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Abstract. A simple data assimilation algorithm based on
statistical interpolation has been developed and coupled to
a long-range chemistry transport model, the Danish Eule-
rian Operational Model (DEOM), applied for air pollution
forecasting at the National Environmental Research Institute
(NERI), Denmark. In this paper, the algorithm and the re-
sults from experiments designed to find the optimal setup of
the algorithm are described. The algorithm has been devel-
oped and optimized via eight different experiments where the
results from different model setups have been tested against
measurements from the EMEP (European Monitoring and
Evaluation Programme) network covering a half-year period,
April–September 1999. The best performing setup of the
data assimilation algorithm for surface ozone concentrations
has been found, including the combination of determining
the covariances using the Hollingsworth method, varying the
correlation length according to the number of adjacent obser-
vation stations and applying the assimilation routine at three
successive hours during the morning. Improvements in the
correlation coefficient in the range of 0.1 to 0.21 between the
results from the reference and the optimal configuration of
the data assimilation algorithm, were found. The data as-
similation algorithm will in the future be used in the opera-
tional THOR integrated air pollution forecast system, which
includes the DEOM.

1 Introduction

Even though the field of chemical weather forecasting is
still very much in the research and development phase,
operational forecasting of the air pollution concentration is
now being carried out on a routine basis in many countries
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throughout the world. The chemical weather can be seen
as analogous to the meteorological weather. In particular,
chemical weather emphasizes the strong influence of meteo-
rological variability – and the chemical response to this vari-
ability – on air quality (Lawrenceet al., 2005). In contrast
to numerical weather forecasting, it is technically possible to
carry out operational chemical weather forecasting without
using data assimilation of the prognostic variables in the air
pollution model. Without data assimilation of meteorologi-
cal parameters during initialization, numerical weather fore-
cast models would produce simulations that – even though
the results would appear realistic - have nothing to do with
the actual weather. A long-range chemistry-transport model
(CTM) used for operational forecasting is driven by a nu-
merical weather forecast model, and is bound by a emis-
sions inventory as well as chemical lifetimes of the individ-
ual species. In this way the results from a chemical weather
forecast will show good performance when compared against
measurements. However, applying the data assimilation
techniques which have been used by the weather forecast-
ing community for since the late 1950s (Gandin, 1963), has
the potential to make significant improvements in chemical
weather forecasts and these techniques are now being intro-
duced in air pollution models by various scientific communi-
ties.

At the National Center for Atmospheric Research, Atmo-
spheric Chemistry Division, Boulder, USA an Optimum In-
terpolation routine (Lamarqueet al., 1999) is being used to
investigate CO in the troposphere. A group at the Data As-
similation Office, National Aeronautics & Space Adminis-
tration (NASA) Goddard Space Flight Center USA, has used
a Kalman Filter (M’enard, 2000; M’enard et al., 2000) to in-
vestigate chemical tracers. In Europe there are several groups
working with chemical data assimilation: at the University of
Cologne, Germany, a four-dimensional variational algorithm
for atmospheric chemistry modelling has been developed and
used in the EURopean Air Pollution Dispersion (EURAD)

Published by Copernicus Publications on behalf of the European Geosciences Union.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27132774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/


5476 J. Frydendall et al.: Ozone assimilation

model (Elbern et al., 1997; Elbern , 1999; Elbern et al.,
2000). At the Delft University of Technology, Netherlands, a
Kalman Filter has been developed (van Loon and Heemink,
1997) for atmospheric chemistry modelling. At the French
meteorology laboratory, an Optimum Interpolation routine
for ozone analysis has been developed (Blond et al., 2003;
Blond ans Vautard, 2004). At Norwegian Institute for Air
Research, (NILU), a number of statistical interpolation meth-
ods are being employed for PM10 and applied in the Uni-
fied EMEP model (Denbyet al., 2008). In the Swedish Me-
teorological and Hydrological Institute (SMHI), an opera-
tional 2D-var method is under development for operation in
the Multiscale Atmospheric Transport and Chemistry Model
(MATCH) model (Denbyet al., 2008). At NERI, Denmark,
besides of the work described in this paper, development
and tests of a four-dimensional variational method have been
made, seeZlatev and Brandt(2005, 2007).

Chemical transport models are valuable tools to under-
stand the transport of chemical pollutants in the atmosphere.
However, due to uncertainties e.g. caused by discretization of
the governing equation, uncertainties in the simplified chem-
ical reaction scheme or physical parameterizations, or erro-
neous emissions, the CTMs cannot truly represent the real
world. On the other hand uncertainties in the measurements
makes the comparison between the CTMs and the observa-
tions a non-trivial business. Data assimilation routines com-
bines the information from the CTMs and the measurements
by taking into account the model and observation uncertain-
ties to make better representation of the air pollution fields.

