes whereas the permutations method 

exhibited a better capability of differentiating between slopes from both extremes (Table 1).  
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Table 1 Tests to the differences between slopes for the Laminaria digitata self-thinning data and the Nephrops norvegicus 
biometry data. (D3) 2000 plants/m2, (D5) 5186 plants/m2, (R) replicate. (TY) Tyrrhenian sea, (AD) Adriatic sea, (GE) Gulf of 
Euboikos, (LI) Ligurian sea, (CA) Catalan sea, (PO) Portugal and (AL) Alboran sea. For the Bootstrap method it is given the 
overlapped proportion of the 95% confidence intervals. Only when it is 0 (in bold) the slopes are significantly different. For the 
permutations method is given the significance of the differences with p<0.05 in bold and p close to 0.05 in grey bold.  

 Bootstrap Permutations 

Laminaria digitata data 

 D3 

R2 

D3 

R3 

D5 

R4 

D5 

R1 

D5 

R2 

D5 

R3 

D3 

R2 

D3 

R3 

D5 

R4 

D5 

R1 

D5 

R2 

D5 

R3 

D3 R1 1 0.492 0.391 0 0 0 0.493 0.249 0.212 0.008 0.007 0.005

D3 R2  0.871 1 0 0 0  0.706 0.597 0.041 0.027 0.025

D3 R3   0.901 0.071 0 0.010   0.842 0.052 0.039 0.043

D5 R4    0 0 0    0.015 0.012 0.009

D5 R1     0.707 1     0.413 0.757

D5 R2      0.714      0.584

Nephrops norvegicus data 

 AD GE LI CA PO AL AD GE LI CA PO AL 

TY 0.516 0.290 0.758 0.904 0.885 0.084 .0165 0.059 0.458 0.835 0.669 0.007

AD  0 0.212 0.412 0.356 0  0.0004 0.136 0.134 0.119 0 

GE   1 0.516 0.426 0.836   0.483 0.130 0.139 0.629

LI    0.862 1 0.656    0.599 0.626 0.28 

CA     1 0.288     0.846 0.029

PO      0.146      0.054

 

 

 

 

 
Fig. 1 Type 2 error probability tested on artificial data. (sy) standard error of y, (∆b = b2-b1) slope difference, (n) sample size and 
(rx) regression coefficient for population x. 
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           Fig. 2 Artificially generated populations of 5 elements. 

 

 

 
Fig. 3 Self-thinning of Laminaria digitata cultures with densities of (A) 2000 plants/m2 replicates 1, 2 and 3, (B) 5186 plants/m2 
replicate 4 and (C) 5186 plants/m2 replicates 1, 2 and 3. (s) slopes. 

 

 

4 Discussion 

Permutation tests have already been proposed to estimate the significance of slopes (Legendre, 2013) and 

partial regression coefficients (Anderson and Legendre, 1999) but not of differences between slopes. The latter 

has been determined from overlap of their bootstrapped slope probability distributions (Creed, 1995; Scrosati 

and DeWreede, 1997; Creed et al., 1998; Steen and Scrosati, 2004), following Sokal and Rohlf (1981). Sokal 

and Rohlf (1981; Chapter 14, section 8 box 14.9) present an algorithm to estimate significances of differences 

between slopes. They state (point 4) that “a pair of regression coefficients, bi and bj, is declared significantly 

different at the experimentwise error rate α if and only if their difference equals or exceeds the critical 

difference”. This is precisely the base of the permutations methodology proposed in the current work. Sokal 

and Rohlf (1981) propose three alternatives to estimate the critical difference. They require a quantity taken 

from the Student’s t-distribution with further data manipulation, the degrees of freedom and the standard error 
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of the slopes for each population under the restriction these follow a normal distribution. Less data 

manipulation and assumptions would be desirable. Presently, the critical difference is estimated directly from 

many runs of permutation tests. In the 1980s powerful computers were not easily available and randomization 

methods were at their early stages. Consequently, in their following point 5, Sokal and Rohlf (1981) suggest 

the use of Gabriel’s (1978) approximate method to avoid extensive recomputation of the critical difference 

when many statistical populations are present. Thus, two slopes are significantly different at α level if and only 

if their 1-α confidence intervals do not overlap. However, Gabriel (1978) is just an approximate method, 

developed for differences between means and not slopes and restricted to samples of equal sized. Furthermore, 

the confidence intervals must be extracted from a theoretical distribution of the slope derived from the 

Student’s t of known sample size and standard error, and not from its bootstrapped empirical distribution. The 

approximation could be justifiable when computational abilities were week. But this is no longer the case. The 

last chapter in Sokal and Rohlf (1981) about “miscellaneous methods” presents randomization tests. At that 

time these were such a novelty that they were only considered divided into (i) exact randomization (ex: 

