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Abstract: Recently there has been a great deal of interest in the use of biomaterials to 

stimulate wound healing. This is largely due to their ability to centralize high 

concentrations of compounds known to promote wound healing at a needed location. Joints 

present a unique challenge to using scaffolds because of the presence of enzymes in 

synovial fluid which are known to degrade materials that would be stable in other parts of 

the body. The hypothesis of this study was that atelocollagen scaffolds would have greater 

resistance to enzymatic degradation than scaffolds made of gelatin, fibrin and whole blood. 

To test this hypothesis, collagen and fibrin-based scaffolds were placed in matrix 

metallopeptidase-1 (MMP-1), elastase, and plasmin solutions at physiologic concentrations, 

and the degradation of each scaffold was measured at varying time points. The 

atelocollagen scaffolds had a significantly greater resistance to degradation by MMP-1, 

elastase and plasmin over the fibrin based scaffolds. The results suggest that  

atelocollagen-based scaffolds may provide some protection against premature degradation 

by synovial fluid enzymes over fibrin-based matrices.  
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1. Introduction 

Recently there has been a great deal of interest surrounding the use of biomaterials as provisional 

scaffolds to stimulate the healing of tissues within joints. Targeted tissues include the anterior cruciate 

ligament (ACL) [1-3] and meniscus [4-6]. The biomaterials are designed to act as a substrate that 

allows cells to grow into, remodel, and eventually form new tissue [2,6]. Collagen scaffolds are 

reasonable biomaterials because of their ability to centralize high concentrations of compounds known 

to promote wound healing at a needed location [1,2]. Atelocollagen scaffolds are manufactured by 

using a pepsin solution to remove the antigenic ends of the collagen molecule, neutralizing the 

collagen, and lyophilizing to form a porous scaffold. Gelatin scaffolds are manufactured by 

lyophilizing a 1 to 2% weight by volume gelatin (hydrolysed collagen) suspension, also resulting in a 

porous scaffold. However, it is currently unknown how these different processing techniques will 

affect the function of the collagen scaffold as a biomaterial. Fibrin scaffolds and blood clot have also 

commonly been reported for use in enhancing ligament [7] and meniscal healing [6,8] with mixed 

reports of efficacy. Both collagen and pepsin can be cross-linked in order to increase their mechanical 

properties and control their degradation rate [9,10]. 

Joints present a unique challenge to using scaffolds because of the presence of enzymes in synovial 

fluid which are known to degrade materials that would be stable in other parts of the body [11-14]. 

Synovial fluid is composed of hyaluronan and D-N-acetylglucosamine, as well as many enzymes [15-17], 

among them matrix metallopeptidase 1 (MMP-1), elastase and plasmin, found in the synovial fluid at 

varying concentrations [18-20]. These three enzymes are hypothesized to affect the healing of  

intra-articular injuries [21-28]. MMP-1 is known to be involved with the breakdown of the extracellular 

matrix [21-23], as well as with tissue remodeling. It specifically degrades type I, II, and III collagen. 

Elastase is a peptidase that breaks down elastin and collagen fibers [19,24,25]. Plasmin is an enzyme that 

is present in synovial fluid in increased amounts after injury and degrades fibrin clots [26-28]. 

How these enzymes affect atelocollagen, gelatin, fibrin and blood-based scaffolds is critical to 

define if these materials are to be used in joint tissue engineering. The knee is one of many synovial 

joints found in the human body and it is vital to understand how a provisional scaffold will behave 

when placed in the synovial fluid [2]. By subjecting these materials to the concentration of enzymes 

found in synovial fluid (Table 1), this response can be studied. The structural integrity of the scaffolds 

is important when determining the ability of these scaffolds to withstand the joint environment long 

enough to participate in ACL repair or repair of other joint injuries. In addition, determining what 

effect, if any, the collagen structure will have on cellular proliferation within the scaffold could be 

useful for design of collagen-based scaffolds. 

Table 1. Enzyme concentrations found in the synovial fluid of the knee and those used in 

this experiment. 

Enzyme Concentration in the knee Experimental Concentration 

MMP-1 177 to 279 µg/mL (Gysen, 1985) [18] 250 µg/mL 
Elastase 0.041 to 101.8 µg/mL (Kleesiek, 1986) [19] 100 µg/mL 
Plasmin 23 to 55 µg/mL (Kummer, 1992) [20] 40 µg/mL 
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In this study, we evaluated identically sized scaffolds of atelocollagen, gelatin, fibrin and blood clot 

biomaterials for their ability to withstand degradation by enzymes found in synovial fluid. We 

hypothesized that the collagen formulation—i.e., atelocollagen vs. gelatin—as well as the composition 

of the scaffold, would significantly affect the ability of the scaffold to facilitate cell proliferation and to 

resist degradation by enzymes found in the synovial fluid.  