A general problem in chemical data assimilation is, how-
ever, the lack of real-time data. In the meteorological com-
munity, a dense network for real-time meteorological mea-
surements, both at the surface as well as radio soundings,
was established many years ago. With respect to chemical
data assimilation, the research groups typically have to col-
lect the available sparse data sets on their own. However,
more and more real-time surface observations are becoming
available for assimilation, and even satellite measurements of
e.g. the tropospheric column of NO2 can be obtained. Poten-
tially, these data sets together provide relative high accuracy
from the surface measurements combined with the greater
spatial coverage from the satellite data. However, none of
them provides an estimate of the vertical distribution of the
chemical species.

An alternative to the direct use of data assimilation is post-
processing approaches. In these postprocessing approaches,
a moving training window is assign to a fixed number of days
where the model uncertainties are estimated from error resid-
uals between model forcasts and observations. The model
uncertainties estimates are used as bias corrections in the fu-
ture forecast window. A nice example of such a postprocess-
ing techniques is demonstraited in (Kang et al., 2008).

Data assimilation techniques applied in chemistry-
transport models cannot only be used for operational fore-
casting of the chemical weather but also for generating ana-

lyzed fields covering a large time period of the different air
pollution species e.g. for monitoring the air quality and as-
sessing the impacts from air pollution. Examples could be
integrated monitoring (using both models and measurements,
see e.g.Hertel et al., 2007) of nitrogen species with respect
to eutrophication in the marine and terrestrial ecosystems or
integrated monitoring of ozone, nitrogen-oxides and particu-
late matter with respect to the impacts on human health.

2 The DEOM model

The long-range chemical transport model, the Danish Eu-
lerian Operational Model (DEOM) (Brandt et al., 2000;
Brandtet al., 2001a; Brandt et al., 2001b,c) has been devel-
oped at NERI for air quality forecasting. The model includes
emissions, atmospheric transport and dispersion, chemical
transformations and dry and wet depositions of 35 chemical
species. The domain of the DEOM covers Europe and is con-
structed so that it is covered by the domain of the meteorolog-
ical model, Eta, applied for operational weather forecasting
at NERI and used as a driver for the DEOM. The Eta model
is discretizised on a staggered latitude/longitude system with
shifted pole. The horizontal grid resolution is 0.25◦

×0.25◦

corresponding to approximately 39 km×39 km at 60◦ N. The
number of horizontal grid points is 104×175 and the number
of vertical layers is 32. The DEOM model is applied on a po-
lar stereographic projection. The horizontal grid resolution is
50 km×50 km at 60◦ N. The number of grid points is 96×96.
Three vertical layers are used in the DEOM model. The three
layers are defined as a mixed layer (below the mixing height),
a smog or reservoir layer between the mixing height and the
advected mixing height from the previous day. The top layer
is located between the advected mixing height and the free
troposphere. The model has been a part of various inter-
comparison studies and has shown comparable results with
similar models, see e.g.Tilmes et al.(2002).

A splitting procedure, based on the ideas ofMcRae et
al. (1982), is applied in the DEOM. The horizontal trans-
port is discretizised using an accurate space derivative algo-
rithm. Time integration is performed with a predictor correc-
tor scheme with several correctors. For the horizontal dis-
persion, truncated Fourier series approximate the concentra-
tions. Dry and wet depositions are computed directly using
simple parameterizations. The chemical scheme used in the
model is the CBM-IV scheme with 35 species. Chemistry is
solved using the QSSA method (Hesstvedt et al., 1978).

The DEOM model is a part of the THOR integrated model
system,Brandtet al.(2001a); Brandt et al.(2001b,c, 2005),
capable of performing forecasting of meteorological and
chemical weather for the general public as well as assess-
ment and management for decision-makers in general. The
system consists of several meteorological and air pollution
models, developed at NERI over recent decades, and is ca-
pable of operating for different applications and at different
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scales. Global meteorological data from NCEP are used as
initial and boundary conditions for the numerical weather
forecast model Eta. The weather data from this model are
used to drive the air pollution models: the Danish Eulerian
Operational Model (DEOM), the Urban Background Model
(UBM), the Operational Street Pollution Model (OSPM) and
others. Air pollution data from the DEOM is used as input to
the UBM and the results from this model is used as input to
the OSPM, seeBrandt et al.(2001c).

Coupling models over different scales makes it possible
to account for contributions from local, near-local as well as
remote emission sources in order to describe the air quality
at a specific location – e.g. in a street canyon or in a sub-
urban area. The system provides high-resolution three-day
forecasting of weather and air pollution, from regional scale
over urban background scale and down to individual street
canyons in cities – on both sides of the streets. The whole
system is run operationally and automatically four times ev-
ery day, initiated at 00:00 UTC, 06:00 UTC, 12:00 UTC and
18:00 UTC. The system is also applied in connection with
the urban and rural monitoring programs in Denmark where
the model results and measurements are used together via
integrated monitoring to obtain the best available informa-
tion level for the atmospheric environment and effects. It is
planned that the data assimilation routine developed in this
study is to be used as a basis for improvements in the air
quality forecast at regional scale, which will also affect the
results on urban scales.