Jackknife) when it is feasible to calculate all possible outcomes and (ii) sampled randomization test (ex: 

bootstrap) when the number of possible outcomes is overwhelming. Their example of a sampled 

randomization test was actually a “primordial” permutation test applied to a data set of 25 ticks with scutum 

length measurements. Its variability supposedly reflected general genetic variability. The ticks were subject to 

a temperature shock and only 9 survived. The hypothesis was that variability of the scutum length was smaller 

in the surviving group as only a restricted portion of the genetic spectrum would survive. So, in their case 

variance was tested whereas here we tested slope. To compare both variances Sokal and Rohlf (1981) 

estimated their ratio whereas in the present case we compared the difference. Sokal and Rohlf (1981) argued 

their ratio did not follow the F-distribution as the two variances were not obtained from independent, normally 

distributed samples. So, they proposed a randomization test where the number of possible ways to select 9 

ticks out of 25 is given by Newton’s binomial (over 2 million). This corresponds to the permutation test design 

where both the surviving 9 and the dying 16 are randomly selected from the null hypothesis that all belong to 

the same homogeneous group of 25 ticks. 

The present work demonstrated both bootstrap and permutations methods are robust to detecting false 

differences between slopes (i.e., false positives or Type 1 error) but unable to detect true differences (i.e., false 

negatives or Type 2 error) with large data scatter or very small samples. It was demonstrated with very small 

sample sizes (≤5) both methods are too vulnerable to the occurrence of odd combinations. Unfortunately, 

relatively small sample size is often the case of studies about self-thinning (Ellison, 1989; Rincón and Lóbon-

Cerviá, 2002; Keeley, 2003) including those where a null hypothesis was accepted (Weiner and Whigham, 

1988; Morris, 1996; Arenas and Fernández, 2000; Steen and Scrosati, 2004; Scrosati and DeWreede, 1997) 

raising the possibility of false negatives. With bigger samples the implications of choosing either method was 

well illustrated with the Laminaria digitata self-thinning data (Creed et al., 1998) and the Nephrops norvegicus 

biometry data (Castro et al., 1998). The present work demonstrated the bootstrap method had greater 

difficulties than the permutation method in detecting true differences. Even with samples sized 50 the 

bootstrap method still delivers results widely divergent from the permutation method, with a tendency to 

underestimate significances of honestly different slopes. Therefore, we recommend the permutation method to 

differentiate slopes. 

 

Acknowledgements 

We thank Margarida Castro for providing the Norway lobster biometry data from the project  

NEMED (EU-DG XIV, MED/92/008, coordinated by ICM, CSIC, Barcelona). 

50



Computational Ecology and Software, 2013, 3(3): 44-52 

 IAEES                                                                                    www.iaees.org

References 

Anderson PA. 2012. Sexual dimorphism in morphometry and allometry of the adult lined seahorse, 

Hippocampus erectus. Copeia, 2012(3): 389-393 

Anderson MJ, Legendre P. 1999. An empirical comparison of permutation methods for tests of partial 

regression coefficients in a linear model. Journal of Statistical Computation and Simulation, 62: 271-303 

Arenas F,Fernández C. 2000. Size structure and dynamics in a population of Sargassum muticum 

(Phaeophyceae). Journal of Phycology, 36: 1012-1020 

Buffa R, Marini E, Floris G. 2001. Variation in sexual dimorphism in relation to physical activity. American 

Journal of Human Biology, 13(3): 341-348 

Dijksterhuis GB, Heiser WJ. 1995. The role of permutation tests in exploratory multivariate data analysis. 

Food Quality and Preference, 6: 263-270 

Castro M, Gancho P, Henriques P. 1998. Comparison of several populations of Norway lobster, Nephrops 

norvegicus (L.), from the Mediterranean and the Adjacent Atlantic. A biometrics study. Scientia Marina, 

62(1): 71-79 

Creed JC. 1995. Spatial dynamics of a Himanthalia elongate (Fucales, Phaeophyta) population. Journal of 

Phycology, 31: 851-859 

Creed JC, Kain JM, Norton TA.1998. An  experimental evaluation of density and plant size in two large 

brown seaweeds. Journal of Phycology, 34: 39-52 

Efron B, Tibshirani R. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures 

of statistical accuracy. Statistical Science, 1(1): 54-75 

Ellison AM. 1989. Morphological determinants of self-thinning in plant monocultures and a proposal 

concerning the role of self-thinning in plant evolution. Oikos, 54: 287-293 

Fairbairn DJ. 1997. Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size 

in males and females. Annual Review of Ecology and Systematics, 28: 659-687 

Ferrarini A. 2011. A fitter use of Monte Carlo simulations in regression models. Computational Ecology and 

Software, 1(4): 240-243  

Gabriel KR. 1978. A simple method of multiple comparisons of means. Journal of the American Statistical 

Association, 73: 724-729 

Hughes RN, Griffiths CL. 1988. Self-thinning in barnacles and mussels: the geometry of packing. American 