2. Results and Discussion  

2.1. MMP-1 Degradation  

The atelocollagen scaffolds had a significantly higher resistance to degradation by MMP than all 

other groups at 12 and 24 h (Figure 1, p < 0.02 for all comparisons). While the blood clots still retained 

almost 40% of their area at 12 h, the gelatin and fibrin clot scaffolds were completely degraded after 

12 h. After 24 h in the MMP-1 solution, the only remaining scaffolds with any integrity were the 

atelocollagen scaffolds, which had retained 39% of their area, and by 48 h, even the atelocollagen 

scaffolds had been degraded (Figure 1A).  

Figure 1. Enzymatic degradation of atelocollagen, gelatin, fibrin, and blood clot scaffolds 

over a 48 h period by (A) MMP-1; (B) Elastase and (C) Phosphate buffered saline (PBS) 

(control). By 24 h in the MMP-1 solution, the only remaining scaffolds with any integrity 

were the atelocollagen scaffolds and by 48 h, even the atelocollagen scaffolds had been 

degraded. † denotes significantly less degradation of the atelocollagen scaffolds at 12, and 

24 h (p < 0.02). * denotes significantly less degradation of the blood clot scaffold than the 

fibrin or gelatin at the time points identified (p < 0.001 for all comparisons).  
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Figure 1. Cont. 

 

2.2. Elastase Degradation 

The atelocollagen scaffolds had significantly greater resistance to elastin than any of the other 

scaffolds (p < 0.001 for all comparisons, Figure 1B). Interestingly, the atelocollagen scaffolds 

exhibited complete resistance to degradation by the elastase solution throughout the experiment. In 

fact, in this group, there was an increase in scaffold area in the first 12 h (117 ± 7%) which remained at 

48 h. The gelatin and fibrin clot scaffolds were completely degraded after 12 h (Figure 1B). The blood 

clot scaffolds were 63 ± 21%, 38 ± 13% and 15 ± 10% of their original sizes at 12, 24 and 48 h, 

respectively, having degraded significantly more than the atelocollagen scaffolds at all time  

points (p < 0.001).  

2.3. PBS Degradation 

Phosphate buffered saline (PBS) was the carrier used to deliver the MMP-1 enzyme and the elastase 

enzyme, and thus was also evaluated for its potential to influence scaffold degradation. The 

atelocollagen and gelatin scaffolds had minimal change in size in PBS. At 48 h, the atelocollagen 

scaffolds were 106 ± 14% and the gelatin scaffolds 96 ± 3% of their respective initial areas. The mean 

area of the blood clot and the fibrin clot scaffolds decreased, respectively, to 88 ± 4% and  

68 ± 2% of their initial sizes at 12 h and remained stable throughout the remaining time of the 

experiment (Figure 1C). 

2.4. Plasmin Degradation 

Both atelocollagen and gelatin scaffolds had improved resistance to plasmin degradation over the 

fibrin and blood clot scaffolds (Figure 2A, p < 0.02 for all comparisons). The two collagen scaffolds 

had similar plasmin resistance, with no significant difference in area between these groups at any time 

point (Figure 2A; p > 0.05). Blood clot scaffolds were significantly smaller than both the atelocollagen 

and gelatin scaffolds at all time points (p ≤ 0.02); whereas the fibrin clot scaffolds were completely 

degraded at 12 h. 
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Figure 2. Enzymatic degradation of atelocollagen, gelatin, fibrin, and blood clot scaffolds 

over a 48 h period by (A) plasmin and (B) water (control). † denotes significantly less 

degradation by plasmin of atelocollagen and gelatin scaffolds than the blood clot or fibrin 

clot (p < 0.05 for all comparisons). 

 

2.5. Water Degradation 

Water was the carrier used to deliver the plasmin enzyme, and thus was also evaluated for its 

potential to influence scaffold degradation. The atelocollagen and gelatin scaffolds exhibited slight 

decrease in size when subjected to water, with 95 ± 10% and 99 ± 14% of their respective initial areas 

at 48 h. The mean area of the blood clot and the fibrin clot scaffolds decreased, respectively, to  

88 ± 11% and 62 ± 5% of their initial sizes and remained stable throughout the remaining time of the 

experiment (Figure 2B). 

2.6. Cell Proliferation 

The atelocollagen scaffolds had more cells present than the gelatin scaffolds at 2 days  

(0.14 × 106 ± 0.03 × 106 vs. 0.06 × 106 ± 0.06 × 106 cells) and 10 days (0.39 × 106 ± 0.14 × 106 vs.  