3 The data assimilation algorithm

The data assimilation algorithm in this article is the based
on a Statistical Interpolation algorithm. The notation used is
similar to the notation introduced byIde et al.(1997). The
observationsyo represent a measure of the real world. The
data assimilation algorithm introduces this knowledge into
the model and the combination of the model statexb and ob-
servation stateyo is called the analysis statexa which in the-
ory should be a better representation of the real world than
the background state or the observation state individually.
The analysis state is obtained by weighting the model errors
against the observation errors. This leads to the interpolation
equation (Bouttier and Courtier, 1998):

xa = xb + K (yo − H (xb)) (1)

K = BHT
(
HBHT

+ R
)−1

(2)

where the linear operatorK is called the Kalman gain and is
the weight matrix of the analysis.H denotes the linear map
between model space and observation space.

4 The background error covariance matrices

Three different background error covariance matrices
B=(B1, B2, B3) will be tested and compared to each other.
It is assumed that the horizontal correlation is homogeneous
and isotropic for the two first background error covariance
matrices. For the last background error covariance matrix it
is only assumed that the horizontal correlation is homoge-
neous. The first background error covariance matrixB1 is
the well known scaled Balgovind function (Balgovind et al.,
1983),

C0(r) =

(
1 +

|r|

L

)
exp

(
−

|r|

L

)
(3)

wherer is Euclidean distance between the grid cell locations
andL is the correlation length. For a thorough review on
the properties of the Balgovind function and other correlation
functions, seeGaspari and Cohn(1999).

The second background error covariance matrixB2 is de-
fined by Hoelzemann et al.(2001). The background error
covariance matrix takes into account that adjacent observa-
tion stations can deteriorate the analysis field. The function
is defined as follows: letδ be the number of observation sta-
tions neighboring a model grid point, for which the radius
of influence has to be estimated. The more adjacent the ob-
servation station is to the model grid point, the smaller the
radius of influence. Taking 20% as the lower limit, the new
L becomes

L̃ (δ) =

(
1 −

δ

10

)
L (4)

where 0≤δ≤8. The new correlation matrix becomes

C0(r) =

(
1 +

|r|

L̃

)
exp

(
−

|r|

L̃

)
(5)

Finally the last background error covariance matrixB3
takes into account that the observation spreading done by
the background error covariance matrix should depend on
the wind direction and the wind speed. With this approach
the assumption on horizontal isotropic characteristic is aban-
doned in order to get a more realistic correlation function.
The correlation length is decomposed into two correlation
lengths: One that is parallel with the wind direction and
one that is perpendicular to the wind direction, that isL →

L‖ + L⊥. The isotropic correlation function can be inter-
preted as correlation circle in a 2-D system where the cor-
relation length is the radius of the correlation circle. In the
anisotropic case, the correlation circle will be transformed
into a correlation ellipse with the major and minor axis given
as a function of the correlation lengths in the wind directions.

Given the windV =V (u, v), we can calculate the rotations
matrix and the transformation of(x, y):(

x′

y′

)
=

(
x cosϕ + y sinϕ

−x sinϕ + y cosϕ

)
(6)
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whereϕ=v/u. Hencex→
x′

L‖
andy→

y′

L⊥
. The magnitude

of the correlation lengths can be determined in several ways.
In this case we let the magnitude be a function of the ratio
between the wind components:

L⊥

L‖

= v/u

L‖ = L (7)

Then the background correlation function becomes

C0(r
′) =

(
1 + r ′

)
exp

(
−r ′

)
(8)

wherer ′
=(x′2

+ y′2)1/2. The adjacent function (4) can, of
course, be combined with (8).

4.1 Covariance determination

An essential task in data assimilation is the estimation of the
error parameters of the model and the observations. The
approach chosen in this paper is called the Hollingsworth
method (Hollingsworth and L̈onnberg, 1986; Lönnberg and
Hollingsworth, 1986; Daley, 1996). The idea is to look at
the auto correlation function of the residuals between the
model forecast and the observations. The sample correla-
tions among all pairs of stations can be plotted as a function
of separation distances, together with a curve representing a
fitted auto correlation model, cf. Eq. (3). By extrapolation of
the curve to the origin, the ratio between the observation and
forecast error standard deviations can be determined. An-
other commonly used approach, which is used for estimat-
ing parameters in a very large state space model is based on
the Ensemble Kalman Filter (Evensen, 1994; Burges et al.,
1998), and this approach will be tested in the future.