Naturalist, 132(4): 484-491 

Jackson DA. 1993. Stopping rules in Principal Components Analysis: A comparison of heuristical and 

statistical approaches. Ecology, 74(8): 2204-2214 

Keeley ER. 2003. An experimental analysis of self-thinning in juvenile steelhead trout. Oikos, 102: 543-550 

Lebart L. 2007. Which Bootstrap for Principal Axes Methods? In: Selected Contributions in Data Analysis and 

Classification (Brito P, Cucumel G, Bertrand P, et al, eds). 581-588, Springer, Berlin, Heidelberg, 

Germany 

Legendre P. 2013. Model II Regression User Guide, R Edition. http://cran.r-

project.org/web/packages/lmodel2/vignettes/mod2user.pdf 

Leigh SR, Shea BT. 1995. Ontogeny and the evolution of adult body size dimorphism in apes. American 

Journal of Primatology, 36(1): 37-60 

Lonsdale WM, Watkinson AR. 1983. Plant geometry and self-thinning. Journal of Ecology, 71: 285-297 

Manly BJF. 1991. Randomization and Monte Carlo Methods in Biology. Chapman & Hall, London, UK 

Masterson TJ, Hartwig WC. 1998. Degrees of sexual dimorphism in Cebus and other new world monkeys. 

American Journal of Physical Anthropology, 107(3): 243-256 

51



Computational Ecology and Software, 2013, 3(3): 44-52 

 IAEES                                                                                    www.iaees.org

Morris EC. 1996. Effect of localized placement of nutrients on root competition in self-thinning populations. 

Annals of Botany, 78: 353-364 

Morris EC. 2003. How does fertility of the substrate affect intraspecific competition? Evidence and synthesis 

from self-thinning. Ecological Research, 18(3): 287-305  

Pearson K. 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2: 

559-572 

Peres-Neto PR, Jackson DA, Somers KM. 2003. Giving meaningful interpretation to ordination axes: assessing 

loading significance in principal component analysis. Ecology, 84: 2347-2363 

Peres-Neto, PR, Jackson DA, Somers KM. 2005. How many principal components? Stopping rules for 

determining the number of non-trivial axes revisited. Computational Statistics & Data Analysis, 49: 974-

997 

Rincón PA, Lobón-Cerviá J. 2002. Nonlinear self-thinning in a stream-resident population of brown trout 

(Salmo trutta). Ecology, 83(7): 1808-1816 

Rivera M, Scrosati R. 2008. Self-Thinning and size inequality dynamics in a clonal seaweed (Sargassum 

lapazeanum: Phaeophyceae). Journal of Phycology, 44: 45-49 

Schott RK, Evans DC, Goodwin MB, et al. 2011. Cranial Ontogeny in Stegoceras validum (Dinosauria: 

Pachycephalosauria): A quantitative model of Pachycephalosaur dome growth and variation. PLoS ONE, 

6(6): e21092  

Scrosati R. 1997. On the analysis of self-thinning among seaweeds. Journal of Phycology, 33: 1077-1079 

Scrosati R. 2005. Review of studies on biomass-density relationships (including self-thinning lines) in 

seaweeds: Main contributions and persisting misconceptions. Phycological Research, 53: 224-233 

Scrosati R, DeWreede RE. 1997. Dynamics of the biomass-density relationship and frond biomass inequality 

for Mazzaella cornucopiae (Gigartinaceae, Rhodophyta): implications for the understanding of frond 

interactions. Phycologia, 36: 506-516 

Smith RJ. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical 

Anthropology, 140: 476-486 

Sokal RR, Rohlf FJ. 1981. Biometry: the Principles and Practice of Statistics in Biological Research (2nd ed). 

W.H. Freeman and company. New York, USA 

Stauffer DF, Garton EO, Steinhorst RK. 1985. A Comparison of Principal Components from Real and Random 

Data. Ecology, 66(6): 1693-1698 

Steen H, Scrosati R. 2004. Intraspecific competition in Fucus serratus and F. evanescens (Phaeophyceae: 

Fucales) germlings: effects of settlement density, nutrient concentration, and temperature. Marine Biology, 

144: 61-70 

Vieira VMNCS. 2012. Permutation tests to estimate significances on Principal Components Analysis. 

Computational Ecology and Software, 2(2): 103-123 

Weiner J, Whigham DF. 1988. Size variability and self-thinning in wildrice (Zizania aquatica). American 

Journal of Botany, 75(3): 445-448 

Weller DE. 1987. A reevaluation of the -3/2 power rule of plant self-thinning. Ecological Monographs, 57: 23-

43 

White J, Harper JL. 1970. Correlated change in plant size and number in plant populations. Journal of Ecology, 

58: 467-485 

Yoda,K, Kira T, Ogawa H, et al. 1963. Self-thinning in overcrowded pure stands under cultivated and natural 

conditions (Intraspecific competition among higher plants. XI). Journal of Biology, Osaka City University, 

14: 107–129 

Zhang WJ. 2011. Simulation of arthropod abundance from plant composition. Computational Ecology and 

Software, 1(1): 37-48 

52




