
1. Introduction
The number of functional and smart packaging
materials increases continuously and they are used
already in everyday practice in increasing quantities
[1–4]. The main functions targeted for various prod-
ucts are small oxygen permeability or oxygen scav-
enging [5–7], humidity control [8–12], regulated
ethylene content [13], antimicrobial effect [14–17],
adsorption of odorous materials, or the opposite, the
release of desirable aromas [18, 19]. Intensive
research and development work is carried out on
these materials all over the world, but mostly in
industry.

Controlling oxygen permeability is especially impor-
tant in the pharmaceutical industry and in food
packaging. The oxygen permeability of polymers
varies in a wide range covering several orders of
magnitudes from a few hundred to a few hundredths
or even thousands of cm3·mm/m2/24 h/bar [20]. Eth-
ylene-vinyl alcohol copolymers (EVOH) offer
extremely good protection against oxygen [20–25].
The barrier properties of these materials depend on
ethylene content [23, 26, 27], crystallinity, tempera-
ture [22, 28] and humidity [24, 26–34]. The last fac-
tor represents also the major drawback of EVOH,
since permeability may increase by orders of mag-
nitudes with increasing water content [28]. Various
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solutions exist to overcome this drawback. One of
them is the production of multilayer films consist-
ing of an EVOH barrier layer between polyolefin
outer layers combined by the use of adhesive func-
tional polymers [27, 35–37]. Development led to
the production of packaging films with 9 or 10 lay-
ers combining EVOH, polyamide (PA) and poly-
olefins [38]; microfilms with 30–1000 layers of
0.02–5 µm thickness also appeared on the market
recently [39].
Another approach to decrease the oxygen perme-
ability and water sensitivity of EVOH is modifica-
tion by blending [29, 35, 40–49] or by the produc-
tion of layered silicate nanocomposites [50–57].
EVOH is combined with polyamides the most fre-
quently, but blending results in decreased crys-
tallinity and the desired improvement in permeabil-
ity is seldom achieved. Better results are claimed
with layered silicates which are supposed to exfoli-
ate completely in EVOH, increase tortuosity and
decrease permeability considerably. Unfortunately
the control of structure is difficult in polymer/lay-
ered silicate nanocomposites [58], complete exfoli-
ation is rarely achieved [59], organophilic silicates
are quite expensive and they often discolor the prod-
uct [60]. All the above presented examples prove
the need for solutions, which result in a further
decrease in the oxygen permeability of EVOH.
During the literature study of the topic, we have not
found any indication of using a small molecular
weight additive for the improvement of the barrier
properties of poly(ethylene-co-vinyl alcohol) against
oxygen. The general idea and goal of our project
was to explore this possibility and use N,N!-
bis(2,2,6,6-tetramethyl-4-piperidyl)-isophthalamide
(Nylostab SEED), which was originally developed
for the protection of pigmented polyamides against
light induced decomposition. The additive proved to
be also an efficient nucleating agent in polyamides.
Nucleation of EVOH might increase crystallinity
thus decreasing oxygen permeability and water sen-
sitivity as well. The compound contains several
functional groups, which may interact with the 
–OH group of EVOH thus changing free volume
and offering a further route to modify oxygen per-
meability. EVOH containing the additive in a rela-
tively wide composition range was produced and
various properties were determined in the study. A
detailed analysis of structure and interactions is pre-

sented in the paper to shed light onto the reason of
the observed effects and correlations.

2. Experimental
The poly(ethylene-co-vinyl alcohol) polymer
(EVOH) used in the experiments was the Eval
G156 grade acquired from Eval Europe, Belgium.
Its ethylene content is 48 mol%, density 1.12 g/cm3

and its melt flow index is 6.4 g/10 min at 190°C
and 2.16 kg. The additive, N,N!-bis(2,2,6,6-tetram-
ethyl-4-piperidyl)-isophthalamide (Nylostab SEED,
in further discussion Seed) is the product of Clari-
ant, Germany. The chemical structure of the additive
is shown in Figure 1. It is a sterically hindered amine
(HALS) product, a crystalline material with melting
temperature of 272°C and density of 1.12 g/cm3.
Experiments were carried out at 0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.8, 1.0, 2.5, 5.0, 7.5 and 10.0 wt% additive
contents.
Components were homogenized in a Brabender sin-
gle screw extruder at 30 rpm and 260–270–280–
260°C zone temperatures. The extruder was equipped
with a die of single orifice of 3 mm diameter. The
extruded strand was cooled in air and then pel-
letized. The pellets were compression molded to
plates of 1 mm and films of about 100 µm thickness
at 190°C using a Fontijne SRA 100 machine. Before
processing all materials were dried at 100°C for
4 hours in an oven and then kept in a desiccator
until further use.
Melting and crystallization characteristics and the
possible nucleation effect of the additive were deter-
mined by differential scanning calorimetry (DSC)
using a Perkin Elmer DSC 7 apparatus. The meas-
urements were done on 3–5 mg samples cut from
the 1 mm thick plates. Two heating and a cooling run
were carried out at 10°C/min heating and cooling
rate in the temperature range of 30–300°C. Crys-
tallinity was calculated from the enthalpy of fusion
(157.8 J/g) of the EVOH single crystal of 100% crys-
tallinity [61]. Crystalline structure was also studied
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Figure 1. Chemical structure of the additive used in the
experiments (Seed)