In the determination of the background and observation
error covariances, another problem becomes clear. There are
on average only 90 observation stations operating for ozone
in the EMEP network in a typical hour. However, it is not the
same 90 stations are operating all the time – the location of
the measured data is changing. On average the distribution
of the stations is not centered around a specific area. If the
stations were mainly located around a specific area this could
mean that the interpolation operatorH would be sparse with
only a few numbers different from zero grouped together.
This would give problems when we want to createHBHT

because the background error covariances matrix should be
positive definite. This could result in a singular matrix and
the data assimilation analysis would not be feasible. In order
to avoid this problem we decide to let all the observation sta-
tions go in toH and let missing measurements be controlled
by the departuresd=yo−Hxa . The value zero is assigned
to the missing measurements. In the final construction when
d is multiplied by the Kalman gain matrixK , the zero value
from the missing measurement would cancel the contribution
to xa .

For estimating the background error covariance using
the Hollingsworth method, a period of 6 months (April–
September 1999) was used as a study period, and both mea-
surements and model results were available for ozone. The
departures at each observation station were calculated at
4 p.m. every day when the air pollution was well mixed. Fur-
thermore, the maximum values of ozone are typically ob-
served during the afternoon. From this departure the correla-
tion with all the other departures was plotted as a function of
their separation. The results can be seen in Fig. (1).

From Fig. (1) we want to fit the correlation function (3)
with the data obtained from the six-months correlation study.
In Fig. (1) the curve represents the correlation function. Now
we are able to determine the background error covariances
σ 2

b and the observation error covariancesσ 2
o . The back-

ground error covariance can be determined from the inter-
ception withy-axes. From the interception we get the cor-

relation%b=
σ2

b

σ2
b +σ2

o

and the observation error covariance can

then be determined from the simple relation%o=1−%b. The
final parameter that can be determined from the auto corre-
lation function is the correlation length,L. As already dis-
cussed in the previous section, the correlation length is the
distance at which two independent observation stations can
be correlated in the model. Beyond that distance the stations
will not be correlated in the model. In this study, we found
the following parameters for surface ozone%b=0.86,%o=0.14
andL=270 km.

The estimated covariances from the analysis will vary over
the seasons and over the local regions i.e. Southern and
Northern Europe. The ideal correlation function should be
adapted to the fit the local regions and be varied over differ-
ent seasons. However, in this implementation the basic corre-
lation function will only be tested to determind the effects of
the error covariance in the data assimilation routine. Exper-
iments with finding proper correlation functions have been
carried out by (Houtekamer and Herschel, 2001), (Hamill et
al., 2001) for the EnKF. Finding better error covariances is a
investigation in itself and is beyond the scope of this paper.

5 The data assimilation experiments

In these experiments, the data assimilation algorithm is im-
plemented into the DEOM and the effects of applying the al-
gorithm with different configurations are tested against mea-
surements. First, the DEOM was run for the test period
from April to September 1999, to make a reference analy-
sis. The summer period is chosen because there are more
ozone episodes in the summer months, which is mainly due
to warmer temperatures and much higher global radiation in
these periods compared to winter periods. In the following
tests the model results are compared to measurements and
the improvements relative to the reference run without the
data assimilation are examined. Improvements in both the

Atmos. Chem. Phys., 9, 5475–5488, 2009 www.atmos-chem-phys.net/9/5475/2009/



J. Frydendall et al.: Ozone assimilation 5479

correlation and bias should be expected, since the discrep-
ancies between the observations and the model results have
been used to adjust the model results with a weight function.
The test period was chosen because it was a well documented
period with several ozone episodes and a relatively large tem-
poral spatial coverage of the measurements from the EMEP
network.

In this study the tests will be concentrated on the daily
maximum values of ozone concentrations. The DEOM
model usually performs well with respect to predicting the
daily maximum values, which means that the background
field from the DEOM model will be less erroneous, com-
pared to other parameters. In this study, it is believed that
the data assimilation will decrease the bias and increase the
correlation and hence decrease the normalized mean square
error, when compared to the measurements.

The measurement data from the EMEP ozone network
includes 207 observation stations within the DEOM model
grid. All the tests will be conducted over the entire period
of 6 months. The data assimilation routine is activated once
every day at 12:00 UTC, unless otherwise stated in the de-
scription of the tests. The analyzed model fields are com-
pared to the same observation stations that are used in the
data assimilation analysis, but at a different time. The com-
parison is made for the daily maximum ozone concentration,
which usually takes place 4–6 h (at 16:00 UTC–18:00 UTC)
later than when the assimilation procedure was conducted.
This gives a separation in time between the assimilation time
and the actual comparison time of 4–6 h.