0.20 × 106 ± 0.06 × 106 cells), p < 0.05 for both days. The atelocollagen and gelatin scaffolds 

experienced 2.7 ± 1.1 and 3.1 ± 3.2 times increase in cell number, respectively, from day 2 to day  

10 (p = 0.40; Figure 3). 
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Figure 3. Cell proliferation within atelocollagen and gelatin scaffolds at 2 and 10 days 

after seeding as measured by the MTT assay. Cell numbers in both types of scaffolds 

increased between 2 and 10 days. Atelocollagen scaffolds had a higher cell concentration at 

2 days. † denotes significantly higher cell number in the atelocollagen scaffolds at 2 days 

(p < 0.05).  

 

2.7. Scaffold Contraction 

After 9 days in culture, the cell-seeded atelocollagen scaffolds had contracted more than the  

cell-seeded gelatin scaffolds (91.7 ± 5.2% of day 1 surface area vs. 101.1 ± 8.5% of day 1 surface area, 

p < 0.05). Control scaffolds, which had been cultured without cells, showed similar contraction rates to 

those seen in the cell-seeded scaffolds (88.3 ± 7.0% of day 1 surface area vs. 101.1 ± 8.5% of day 1 

surface area, p = 0.06). 

Figure 4. Contraction of scaffolds cultured for 9 days measured as a percentage of initial 

area. The atelocollagen scaffolds had a greater reduction in surface area than the gelatin 

scaffolds. A similar trend was seen for cell seeded scaffolds, and non-cell seeded scaffolds. 

* denotes significantly greater contraction of the cell seeded atelocollagen scaffold 

compared to the cell seeded gelatin scaffold (p < 0.05). 
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3. Experimental Section 

3.1. Manufacturing of Atelocollagen Scaffolds 

The collagen used in this study was derived from bovine knees (Research 87, Boylston, MA, USA). 

The tissue was sterilely harvested, minced, and solubilized in an acidic pepsin solution. The resulting 

slurry was frozen overnight at −80 °C and lyophilized under full vacuum at −35 °C for three days and  

re-hydrated with sterile water to a collagen concentration >10 mg/mL. The same reconstituted 

atelocollagen slurry was used in all experiments. 

The atelocollagen scaffolds were then made by mixing the atelocollagen slurry with HEPES  

Buffer (Cellgro, Mediatech, Inc, Herndon, VA, USA), and neutralizing to a pH of 7.4 using 7.5% 

sodium bicarbonate (Cambrex BioScience Walkersville, Inc., Walkersville, MD, USA). The solution 

was transferred to a sterile 100 mm petri dish, and incubated for 20 min at 37 °C and 5% CO2 to allow 

for gelation. The resulting gel was frozen at −80 °C overnight and lyophilized.  

3.2. Gelatin Scaffolds 

Commercially available gelatin scaffolds (Surgifoam® sheets, Johnson and Johnson, Binghampton, 

NY, USA) of the same thickness of the atelocollagen sheet were obtained, and a sterile one centimeter 

diameter circular punch was used to cut out individual scaffolds from both materials. Unlike the 

atelocollagen scaffolds which were not cross-linked, the gelatin scaffolds were chemically cross-linked 

with an aldehyde during manufacturing. 

3.3. Preparation of Fibrin Clot Scaffolds 

Fibrin clots were prepared by adding a 500 units/mL thrombin NaCl solution (King Pharmaceuticals, 

Bristol, TN) to complete medium (Dulbecco’s Minimum Essential Medium (DMEM) (Cellgro, 

Mediatech Inc., Herndon, VA, USA) supplemented with 10% defined fetal bovine serum (FBS) 

(Hyclone, Logan, UT) and 1% antibiotic-antimycotic solution (Cellgro, Mediatech Inc., Herndon,  

VA, USA), to create a 10 units/mL solution. 715 μL of the thrombin solution was transferred to each 

well of a 24-well plate. 285 μL of a 20 mg/mL fibrinogen solution (Sigma-Aldrich, Saint Louis, 

Missouri, Product#: F4753) was added to each thrombin aliquot. The plate was mixed on a shaker 

table at 60 oscillations/min for 30 seconds. The plate was put into an incubator (37 °C, 5% CO2) for  

30 min to allow fibrin clot formation. A sterile one centimeter circular punch was then used to cut 

individual scaffolds.  

3.4. Preparation of Blood Clot Scaffolds 

A total of 300 mL of whole blood was drawn from two hematologically normal volunteers meeting 

all criteria of the American Association of Blood Banks (Food and Drug Administration, Center for 

Biologics Evaluation and Research). Blood was collected in 60 cc syringes with 10% acid-citrate 

dextrose as an anticoagulant at the Immune Disease Institute (Boston, MA, USA). 120 mL of blood 

was used for making blood clots while 180 mL was used for making platelet-rich plasma as described 

in the next section. A solution of 1000 Units thrombin/mL CaCl2 was used to clot the whole blood.  
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100 μL aliquots of the thrombin solution were placed into wells of a 24-well plate. 900 μL of whole 

blood was added, and the plate was placed on a shaker table at 60 oscillations/minute for 30 seconds, 

and then incubated (37 °C, 5% CO2) for 20 min to complete blood clot scaffold formation. A sterile 

one centimeter circular punch was then used to create uniform individual scaffolds. 