by X-ray diffraction. XRD patterns were recorded
using a Phillips PW 1830/PW 1050 equipment with
CuK" radiation at 40 kV and 35 mA in the reflection
mode. The traces were recorded in 0.04° steps with
a sampling interval of 1 s and a rate of 0.04°/min in
the 2# range of 3–43°. Crystallinity was calculated
from the XRD traces with the method proposed by
Brückner [62].
Molecular interactions were studied by Fourier trans-
form infrared spectroscopy (FTIR). The measurement
were carried out in the attenuated total reflection
(ATR) mode and the spectra were recorded in the
wavelength range of 4000–400 cm–1 with 16 scans
in 4 cm–1 steps using a Perkin Elmer Spectrum 100
apparatus. Molecular modeling was used to check
possible interactions between the additive and the
polymer and to estimate their strength. To reduce
the necessary time and computer capacity to a rea-
sonable level, we selected a small molecular weight
model compound (1,4-buthanediol) representing
the repeating unit of the polymer. We focused only
on specific interactions, i.e. hydrogen bonds, and
neglected dispersion interactions in the analysis. All
the geometry optimizations for the model system
were performed at the density functional theory
(DFT) level using the MPW1B95 (modified Perdew
and Wang exchange and Becke’s 1995 correlation)
functional [63] as well as the 6-31++G** basis set
[64].
The density of the polymer was measured at room
temperature in n-hexane using a pycnometer. A
Systec Instruments Model 8000 apparatus (Thame,
Oxfordshire, England) was applied for the perme-
ation measurements, which were carried out accord-
ing to the ASTM D 3985 standard in three parallel
measurements. The test area and thickness of the
sample were 50 cm2 and about 100 µm, respectively,
for all specimens. Oxygen transmission rate (OTR)
was detected at 23°C and 50% relative humidity.
Mechanical properties were characterized by tensile
testing using an Instron 5566 machine at 115 mm
gauge length and 5 mm/min cross-head speed on
five parallel specimens with 1$10 mm dimensions
according to the ISO 527 standard. The haze of the
samples was determined with the help of a Col-
orQuest (HunterLab, Reston, US) apparatus.

3. Results and discussion
The results are presented in several sections. First, the
effect of the additive on the properties of the poly-

mer is shown and then the structure of the latter is
analyzed in detail. Solubility and interactions are
considered in the next two sections, and then corre-
lations are discussed and a brief reference is made
to consequences for practice in the last section.

3.1. Properties
The main hypothesis of the project was that simi-
larly to PA, Seed will nucleate also EVOH, increase
crystallinity and oxygen permeability decreases as
an effect. The OTR of films is plotted against addi-
tive content in Figure 2.
Permeability decreases at small Seed concentrations
as expected, but increases considerably at larger addi-
tive contents. The initial decrease seems to be small,
but it is approximately 30%, which is more than any
effect achieved by blending and only slightly smaller
than the claimed decrease resulting from the use of
layered silicates (~50%) [55, 56], but without the
disadvantageous effect of the latter. We may con-
clude as a result that the additive influences oxygen
permeability indeed, but the reason for the effect
must be identified by further study and analysis.
Changes in other properties and the analysis of struc-
ture should offer more information about the mech-
anism and origin of the effect. The increase in perme-
ability at large additive content merits further con-
siderations as well. If nucleation and changes in crys-
talline structure result in the improvement observed,
one would expect a saturation effect, OTR remain-
ing constant at large SEED contents. Obviously, some
other, probably structural changes lead to the mini-
mum in the OTR vs. additive content correlation
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Figure 2. Effect of Seed content on the oxygen permeation
of EVOH films



resulting from the superposition of two different
effects.
The influence of the additive on the Young’s modu-
lus of the polymer is presented in Figure 3. The
results strongly corroborate our preliminary assump-
tion, stiffness increases with increasing additive
content presumably because of increasing crys-
tallinity and probably larger lamella thickness [65].
Similarly to OTR, two stages can be observed in the
composition dependence of Young’s modulus as well.
Stiffness increases quite steeply at small and some-
what more moderately at larger additive contents,
above 1.5–2.0 wt%. Ultimate tensile properties are
presented as a function of additive content in Fig-
ure 4. The changes in tensile strength agree more or
less with the results presented in Figures 2 and 3,
i.e. strength increases considerably at small additive