Another way of evaluating the assimilation process could
be to use only half of the observation stations in the data
assimilation and use the other half as control/validation sta-
tions. This approach should give some information about
the spatial separation that arises from the missing observa-
tion stations and the stations that are included in the analysis.
When the analysis is compared to the observation stations
that were excluded in the analysis, the improvement in the
analysis field should be seen. However, the number of mea-
surement stations is relatively small, and as mentioned above,
the time separation between the observations used for assim-
ilation and the observations used for validation for the daily
ozone maximum should be large enough to avoid problems,
since the ozone concentrations are transported and chemi-
cally produced in the model domain between the time of as-
similation and time of validation.

Nine different model runs were performed with the data
assimilation algorithm implemented in the DEOM, to carry
out the eight experiments, besides a reference run. The
model runs are:

1. Reference: the reference run of the DEOM model with-
out the data assimilation routine activated.

2. Experiment 1: the assimilation algorithm conducted
with correlation function (3) using equal weights i.e.

Fig. 1. The correlation function (3) is fitted to the departures corre-
lation as a function of the distance between them in km.

σ 2
b =1 , σ 2

o =1 andL=3 grid units (in this case corre-
sponding to 150 km).

3. Experiment 2: run with optimal weights found by the
Hollingsworth method.

4. Experiment 3: as experiment 2 with the assimilation
routine activated three times a day, on 10:00 UTC,
11:00 UTC and 12:00 UTC.

5. Experiment 4: run with the anisotropic correlation func-
tion (8) with determined weights.

6. Experiment 5: as experiment 2 with the correlation
function taking into account the density of observations
by (4).

7. Experiment 6: combination of experiments 4 and 5 with
both the anisotropic and the density of observations cor-
relation function. The assimilation routine is activated
once per day at 12:00 UTC.

8. Experiment 7: as experiment 6 with the assimila-
tion routine activated three times a day, at 10:00 UTC,
11:00 UTC and 12:00 UTC.

9. Experiment 8: run with the correlation function with
optimal weights as in experiment 2, adjusted with the
formula as in experiment 5 and with the assimilation
routine activated three times a day, on 10:00 UTC,
11:00 UTC and 12:00 UTC as in experiment 3.

For all the experiments described above, the model results
of the daily maximum value of ozone was validated against
measurements from EMEP and examined in the following
three different ways (corresponding to average over space,
no averaging and average over time, respectively):
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1. Time series of the daily maximum value as mean over
all stations, where all the observations and calculated
values are averaged over space for every day and plotted
as function of time.

2. Scatter plots of the daily maximum value including the
observations and calculated daily maximum values for
all times and locations.

3. Scatter plots of the mean of the daily maximum value at
each station, where the observations and the calculated
daily maximum values for all stations are averaged over
the time period.

5.1 Statistical results from the experiments

In the following subsections, the DEOM model results from
all the experiments combined with the different ways of av-
eraging compared to measurements are given. The model
results were compared to measurements, and statistics were
calculated for every experiment. The statistics are the corre-
lation coefficient, the student’s t-test for significance of the
correlation coefficient, the fractional bias, and the normal-
ized mean square error.

The statistics for the whole period April–September 1999
for the daily maximum values of ozone from all experiments
1–9 and for the different averaging methods described above
are presented in Tables1, 2, and3.

The great number of statistics from the different assimila-
tion scenarios made a direct comparison difficult. Therefore
a ranking system was used to determine the best performing
configuration of the data assimilation setup. In the ranking
system ranks were assigned as the number 1 for the experi-
ment with the best statistic, 2 for the second best, and so on
up to 8. If two statistics had the same value they were as-
signed the same rank, and the successive rank was skipped.
Only the corresponding statistics were compared with each
other. In the end the best performing assimilation setup could
be determined from the ranking with the lowest total value.
Results from the ranking can be seen in Table4. The ranking
was performed for each month, April to September, and one
ranking for the entire period.

From Table4 it is clear that the assimilation experiment 8
is the best performing including the combination of deter-
mining the covariances using the Hollingsworth method,
varying the correlation length according to the number of
adjacent observation stations and applying the assimilation
routine at three successive hours. It can been seen that the
correlation coefficient is improved by 0.21 and the students
t test has gone up by 50.7. The fractional bias and nor-
malized mean square error have decreased by 1.8×10−3 and
1.7×10−2, respectively. Having a variable correlation length
increases the correlation for stations that are adjacent. It can
be seen from statistics from individual stations (not shown
here) that the performance improved for these kind of sta-
tions.

Table 1. Statistics calculated for the reference model run and ex-
periments 1–8 compared to measured data from EMEP, covering
the period April–September 1999, based on the time series of the
daily maximum value as mean over all stations, where all the obser-
vations and calculated values are averaged over space for every day
and plotted as function of time.