3.5. Preparation of Enzyme Stock Solutions 

The MMP-1 stock solution was made by combining 50 mg of MMP-1 (Worthington Biochemical 

Corporation, Lakewood, NJ, product number LS004214) with 200 mL of PBS, yielding a 250 µg/mL 

(72.2 units/mL) MMP-1 solution. Aliquots of the solution were then frozen at −80 °C in 50 cc tubes. 

The elastase stock solution was made by combining 5 mg of elastase (Worthington Biochemical 

Corporation, Lakewood, NJ, product number LS006363) with 50 mL of PBS, yielding a 100 µg/mL 

(0.86 units/mL) solution. Aliquots of the solution were then frozen at −80 °C in 50 cc tubes. 

The plasmin stock solution was made by combining 1.5 mg of plasmin (Sigma Aldrich Co., St. 

Louis, MO, USA, product number P1867) with 37.5 mL of ultrapure water to yield a 40 µg/mL 

plasmin (0.416 units/mL) solution. Aliquots of the solution were then frozen at −80 °C in 50 cc tubes. 

3.6. Enzyme Degradation Experiment 

Enzymatic degradation rate was determined by measuring the change in surface area of the 

scaffolds over time. Atelocollagen, gelatin, fibrin clot, and blood clot scaffolds were subjected to each 

of the enzyme stock solutions. Experiments were run in triplicate. We also observed the response of 

the scaffolds when exposed to the solvents used to make the enzyme stock solutions (PBS for MMP-1 

and elastase; water for plasmin). The scaffolds were placed into wells of a 12-well plate and 1.0 mL of 

solution was added to each well. The solutions were changed after 12, 24, and 36 h. Digital images 

were taken with a Canon Rebel XT camera at 12 h, 24 h, and 48 h. Surface area measurements of the 

scaffolds were determined using the NIH Image-J software (v. 1.38×). 

3.7. Cell Source 

Human ACL explants were obtained from the knee using sterile technique during ACL 

reconstruction. After ligament harvest, explants were cultured in completed medium (Dulbecco’s 

modified Eagle medium or DMEM) containing 4.5 g/L glucose, 10% fetal bovine serum, and 1% 

AB/AM) which was changed two times per week. When primary outgrowth cells were 80% confluent, 

they were trypsinized, counted, and suspended in complete medium. 

3.8. Measurement of Cell Proliferation in Scaffolds 

Cell proliferation was determined by indirectly measuring the change in cell number in the scaffolds 

between two and ten days, using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) assay. Atelocollagen and gelatin scaffolds (n = 6, per experimental group and time point) 

were placed into the wells of 12-well plates. The scaffolds were seeded with 2.5 × 105 cells by placing 

250 μL of the cell solution on top of each scaffold and incubating (37 °C, 5% CO2) for one hour to 
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allow for absorption. After incubation, 0.75 mL of complete medium was added to each well and the 

plates were placed back into the incubator. Media was changed every other day. 

At 2 and 10 days, the MTT working solution was prepared at a concentration of 1 mg/mL  

in complete medium from a sterile stock MTT solution (Sigma-Aldrich, St. Louis, MO, USA,  

Cat. #: M5655-500MG). The media was aspirated from each well and 1 mL of the working MTT 

solution was added to each well. The plates were incubated for 3 h (37 °C, 5% CO2). Subsequently, the 

excess MTT solution was removed and 1 mL of sterile 1X Phosphate Buffer Saline (EMD Chemicals, 

Gibbstown, NJ, USA, Cat. #: B10241-34) was added to each well, placed on a agitator table (Fisher 

Scientific Clinical Rotator, 100 rpm) and left to rinse at room temperature for 30 min. Rinses were 

repeated until the absorbance readings of the wash were less than 0.100. All PBS was then removed 

and each scaffold transferred into 3 ml centrifuge tubes. 1mL of a detergent containing 20% aqueous 

SDS/formamide (1:1 volume ratio) was added to each tube and incubated overnight in a 37 °C water 

bath. The tubes were vortexed for 5 seconds and then centrifuged for 5 min at 250 × g. Aliquots of the 

supernatant from each tube (200 µL) were then transferred into a 96-wellplate, and the absorbencies 

were measured at 562 nm. The cell proliferation assay was carried out after 2 and 10 days of culture, 

and cell proliferation was determined by calculating the change in absorbance from day 2 to day 10. 