contents. On the other hand, the composition depend-
ence of deformability seems to contradict our initial
assumption. Changing crystallinity leading to larger
stiffness usually results in decreased deformability
and not to increased elongation-at-break. Simulta-
neous increase of strength and deformability often
indicates changing structure, like physical or chem-
ical cross-linking or decreased crystallinity. More-
over, the maximum in both quantities hints also to
further structural changes, to the probability of
phase separation caused by the limited solubility of
the additive in the polymer. A heterogeneous, two-
phase structure with weak interfacial interaction of
the phases could result in the decrease of strength
and deformability at large additive contents.

3.2. Structure
The modulus of crystalline polymers is determined
mainly by crystallinity and the thickness of the
lamella grown during crystallization [65]; lamella
thickness increases with increasing crystallization
temperature, thus also with nucleation [66, 67]. The
heat of fusion proportional to crystallinity is plotted
against additive content in Figure 5. Rather surpris-
ingly crystallinity does not increase, but decreases
with increasing additive content. The detailed analy-
sis of the DSC traces recorded in the two heating and
the cooling runs indicated that Seed does not nucle-
ate EVOH. All quantities related to crystallinity
(heat of fusion, heat of crystallization) decreased
with increasing additive content, the melting tem-
perature was constant in both heating runs and the
temperature of crystallization also decreased as
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Figure 3. Dependence of the stiffness of EVOH plates on
additive content

Figure 4. Ultimate tensile properties of EVOH plotted against
Seed content. Symbols: (%) tensile strength, (&)
elongation-at-break.

Figure 5. Effect of additive content on the crystallinity
('Hm1) of EVOH



Seed content increased. These results clearly indi-
cate that the decrease in OTR as an effect of the
additive is not caused by changing crystalline struc-
ture, but by some other factor or factors.
XRD spectra were also recorded and analyzed in
order to confirm the modification of crystalline struc-
ture. The traces are presented in Figure 6 for selected
compositions. Crystal form does not change at small
additive content, but new peaks appear on the traces
above 2.5 wt% Seed content. Possible changes in
crystallinity cannot be deduced from the traces in
this form, but their quantitative analysis by the
approach of Brückner [62] allowed the determination
of crystallinity, which is plotted against additive
content in Figure 7. The correlation is practically
identical to the one presented in Figure 5, and plot-
ting the two quantities, i.e. the heat of fusion and
crystallinity determined by XRD, against each other
yielded a straight line with negligible scatter (not
shown). These results further confirm that crys-
tallinity does not increase, but decreases as an effect
of the additive, this latter does not nucleate EVOH
and the changes observed in properties are caused
by another factor, probably by interactions.

3.3. Solubility
The extremes in Figures 2 and 4 indicated the mod-
ification of structure, which cannot result from chang-
ing crystallinity, since it decreases monotonously
with increasing additive content. A possible reason
might be phase separation, the limited solubility of
the additive in the polymer. A further indication for
the existence of separate phases was supplied by the
XRD traces presented in Figure 6. Above 2.5 wt%
Seed content new peaks appear in the traces, which
correspond to certain reflections of the additive.
Obviously, the additive is present as a separate
phase in crystalline form at these concentrations.
Changes in the optical properties of polymers may
also reveal phase changes. Crystalline units as well
as dispersed particles are often large enough to
interfere with visible light and this interference
results in considerable haze that is often used for
the characterization of the optical properties of
plastic products. Haze is the total flux of light scat-
tered within the angular range between 2.5 and 90°
and normalized to the total transmitted flux [68].
Haze indicates changes in optical properties more
sensitively than transparency, which is the fraction
of incident light that passes through an object. The
haze value of the plates containing different amounts
of Seed is plotted as a function of composition in
Figure 8. The correlation is very interesting and
clearly reveals all structural changes in the polymer
as an effect of increasing additive content. Haze
decreases at small additive concentrations due to
decreasing crystallinity. At around 2 wt% Seed con-
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Figure 6. XRD traces of EVOH containing various amounts
of Seed additive

Figure 7. Decreasing crystallinity with increasing additive
content as determined by XRD analysis



tent haze starts to increase and reaches practically
100% at the largest additive content because of
phase separation and the presence of large dispersed
particles. These changes agree well both with the
XRD results (Figure 6), but also with the changes in
mechanical properties (Figures 3 and(4).