Model run
Correlation Students Fractional

NMSEcoefficient t test bias

Reference 0.86 22.9 5.2E-03 3.1E-03
Experiment 1 0.94 36.6 3.8E-03 1.4E-03
Experiment 2 0.94 38.6 1.8E-03 1.3E-03
Experiment 3 0.96 47.6 8.4E-03 1.0E-03
Experiment 4 0.93 34.7 9.8E-03 1.6E-03
Experiment 5 0.95 39.2 5.1E-03 1.3E-03
Experiment 6 0.94 36.7 7.3E-03 1.5E-03
Experiment 7 0.95 41.8 1.1E-02 1.2E-03
Experiment 8 0.96 45.1 3.4E-03 1.0E-03

Table 2. Statistics calculated for the reference model run and ex-
periments 1–8 compared to measured data from EMEP, covering
the period April–September 1999, based on the Scatter plots of
the daily maximum value including the observations and calculated
daily maximum values for all times and locations.

Model run
Correlation Students Fractional

NMSEcoefficient t test bias

Reference 0.62 101.5 5.2E-03 4.5E-02
Experiment 1 0.72 131.4 3.8E-03 3.3E-02
Experiment 2 0.73 137.8 1.8E-03 3.2E-02
Experiment 3 0.76 149.8 8.5E-03 2.9E-02
Experiment 4 0.74 143.1 5.1E-03 3.0E-02
Experiment 5 0.71 129.8 9.7E-03 3.4E-02
Experiment 6 0.73 138.1 7.2E-03 3.1E-02
Experiment 7 0.75 143.7 1.1E-02 3.0E-02
Experiment 8 0.76 152.2 3.4E-03 2.8E-02

Table 3. Statistics calculated for the reference model run and ex-
periments 1–8 compared to measured data from EMEP, covering
the period April–September 1999, based on the Scatter plots of the
mean of the daily maximum value at each station, where the obser-
vations and the calculated daily maximum values for all stations are
averaged in time.

Model run
Correlation Students Fractional

NMSEcoefficient t test bias

Reference 0.67 8.7 4.6E-03 9.1E-03
Experiment 1 0.74 10.6 4.4E-03 7.6E-03
Experiment 2 0.76 11.1 2.4E-03 7.3E-03
Experiment 3 0.78 12.0 9.0E-03 7.0E-03
Experiment 4 0.75 10.9 9.0E-03 7.5E-03
Experiment 5 0.78 11.9 4.5E-03 6.7E-03
Experiment 6 0.77 11.6 6.6E-03 7.0E-03
Experiment 7 0.80 12.8 1.1E-02 6.4E-03
Experiment 8 0.81 13.2 3.0E-03 3.0E-03
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Table 4. The outcome from the ranking process of the combined ranks of correlation coefficient, fractional bias and the normalized mean
square error including the results for daily maximum values averaged in time, not averaged and averaged in space for every month during
the period April–September 1999 as well as for the whole period (all). The global rank with the value 1 is the best performing configuration
of the model and the value 9 refers to the worst performing model configuration.

Model run Apr May Jun Jul Aug Sep Apr–Sep Total Global rank

Reference 55 44 69 59 67 62 75 431 7
Experiment 1 53 48 29 52 33 28 50 293 5
Experiment 2 67 63 44 59 49 35 35 352 6
Experiment 3 30 40 27 41 37 9 36 220 2
Experiment 4 90 90 90 85 67 90 72 584 9
Experiment 5 38 28 45 28 29 36 32 236 3
Experiment 6 79 73 81 81 70 78 52 514 8
Experiment 7 29 24 38 22 49 38 46 246 4
Experiment 8 9 10 17 11 17 21 12 97 1

In all the experiments where hourly successive assimi-
lation was conducted, the model performance is improved.
This is clear because more information from the observa-
tions is used to correct the background field. This suggests
that doing sequential assimilation like from the Ensemble
Kalman filter or 4-D variational assimilation would enhance
the model performance significantly by updating the model
at every observations time.

From the ranking table it can be seen that the decompo-
sition of the correlation length into two lengths determined
from the wind directions performed worst of all scenarios.
This could be due to the way we determined the size of the
correlation ellipse, where the size of the perpendicular cor-
relation length was determined from the wind speed ratio
v/u. The wind ratio could make the ellipse too narrow so
that observation spreading could be too small in some areas.
Also experiments 6 and 7 did not perform well, which can
be explained from the results from the anisotropic error co-
variance matrix, which destroys the signal from the observa-
tions stations to the model in these experiments too. It should
be noted that experiment 3 with the determined error covari-
ances performs much better than the experiment 2 with equal
weights. Determining the weights is the most logical way
to bring information from the model error and the observa-
tion error into the assimilation routine. As stated earlier the
covariances was determined from a long time period, which
might not be optimal for all time periods, where the weights
are less representative.

5.2 Direct comparison of the reference model run and
the best performing configuration

In this subsection the visualization results from the reference
model run and the best performing model results from expe-
riment 8 are shown.