Measurement of the contraction of the atelocollagen and gelatin cell-seeded scaffolds was also 

performed using surface area measurements of the scaffolds at days 1, 2, 5, 6, 7 and 9. Photos of the 

scaffolds were taken and the area of each scaffold calculated using Image J. Contraction was recorded 

as the percent change in scaffold area compared to day 1. 

3.9. Statistical Analysis 

All statistical analysis was performed using SPSS version 16.0. For the enzyme degradation 

experiments, a mixed model repeated measures ANOVA was utilized. For the cellular proliferation 

experiments, a two way ANOVA was used with Fisher’s LSD post hoc test to detect significant 

differences between groups. Results were given as mean ± SD. For all experiments, a p-value < 0.05 

was deemed statistically significant.  

4. Discussion 

It has been found that after trauma to a joint occurs, the concentration of certain enzymes in 

synovial fluid increases. This release of enzymes can lead to more rapid degradation of connective 

tissue, as well as degradation of scaffolds used for tissue repair in the joint environment. When using a 

scaffold for tissue repair, it is important that the scaffold not dissolve before the surrounding cells can 

invade and stabilize it [29-31]. The results here suggest that scaffolds made of atelocollagen may be 

better able to resist degradation when compared to gelatin scaffolds or fibrin clots.  

This result may help to reconcile several seemingly contradictory reports on the use of biologically 

based scaffolds for joint repair. The use of platelet-rich plasma products, which are fibrin-based, has 

not demonstrated positive results when used in the synovial environment for ACL repair [32] or rotator 

cuff healing [33]. In contrast, when the fibrin-based materials are used outside of the joint 

environment, they appear to have greater success [7]. For example, use of PRFM on the synovial side 

of a rotator cuff tendon tear (which is exposed to synovial fluid) has been found to be ineffective [33], 
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whereas the use of a different fibrin-based product on the bursal side of the tendon (outside of the 

joint) has shown early efficacy [34]. In addition, animal studies have demonstrated that while the use 

of fibrin based scaffolds alone is ineffective in ACL repair [32] and intra-articular rotator cuff  

repair [33], the use of collagen-based scaffolds is effective in stimulating ACL repair [35-37] and 

rotator cuff repair [38,39].  

The fibrin and blood clot scaffolds decreased in size during the first 12 h of culture in PBS and 

water, and then had no significant further change. Due to the lack of further change on exposure to 

these solutions, it is unlikely these initial decreases in size were due to degradation of the scaffolds; 

rather it is more likely these changes were due to an initial contraction of the scaffolds. In the case of 

the blood clot scaffolds, this contraction may have been due to the presence of platelets in the scaffold 

as platelets are known to have a contractile function [40,41]. For the fibrin scaffolds, the reason for the 

initial contraction is less clear. Improved organization of the fibrin fibrils is one possibility [42]. 

Taking into account this initial contraction, the difference between the change in size in the carrier and 

that in the enzyme solutions is likely due to degradation.  

One of the major limitations with all of the scaffolds tested here was their degradation in the MMP-1 

solution by 48 h. The length of time required for a scaffold to be present in a wound site before it is 

stabilized sufficiently by invasion of surrounding cells is as yet unknown. Previous studies have 

demonstrated that immature animals have a more rapid cellular invasion of an ACL wound site than 

adult animals [43], likely due to the observed increased cellular proliferation and migration speed in 

these animals when compared with adults [44,45]. Thus, one possible reason for the improved 

functional ACL healing noted in immature animals [35] may be that the immature cells are able to 

stabilize the atelocollagen implants before the synovial enzymes degrade it, while the slower adult 

cells are not able to populate the scaffold before it degrades. Use of a scaffold material with greater 

resistance to synovial degradation may be necessary to obtain functional healing in the adult knee. 

Another strategy would be to remove or neutralize the enzymes in the adult animals. Arthroscopy 

results in washing out of the enzymes and replacement with saline, and this act alone may help tip the 

balance in favor of scaffold preservation. What effect an additional synovectomy may have on the  

re-accumulation of the enzymes is also as yet unknown, but may be a key factor in the success of 

biologic scaffolds.  

The atelocollagen and gelatin had different manufacturing protocols which may have affected results. 

The gelatin is cross-linked during its production, while the atelocollagen is not. However, the addition of 

cross-linking should increase the resistance of the atelocollagen to enzymatic degradation [9,10], so if 

the atelocollagen were manufactured the same way as the gelatin, one might expect even greater 

resistance to degradation, not less. 