3.4. Interactions
The functional groups of the additive and the

hydroxyl groups of the polymer may develop rela-
tively strong interactions. Molecular modeling by
using the DFT approach showed that hydrogen bonds
can form between the two substances indeed (see
Figure 9). The two compounds are in the lowest
energy state when the hydroxyl group of the poly-
mer and the carbonyl of the additive are at about
2 Å distance from each other which corresponds to
the distance of hydrogen bonds. The energy of the
interaction is 28 kJ/mol, which is relatively strong.
The interaction should result in a shift of the corre-

sponding absorptions bands in the infrared spec-
trum of the material.
The spectra are presented in Figure 10 for selected
additive contents in the range of the carbonyl vibra-
tion of the amide group (around 1650 cm–1). A con-
siderable shift can be observed at small additive
contents, which seems to level out at larger amounts
of Seed, but the spectra in Figure 10 do not allow a
more precise determination of band shifts. The results
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Figure 8. Effect of additive content on the haze of 1 mm
thick EVOH plates

Figure 9. Formation of hydrogen bonds between EVOH
and Seed; DFT modeling

Figure 10. Shift in the position of the carbonyl absorption of
amide groups with increasing additive content

Figure 11. Effect of additive content on the position of the
carbonyl absorption of amide groups



of quantitative analysis are shown in Figure 11, in
which the position of the carbonyl absorption is
plotted against additive content. The absorption
band shifts more than 10 cm–1 wavelength in the
range of 0–2 wt% additive content and remains con-
stant afterwards. The strong shift corroborates pre-
vious results and further justifies the changes in
structure and properties presented in previous sec-
tions. The results clearly prove that not crystalline
structure, but interactions determine properties in
the EVOH/additive system studied.

3.5. Discussion
The control of oxygen permeation has strong practi-
cal relevance. EVOH is one of the polymers with
the smallest oxygen permeation, but many attempts
are made to improve barrier properties even further
[38, 47, 50, 55]. Most of these approaches failed to
result in sufficient improvement in this property.
Instead of blending or using fillers, we added a small
molecular weight additive to EVOH to decrease
oxygen permeation with positive results. Although
the change in the targeted property is relatively small,
it is significant. Contrary to our original assumption
the additive, i.e. Seed, does not act as a nucleating
agent, but the effect observed can be assigned to
molecular interactions.
Both molecular modeling and FTIR spectroscopy
proved that the –OH groups of the polymer and the
amide groups of the additive strongly interact with
each other and this interaction results in all the
observed changes in properties. Because of interac-
tions, crystallinity decreases somewhat, but the
decrease does not result in smaller stiffness and
strength. At small concentrations the additive dis-
solves in the amorphous phase of the polymer
decreasing molecular mobility. Decreased mobility
results in increased stiffness and strength, but also
increased overall deformability due to the physical
cross-link points created by hydrogen bonds. Smaller
mobility and hydrogen bonds decrease also oxygen
diffusion, the direct effect of which is clearly shown
by Figure 12. Smaller molecular mobility is accom-
panied by decreased free volume resulting in
smaller OTR [69].
Up to the solubility level a very close linear correla-
tion exists between oxygen permeability and the
shift in the position of the carbonyl absorption of
the amide groups. Above the solubility limit, which
is around 2.0 wt% the additive forms a separate

phase. Phase separation leads to a maximum in ulti-
mate tensile properties (Figure 4), the appearance
of new reflections in the XRD spectra (Figure 6)
and the deviation from the straight line in Figure 12.
The results strongly corroborate the effect of the
additive on the structure and properties of EVOH
and show a novel way to control oxygen perme-
ation in such polymers.

4. Conclusions
Poly(ethylene-co-vinyl alcohol) of 48 mol% ethyl-
ene content was modified with N,N!-bis(2,2,6,6-
tetramethyl-4-piperidyl)-isophthalamide to decrease
the oxygen permeability of the polymer even fur-
ther. The results showed that oxygen permeation
decreased considerably when the additive was added
at less than 2.0 wt% concentration. The decrease
resulted from the interaction of the hydroxyl groups
of the polymer and the amide groups of the addi-
tive. The dissolution of the additive in the amor-
phous phase of the polymer led to decreased crys-
tallinity, but also in the decreased mobility of
amorphous molecules. Stiffness and strength, but
also deformability increased as a result. Above
2 wt%, the additive forms a separate phase leading
to the deterioration of properties. The success of the
approach represents a novel way to control oxygen
permeation in EVOH and in other polymers with
similar functional groups capable of strong interac-
tions.
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Figure 12. Direct correlation between oxygen permeation
and molecular interactions (carbonyl shift); full
symbols: below solubility level, empty symbols:
separate additive phase
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