In Fig. 2 the time series of the observations and the model
calculations as mean over all stations from the EMEP net-
work are shown. The figure includes times series of daily
mean, hourly values and daily maximum values. From the
daily mean and the daily maximum values it becomes clear
that the assimilation routine pulls the model calculations to-
ward the measurements and thereby decreases the fractional
bias and increases the correlation between the observed and
modeled time series.

In Figs. 3 and 4 the frequency distributions of the three
statistics, calculated at the individual measurement stations
for the period April–September 1999, are compared to the
reference for the daily mean and daily maximum values, re-
spectively. The figures show that the assimilation routine sig-
nificantly increases the correlation for a number of stations,
which can seen in the way the histogram shifts to the right
compared to the reference. The fractional bias and the nor-
malized mean square error are relatively small in both figures
for most of the measurement stations. A small change in the
fractional bias, which has a tendency to be centered more
around zero, can be observed from the figures. Furthermore,
a shift towards smaller values of the NMSE is seen.

In the scatter plot in Fig.5 showing the daily mean ozone
values, we can see that the assimilation routine again im-
proves the model outcome in the way the scatter plot gets
more trimmed around the 1:1 line and the correlation coef-
ficient increases from 0.49 to 0.68. The same is true for the
scatter plots shown in Fig.6 including all the daily maximum
values from all the measurement stations as well as the cor-
responding model results.

In Figs. 7 and 8 scatter plots are given, including mean
values for all measurement stations for the daily mean and
daily maximum values, respectively. In these figures average
values are made over time, whereas in Fig.2, the averaging
is carried over space. In Fig.7, the correlation coefficient in-
creases from 0.37 to 0.58 and the bias decreases a little. For
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Fig. 2. Time series, covering the period April–September 1999, of
measured and modelled values taken as a mean over all the measure-
ment stations in the EMEP network of daily mean, hourly and daily
maximum values of O3. The upper figure shows the results from
the reference run without applying the data assimilation technique.
The lower figure shows the results from a model run including the
data assimilation as the configuration in experiment 8.

the daily maximum values displayed in Fig.8, an increase
in the correlation coefficient from 0.67 to 0.81 is seen. Also
here the bias and the normalized mean square error decrease,
as expected. In both figures the increase in the correlation
coefficient is significant, which can be seen in the increase
of the student’st-test parameter. An increase in thet-test
parameter of more than 2.632 means that the increase is sig-
nificant within a significance level of 1%.
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Fig. 3. Frequency distributions for the correlation coefficient, the
fractional bias and the normalized mean square error, including the
statistics from comparisons between measurements and model re-
sults for the daily mean values at each measurement stations within
the EMEP network. The testing period is April–September 1999.
The upper figure shows the results from the reference run without
applying the data assimilation technique. The lower figure shows
the results from a model run including the data assimilation as the
configuration in experiment 8.
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Fig. 4. Frequency distributions for the correlation coefficient, the
fractional bias and the normalized mean square error, including the
statistics from comparisons between measurements and model re-
sults for the daily maximum values at each measurement stations
within the EMEP network. The testing period is April–September
1999. The upper figure shows the results from the reference run
without applying the data assimilation technique. The lower figure
shows the results from a model run including the data assimilation
as the configuration in experiment 8.

Fig. 5. Scatter plot showing a comparison between modelled and
measured values of the daily mean values of O3 including all val-
ues during the period April–September 1999, at all stations in the
EMEP network. The upper figure shows the results from the ref-
erence run without applying the data assimilation technique. The
lower figure shows the results from a model run including the data
assimilation as the configuration in experiment 8.
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Fig. 6. Scatter plot showing a comparison between modelled and
measured values of the daily maximum values of O3 including all
values during the period April–September 1999, at all stations in
the EMEP network. The upper figure shows the results from the
reference run without applying the data assimilation technique. The
lower figure shows the results from a model run including the data
assimilation as the configuration in experiment 8.

N =      93,   means:  calculated =    43.19, measured =    37.02
Standard deviations: calculated =   3.31,  measured =   6.63
correlation =     0.37,  test (Hypotesis: correlation=0): t =  3.77
bias =     6.168,  FB =  0.154,  FSD = -1.203, NMSE = .48E-01
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Fig. 7. Scatter plot showing a comparison between modelled and
measured values of the daily mean values of O3 taken as a mean
over the period April–September 1999, at all stations in the EMEP
network. The upper figure shows the results from the reference run
without applying the data assimilation technique. The lower figure
shows the results from a model run including the data assimilation
as the configuration in experiment 8.
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N =      93,   means:  calculated =    49.68, measured =    49.45
Standard deviations: calculated =   4.49,  measured =   6.38
correlation =     0.67,  test (Hypotesis: correlation=0): t =  8.70
bias =     0.226,  FB =  0.005,  FSD = -0.674, NMSE = .91E-02
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Fig. 8. Scatter plot showing a comparison between modelled and
measured values of the daily maximum values of O3 taken as a
mean over the period April–September 1999, at all stations in the
EMEP network. The upper figure shows the results from the ref-
erence run without applying the data assimilation technique. The
lower figure shows the results from a model run including the data
assimilation as the configuration in experiment 8.