Tissue engineering within the synovial joint is a challenging task. In this work, we define some of 

the basic material responses to elements that are intrinsic to this unique environment; namely, the 

presence of enzymatic agents that are not found in significant quantities in other tissues. The results 

suggest that atelocollagen-based scaffolds may provide some protection against premature degradation 

by synovial fluid enzymes over blood or fibrin clots, but even they may be degraded within 48 h by 

MMP-1 at high enough levels in the traumatized knee. Additional in vivo evaluations of these 

materials is likely to provide further insight into the use of these biologic materials in tissue 

engineering within the joint. 
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5. Conclusions 

The atelocollagen scaffolds had a significantly greater resistance to degradation by MMP-1, elastase 

and plasmin over the fibrin based scaffolds; while the cellular proliferation was similar in both types of 

collagen scaffolds. The atelocollagen scaffolds contracted more than the gelatin scaffolds during  

9 days in culture, though this does not appear to be cell mediated, as similar results were seen for the 

non-cell seeded scaffolds. The results suggest that atelocollagen-based scaffolds may provide some 

protection against premature degradation by synovial fluid enzymes over fibrin-based matrices. 

Acknowledgment 

The authors would like to acknowledge the assistance of David Luftman, Sherwin Kevy and May 

Jacobson. This project was supported by the NIH grants R01 AR054099 and AR052772 (MMM). 

References 

1. Murray, M.M.; Spindler, K.P.; Abreu, E.; Muller, J.A.; Nedder, A.; Kelly, M.; Frino, J.; 

Zurakowski, D.; Valenza, M.; Snyder, B.D.; et al. Collagen-platelet rich plasma hydrogel 

enhances primary repair of the porcine anterior cruciate ligament. J. Orthop. Res. 2007, 25,  

81-91. 

2. Murray, M.M.; Spindler, K.P.; Ballard, P.; Welch, T.P.; Zurakowski, D.; Nanney, L.B. Enhanced 

histologic repair in a central wound in the anterior cruciate ligament with a collagen-platelet-rich 

plasma scaffold. J. Orthop. Res. 2007, 25, 1007-1017. 

3. Murray, M.M.; Spindler, K.P.; Devin, C.; Snyder, B.S.; Muller, J.; Takahashi, M.; Ballard, P.; 

Nanney, L.B.; Zurakowski, D. Use of a collagen-platelet rich plasma scaffold to stimulate healing 

of a central defect in the canine ACL. J. Orthop. Res. 2006, 24, 820-830. 

4. Nabeshima, Y.; Kurosaka, M.; Yoshiya, S.; Mizuno, K. Effect of fibrin glue and endothelial cell 

growth factor on the early healing response of the transplanted allogenic meniscus: A pilot study. 

Knee Surg. Sports Traumatol. Arthrosc. 1995, 3, 34-38. 

5. Van Trommel, M.F.; Simonian, P.T.; Potter, H.G.; Wickiewicz, T.L. Arthroscopic meniscal repair 

with fibrin clot of complete radial tears of the lateral meniscus in the avascular zone. Arthroscopy 

1998, 14, 360-365. 

6. Arnoczky, S.P.; Warren, R.F.; Spivak, J.M. Meniscal repair using an exogenous fibrin clot. An 

experimental study in dogs. J. Bone Jt. Surg. 1988, 70, 1209-1217. 

7. Hildebrand, K.A.; Woo, S.L.; Smith, D.W.; Allen, C.R.; Deie, M.; Taylor, B.J.; Schmidt, C.C. 

The effects of platelet-derived growth factor-BB on healing of the rabbit medial collateral 

ligament. An in vivo study. Am. J. Sports Med. 1998, 26, 549-554. 

8. Nakhostine, M.; Gershuni, D.H.; Danzig, L.A. Effects of an in-substance conduit with injection of 

a blood clot on tears in the avascular region of the meniscus. Acta Orthop. Belg. 1991, 57,  

242-246. 

9. Freiss, W. Collagen-biomaterial for drug delivery. Eur. J. Pharm. Biopharm. 1998, 45, 113-136. 



Materials 2011, 4 

 

 

1480

10. Zeugolis, D.I.; Paul, G.R.; Attenburrow, G. Cross-linking of extruded collagen fibers—A 

biomimetic three-dimensional scaffold for tissue engineering applications. J. Biomed. Mater.  

Res. A 2009, 89, 895-908. 

11. Carmassi, F.; de Negri, F.; Morale, M.; Song, K.Y.; Chung, S.I. Fibrin degradation in the synovial 

fluid of rheumatoid arthritis patients: A model for extravascular fibrinolysis. Semin. Thromb. 

Hemostasis 1996, 22, 489-496. 

12. Chatham, W.W.; Swaim, R.; Frohsin, H., Jr.; Heck, L.W.; Miller, E.J.; Blackburn, W.D., Jr. 

Degradation of human articular cartilage by neutrophils in synovial fluid. Arthritis Rheum. 1993, 

36, 51-58. 

13. Harris, E.D., Jr.; DiBona, D.R.; Krane, S.M. Collagenases in human synovial fluid. J. Clin. Invest. 

1969, 48, 2104-2113. 

14. Neidhart, M.; Hauser, N.; Paulsson, M.; DiCesare, P.E.; Michel, B.A.; Hauselmann, H.J. Small 

fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for 

cartilage degradation. Br. J. Rheumatol. 1997, 36, 1151-1160. 

15. Belcher, C.; Yaqub, R.; Fawthrop, F.; Bayliss, M.; Doherty, M. Synovial fluid chondroitin and 

keratan sulphate epitopes, glycosaminoglycans, and hyaluronan in arthritic and normal knees. 

Ann. Rheum. Dis. 1997, 56, 299-307. 

16. Grootveld, M.; Henderson, E.B.; Farrell, A.; Blake, D.R.; Parkes, H.G.; Haycock, P. Oxidative 

damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid 

joint. Biochem. J. 1991, 273, 459-467. 

17. Laurent, T.C.; Fraser, J.R. Hyaluronan. FASEB J. 1992, 6, 2397-2404. 

18. Gysen, P.; Malaise, M.; Gaspar, S.; Franchimont, P. Measurement of proteoglycans, elastase, 

collagenase and protein in synovial fluid in inflammatory and degenerative arthropathies. Clin. 

Rheumatol. 1985, 4, 39-50. 

19. Kleesiek, K.; Reinards, R.; Brackertz, D.; Neumann, S.; Lang, H.; Greiling, H. Granulocyte 

elastase as a new biochemical marker in the diagnosis of chronic joint diseases. Rheumatol. Int. 

1986, 6, 161-169. 

20. Kummer, J.A.; Abbink, J.J.; de Boer, J.P.; Roem, D.; Nieuwenhuys, E.J.; Kamp, A.M.;  

Swaak, T.J.; Hack, C.E. Analysis of intraarticular fibrinolytic pathways in patients with 

inflammatory and noninflammatory joint diseases. Arthritis Rheum. 1992, 35, 884-893. 

21. Brama, P.A.J.; TeKoppele, J.M.; Beekman, B.; van El, B.; Barneveld, A.; van Weeren, P.R. 

Influence of development and joint pathology on stromelysin enzyme activity in equine synovial 

fluid. Ann. Rheum. Dis. 2000, 59, 155-157. 

22. Konttinen, Y.T.; Ainola, M.; Valleala, H.; Ma, J.; Ida, H.; Mandelin, J. Analysis of 16 different 

matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: Different profiles in 

trauma and rheumatoid arthritis. Ann. Rheum. Dis. 1999, 58, 691-697. 

23. Tchetverikov, I.; Lard, L.R.; DeGroot, J.; Verzijl, N.; TeKoppele, J.M.; Breedveld, F.C.; 

Huizinga, T.W.J.; Hanemaaijer, R. Matrix metalloproteinases-3, -8, -9 as markers of disease 

activity and joint damage progression in early rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 

1094-1099. 



Materials 2011, 4 

 

 

1481

24. Chevalier, X.; Groult, N.; Texier, J.M.; Larget-Piet, B.; Hornebeck, W. Elastase activity in 

cartilage extracts and synovial fluids from subjects with osteoarthritis or rheumatoid arthritis: The 

prominent role of metalloproteinases. Clin. Exp. Rheumatol. 1996, 14, 235-241. 

25. Moore, A.R.; Appelboam, A.; Kawabata, K.; da Silva, J.A.; D’Cruz, D.; Gowland, G.; 

Willoughby, D.A. Destruction of articular cartilage by alpha 2 macroglobulin elastase complexes: 

Role in rheumatoid arthritis. Ann. Rheum. Dis. 1999, 58, 109-113. 

26. Carmassi, F.; de Negri, F.; Morale, M.; Puccetti, R.; Chung, S.I. Elastase- and plasmin-mediated 

fibrinolysis in rheumatoid arthritis. Int. J. Tissue React. 1994, 16, 89-93. 

27. Rosc, D.; Powierza, W.; Zastawna, E.; Drewniak, W.; Michalski, A.; Kotschy, M. Post-traumatic 

plasminogenesis in intraarticular exudate in the knee joint. Med. Sci. Monit. 2002, 8, 371-378. 

28. Smith, S.A.; Morrissey, J.H. Polyphosphate enhances fibrin clot structure. Blood 2008, 112,  

2810-2816. 

29. Kanyama, M.; Kuboki, T.; Kojima, S.; Fujisawa, T.; Hattori, T.; Takigawa, M.; Yamashita, A. 

Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids of patients 

with temporomandibular joint osteoarthritis. J. Orofac. Pain 2000, 14, 20-30. 

30. Rość, D.; Powierza, W.; Zastawna, E.; Drewniak, W.; Michalski, A.; Kotschy, M. Post-traumatic 

plasminogenesis in intraarticular exudate in the knee joint. Med. Sci. Monit. 2002, 8, 371-378. 