Fig. 9. Daily maximum ozone concentrations calculated using
DEOM during an ozone episode in Europe on 7 September 1999.
The upper figure shows the results from the reference run without
using data assimilation. The lower figure shows the corresponding
result including the data assimilation of surface O3 based on the
configuration in experiment 8.
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Fig. 10. Daily maximum ozone concentrations calculated using
DEOM during an ozone episode in Europe on 12 September 1999.
The upper figure shows the results from the reference run without
using data assimilation. The lower figure shows the corresponding
result including the data assimilation of surface O3 based on the
configuration in experiment 8.

5.3 Analysis of two ozone episodes

In this section, two ozone episodes that occurred on 7 and
12 September 1999 will be examined. The effect of using
the data assimilation algorithm is compared to the reference
run where no data assimilation is applied. The model con-
figuration described in experiment 8 is used. The results are
presented in Figs.9 and 10, respectively, where the refer-
ence run is shown in top figures and the analyzed fields in
the lower figures. Both model runs are carried out continu-
ously, starting on 1 September, with initial data from a pre-
vious run for the month before. In the model run using the
data assimilation technique, the data is assimilated each day
at 10:00 UTC, 11:00 UTC and 12:00 UTC.

For both episodes there are some differences between the
reference and the analyzed fields. This is the case especially
for 7 September see Fig.9, where the ozone concentrations
in the Mediterranean area are decreased considerable. In
this area the assimilation algorithm has pulled the general
concentration level down. Also in Central Europe and in
the Scandinavia region, ozone concentrations are lower com-
pared to the reference. For 12 September see Fig.10, the
differences between the reference and the assimilated results
are smaller, however, corrections are seen for smaller areas,
especially in the area east of Spain and south west of Den-
mark.

In general, we see that the DEOM model overestimated the
ozone concentration for these two days in September 1999.
The overall ozone concentrations are corrected towards the
observations and thereby improve the prediction capability
of the DEOM model.

6 Conclusions

This study reports the first results of a data assimilation rou-
tine that has been developed based on Statistical Interpola-
tion for the DEOM model. Eight different experiments in-
cluding different configurations of the data assimilation al-
gorithm were defined and tested against measurements from
the EMEP network for the period April–September 1999. In
order to find the optimal configuration of the algorithm, the
model results from the different experiments were ranked ac-
cording to the performance.

The Statistical Interpolation algorithm significantly im-
proved the performance of the DEOM model when compared
to the measurements. The Statistical Interpolation algorithm
generally improved the correlation coefficient with 0.10 and
the fractional bias with 2×10−3 and normalized mean square
error with 2×10−2 for the overall ozone daily maximum con-
centrations.

The best performing setup of the data assimilation algo-
rithm was found to be the configuration in experiment 8,
including the combination of determining the covariances
using the Hollingsworth method, varying the correlation
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length according to the number of adjacent observation sta-
tions and applying the assimilation routine at three succes-
sive hours during the morning at 10:00 UTC, 11:00 UTC and
12:00 UTC. The results from the experiments have shown
that the data assimilation routine together with a CTM is
beneficial for obtaining better performance of the short-term
ozone forecasts using the CTM model. Improvements in the
correlation coefficients in the range of 0.1 to 0.21 between
the reference and configuration in experiment 8 were seen.
Additionally, there were significant reductions in bias and
NMSE.

Two ozone episodes that occurred on 7 and 12 September
1999 were examined in order to make visual testing of the
behavior of the algorithm for artificial behavior. It was con-
cluded from this experiment that the data assimilation routine
did not introduced any sharp gradients into the model which
could lead to artificial model solutions.

It was expected that the data assimilation routine should
have some effect on e.g. the NO2 concentrations when al-
tering the ozone concentrations. In experiment 8 there was
no clear indication that the NO2 concentration was effected
significantly (not shown here). In the next step the NO2 mea-
surements could also be assimilated into the DEOM model.
However, the measurement of NO2 is only given as daily
mean values. This means that the measurements cannot be
used directly as was the case for the ozone measurements,
where the hourly values were more representative for the
model time step. Methods for correct representation of the
daily measurements in the DEOM model using data assim-
ilation can probably be developed by e.g. assimilating daily
fields into daily mean values from the model, and then using
the fraction between the two to adjust the NO2 concentration
at higher time resolution. This requires, however, a number
of new tests and is beyond the scope of this paper. A next step
of using the algorithm will be operational data assimilation
of NO2 data from satellite measurements.
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