31. Walakovits, L.A.; Moore, V.L.; Bhardwaj, N.; Gallick, G.S.; Lark, M.W. Detection of stromelysin 

and collagenase in synovial fluid from patients with rheumatoid arthritis and posttraumatic knee 

injury. Arthritis Rheum. 1992, 35, 35-42. 

32. Murray, M.M.; Palmer, M.; Abreu, E.; Spindler, K.P.; Zurakowski, D.; Fleming, B.C.  

Platelet-rich plasma alone is not sufficient to enhance suture repair of the ACL in skeletally 

immature animals: An in vivo study. J. Orthop. Res. 2009, 27, 639-645. 

33. Castricini, R.; Longo, U.G.; de Benedetto, M.; Panfoli, N.; Pirani, P.; Zini, R.; Maffulli, N.; 

Denaro, V. Platelet-rich plasma augmentation for arthroscopic rotator cuff repair: A randomized 

controlled trial. Am. J. Sports Med. 2011, 39, 258-265. 

34. Manning, C.N.; Kim, H.M.; Sakiyama-Elbert, S.; Galatz, L.M.; Havlioglu, N.; Thomopoulos, S. 

Sustained delivery of transforming growth factor beta three enhances tendon-to-bone healing in a 

rat model. J. Orthop. Res. 2011, 29, 1099-1105. 

35. Murray, M.M.; Magarian, E.M.; Harrison, S.L.; Mastrangelo, A.N.; Zurakowski, D.; Fleming, 

B.C. The effect of skeletal maturity on functional healing of the anterior cruciate ligament.  

J. Bone Jt. Surg. Am. 2010, 92, 2039-2049. 

36. Murray, M.M.; Magarian, E.; Zurakowski, D.; Fleming, B.C. Bone-to-bone fixation enhances 

functional healing of the porcine anterior cruciate ligament using a collagen-platelet composite. 

Arthroscopy 2010, 26 (Suppl. 9), 49-57. 

37. Joshi, S.M.; Mastrangelo, A.N.; Magarian, E.M.; Fleming, B.C.; Murray, M.M. Collagen-platelet 

composite enhances biomechanical and histologic healing of the porcine anterior cruciate 

ligament. Am. J. Sports Med. 2009, 37, 2401-2410. 

38. Rodeo, S.A.; Potter, H.G.; Kawamura, S.; Turner, A.S.; Kim, H.J.; Atkinson, B.L. Biologic 

augmentation of rotator cuff tendon-healing with use of a mixture of osteoinductive growth 

factors. J. Bone Jt. Surg. Am. 2007, 89, 2485-2497. 



Materials 2011, 4 

 

 

1482

39. Seeherman, H.J.; Archambault, J.M.; Rodeo, S.A.; Turner, A.S.; Zekas, L.; D’Augusta, D.;  

Li, X.J.; Smith, E.; Wozney, J.M. rhBMP-12 accelerates healing of rotator cuff repairs in a sheep 

model. J. Bone Jt. Surg. Am. 2008, 90, 2206-2219. 

40. Vermeulen, P.; Dickens, S.; Degezelle, K.; van den Berge, S.; Hendrickx, B.; Vranckx, J.J.  

A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes 

matrix formation, angiogenesis, and reepithelialization in full-thickness wounds. Tissue Eng. A 

2009, 15, 1533-1542. 

41. Jacobson, M.; Fufa, D.; Abreu, E.L.; Kevy, S.; Murray, M.M. Platelets, but not erythrocytes, 

significantly affect cytokine release and scaffold contraction in a provisional scaffold model. 

Wound Repair Regener. 2008, 16, 370-378. 

42. Mosesson, M.W.; Siebenlist, K.R.; Hernandez, I.; Wall, J.S.; Hainfeld, J.F. Fibrinogen assembly 

and crosslinking on a fibrin fragment E template. Thromb. Haemostasis 2002, 87, 651-658. 

43. Mastrangelo, A.N.; Haus, B.M.; Vavken, P.; Palmer, M.P.; Machan, J.T.; Murray, M.M. 

Immature animals have higher cellular density in the healing anterior cruciate ligament than 

adolescent or adult animals. J. Orthop. Res. 2010, 28, 1100-1106. 

44. Magarian, E.M.; Vavken, P.; Murray, M.M. Human anterior cruciate ligament fibroblasts from 

immature patients have a stronger in vitro response to platelet concentrates than those from 

mature individuals. Knee 2011, 18, 247-251. 

45. Mastrangelo, A.N.; Magarian, E.M.; Palmer, M.P.; Vavken, P.; Murray, M.M. The effect of 

skeletal maturity on the regenerative function of intrinsic ACL cells. J. Orthop. Res. 2010, 28, 

644-651. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


